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Correlation energy of the spin-polarized uniform electron gas at high density
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The correlation energy per electron in the high-density uniform electron gas can be written as Ec(rs,ζ ) =
λ0(ζ ) ln rs + ε0(ζ ) + λ1(ζ ) rs ln rs + O(rs), where rs is the Seitz radius and ζ is the relative spin polarization. We
derive an expression for λ1(ζ ) that is exact for any ζ , including the paramagnetic and ferromagnetic limits, λ1(0)
and λ1(1), and discover that the previously published λ1(1) value is incorrect. We trace this error to an integration
and limit that do not commute. The spin resolution of λ1(ζ ) into contributions of electron pairs is also derived.
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The final decades of the 20th century witnessed a ma-
jor revolution in solid-state and molecular physics, as the
introduction of sophisticated exchange-correlation models1

propelled density-functional theory (DFT) from qualitative to
quantitative usefulness. In principle, the foundation of DFT is
the Hohenberg-Kohn theorem2 but, in practice, it is usually
the supposed similarity between the electron density in a real
system and the electron density in the hypothetical uniform
electron gas (UEG).3

The three-dimensional UEG is characterized by a density
ρ = ρ↑ + ρ↓, where ρ↑ and ρ↓ is the (uniform) density of
the spin-up and spin-down electrons, respectively. In order
to guarantee its stability, the electrons are assumed to be
embedded in a uniform background of positive charge.

In 1965, Kohn and Sham4 showed that the knowledge
of an analytical parametrization of the UEG correlation
energy allows one to perform approximate calculations for
atoms, molecules, and solids. This led to the development
of various spin-density correlation functionals (VWN,5 PZ,6

PW92,7 etc.), all of which require information on the high-
and low-density regimes of the spin-polarized UEG, and are
parametrized using results from near-exact quantum Monte
Carlo (QMC) calculations.8–15

However, inspired by Wigner’s seminal work,16 Sun,
Perdew, and Seidl have recently shown that the correlation
energy of the UEG can be estimated accurately without any
QMC input.17 They used a density-parameter interpolation
(DPI) between the (near-) exact high- and low-density regimes,
which precisely reproduces the first few coefficients of the
high- and low-density energy expansions.18 Knowledge of
these coefficients, of course, is essential for such interpola-
tions, and is the motivation for the present work. We use atomic
units throughout.

The high-density expansion of the correlation energy per
electron (or reduced energy) of the UEG is16,17,19–28

Ec(rs,ζ ) = λ0(ζ ) ln rs + ε0(ζ ) + λ1(ζ ) rs ln rs + O(rs), (1)

where rs = (4πρ/3)−1/3 is the so-called Seitz radius and ζ =
(ρ↑ − ρ↓)/ρ is the relative spin polarization. It is clear that
λ0(ζ ), ε0(ζ ), λ1(ζ ), . . . must be even functions.

The coefficient λ0(ζ ) can be obtained by the Gell-
Mann–Brueckner resummation technique,22 which sums the
most divergent terms of the series (1) to obtain

λ0(ζ ) = 3

32π3

∫ ∞

−∞
[R0(u,ζ )]2du, (2)

where

R0(u,ζ ) = k↓R0

(
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)
+ k↑R0

(
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)
, (3)

R0(u) = 1 − u arctan(1/u), (4)

and k↑,↓ = (1 ± ζ )1/3 is the Fermi momentum of the spin-
up or spin-down electrons. The paramagnetic19 (ζ = 0) and
ferromagnetic25 (ζ = 1) limits are given in Table I and the
spin-scaling function
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was obtained by Wang and Perdew.27

The coefficient ε0(ζ ) is usually written as the sum

ε0(ζ ) = εa
0 (ζ ) + εb

0 (6)

of a RPA (random-phase approximation) term εa
0 (ζ ) and a

first-order exchange term εb
0 . The RPA term εa

0 (ζ ) is not
known in closed form, but it can be computed numerically
with high precision.28 Its paramagnetic and ferromagnetic
limits are given in Table I and the spin-scaling function
ϒa

0 (ζ ) = εa
0 (ζ )/εa

0 (0) can be found using Eq. (20) in Ref. 28.
The first-order exchange term26 is given in Table I and, because
it is independent of the spin polarization, the spin-scaling
function ϒb

0 (ζ ) = εb
0(ζ )/εb

0(0) = 1 is trivial.
The coefficient λ1(ζ ) can be written similarly24 as

λ1(ζ ) = λa
1(ζ ) + λb

1(ζ ), (7)

where

λa
1(ζ ) = − 3α

8π5

∫ ∞

−∞
Ra

1(u,ζ ) du, (8)
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1(ζ ) = 3α

16π4
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Rb

1(u,ζ ) du (9)

are the RPA and second-order exchange contributions and α =
(9π/4)−1/3. The integrand functions are7,17

Ra
1(u,ζ ) = R0(u,ζ )2R1(u,ζ ), (10)

Rb
1(u,ζ ) = R0(u,ζ )R2(iu,ζ ), (11)
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TABLE I. Energy coefficients and spin-scaling functions of the paramagnetic (ζ = 0) and ferromagnetic (ζ = 1) states of the high-density
UEG. Note that α = (9π/4)−1/3 and z(n) is the Riemann ζ function (Ref. 29).

Paramagnetic Limit Ferromagnetic Limit Spin-Scaling Function
Term Coefficient ε(0), λ(0) ε(1), λ(1) ϒ(ζ ), �(ζ )

ln rs λ0(ζ )
1 − ln 2

π 2

1 − ln 2

2π 2
Eq. (5)

r0
s εa

0 (ζ ) −0.0710995 −0.0499167 Ref. 28

εb
0(ζ )

ln 2

6
− 3

4π 2
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ln 2

6
− 3

4π 2
z(3) 1
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24π 3
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24/3

α
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R1(u) = − π

3(1 + u2)2
, (14)

R2(iu) = 4
(1 + 3u2) − u(2 + 3u2) arctan u

1 + u2
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Carr and Maradudin gave an estimate24 of λ1(0), and this was
later refined by Perdew and coworkers.7,17

However, we have found that the integrals in Eqs. (8) and
(9) can be evaluated exactly by computer software,30 giving
the paramagnetic and ferromagnetic values in Table I and the
spin-scaling functions

�a
1(ζ ) = 3

π2 − 6

{(
π2

6
+ 1

4

)
(k2

↓ + k2
↑) − 3

2
k↓k↑

− k2
↓ + k2

↑
k2
↓ − k2

↑
k↓k↑ ln

(
k↓
k↑

)
− k2

↓ − k2
↑

2

×
[

Li2

(
k↓ − k↑
k↓ + k↑

)
− Li2

(
k↑ − k↓
k↓ + k↑

)]}
, (16)

�b
1(ζ ) = 3

π2 − 12 ln 2

{
π2

6
(k2

↓ + k2
↑) + (1 − ln 2)(k↓ − k↑)2

− k2
↓
2

Li2

(
k↓ − k↑
k↓ + k↑

)
− k2

↑
2

Li2

(
k↑ − k↓
k↓ + k↑

)

+ 1

k↓k↑

[
k4
↓ ln

(
k↓

k↓ + k↑

)
+ k2

↓k2
↑ ln

(
k↓k↑

(k↓ + k↑)2

)

+ k4
↑ ln

(
k↑

k↓ + k↑

)]}
, (17)

where Li2 is the dilogarithm function.29

The spin scalings �0(ζ ), ϒa
0 (ζ ), ϒb

0 (ζ ), �a
1(ζ ), and �b

1(ζ )
are shown in Fig. 1, highlighting the Hoffmann minimum28 in
ϒa

0 (ζ ) near ζ = 0.9956 and revealing a similar minimum in
�a

1(ζ ) near ζ = 0.9960. Such minima seem to be ubiquitous
in RPA coefficients.

The data in Table I yield the exact values

λ1(0) = α

4π3

(
7π2

6
− 12 ln 2 − 1

)
= 0.00922921 . . . , (18)

λ1(1) = 2−4/3 α

4π3

(
13π2

12
− 12 ln 2 + 1

2

)
= 0.00479225 . . . ,

(19)

and it is revealing to compare these with recent numerical
calculations. The estimate λ1(0) ≈ 0.0092292 by Sun et al.17

agrees perfectly with Eq. (18) but their estimate λ1(1) ≈
0.003125 is strikingly different from Eq. (19). How can this
discrepancy be explained?

Following Gell-Mann and Brueckner22 and Ueda,31 Mi-
sawa argued25 that the ζ = 0 and ζ = 1 limits of the RPA
and exchange contributions to the correlation energy are
related by

Ea
c (rs,1) = 1

2Ea
c (2−4/3rs,0), (20)

Eb
c (rs,1) = Eb

c (2−4/3rs,0), (21)

and, from these relations, Perdew and Wang inferred7

λa
1(1) = 2−7/3λa

1(0), (22)

λb
1(1) = 2−4/3λb

1(0). (23)

These are also obtained if the ζ → 1 limit of the integrands in
Eqs. (8) and (9) is taken before integrating over u.

Numerical evaluations of Eq. (9) and analytical results from
Eq. (17) confirm that Eq. (23) is correct. However, numerical
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FIG. 1. The five spin scalings as functions of ζ .
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TABLE II. Reduced correlation energy −Ec(rs,1) for the ferro-
magnetic state of the UEG for various rs .

rs QMCa DPIb Modified DPIc

2 0.0240(3) 0.0236 0.0238
5 0.0154(1) 0.0151 0.0152
10 0.0105(1) 0.0102 0.0103
20 0.006 78(2) 0.006 63 0.006 64
50 0.003 55(1) 0.003 50 0.003 50
100 0.002 073(3) 0.002 055 0.002 055

aBenchmark QMC results taken from Ref. 8. The digits in parentheses
represent the error bar in the last decimal place.
bResults taken from Ref. 17 using the DPI (density-parameter
interpolation) formula with λ1(1) = 0.003125.
cResults from the present work using the DPI formula with λ1(1) =
0.004792.

evaluations of Eq. (8) and analytical results from Eq. (16) agree
that Eq. (22) is wrong and that, in fact,

λa
1(1) = 2−7/3λa

1(0) × π2 + 6

π2 − 6
. (24)

The error in Eq. (22) arises from the noncommutivity of
the ζ → 1 limit and the u integration, which is due to the
nonuniform convergence of Ra

1(u,ζ ).
To show this particular point, let us define


λa
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It can be easily shown that it is not possible to find a function
D(u), which is integrable with respect to u and dominates

Ra

1(u,ζ ), i.e., ∀(u,ζ ), |
Ra
1(u,ζ )| � D(u). Thus, according

to the dominated convergence theorem, one cannot show that
limit and integration can be interchanged, and

lim
ζ→1


Ra
1(u,ζ ) = 0, 
λa

1(1) = 0. (27)

However, substituting t = u/k↓ in Eqs. (25) and (26),
one immediately finds a function D(t), which is integrable
with respect to t and dominates 
Ra

1(t,ζ ). This ensures the
possibility of interchanging limit and integration. It yields

lim
ζ→1
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22/3π
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dt = 2−1/3 α

8π3

= 0.00166727, (29)

which is exactly the difference between the two values
of λa

1(1).
The effect of the coefficient λ1(1) on the reduced correlation

energy of the ferromagnetic state has been studied by varying
its value in the DPI formula proposed by Sun et al. in Ref. 17.
The results have been compared with the benchmark QMC
calculations of Ceperley and Alder.8 As shown in Table II, the
new value of λ1(1) derived in the present study systematically
improves the accuracy of the DPI correlation energy, especially
for small rs .

In some cases,27,32 it is of interest to resolve λ1(ζ ) into
contributions due to ↑↑, ↓↓, and ↑↓ electron pairs, such as

λi
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1 (ζ ) + λ
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1 (ζ ) + λ
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1 (ζ ), (30)

�
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, (31)

where i = a or b, and σσ ′ = ↑↑ , ↓↓ ,or ↑↓. Using (16) and
(17), we find
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4
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The remaining contributions can be obtained using the
relations

�
i,↓↓
1 (ζ ) = �

i,↑↑
1 (−ζ ), (34)

�
i,↑↓
1 (ζ ) = 1 − �

i,↑↑
1 (ζ ) − �

i,↓↓
1 (ζ ), (35)

and are represented in Fig. 2.
In conclusion, we have found a closed-form expression for

the coefficient λ1(ζ ) of the rs ln rs term in Eq. (1). It is valid
for any value of ζ and, in particular, for the paramagnetic
(ζ = 0) and ferromagnetic (ζ = 1) limits. This reveals that
an earlier derivation of the ferromagnetic limit λ1(1) was
incorrect because of an inadmissible interchange of a limit
and an integral. The present result has no direct impact on the
quantum phase diagram of the UEG, because the effect of the
coefficient λ1(ζ ) is more pronounced in the high-density limit
(0 < rs � 2), where the paramagnetic fluid is significantly
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FIG. 2. Spin resolution of �
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1 (ζ ), �
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1 (ζ ), and λσσ ′

1 (ζ ) as functions of ζ .
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more stable than the ferromagnetic one.8 Preliminary results
on higher-order coefficients reveal that they behave similarly,
and special care has to be taken in future studies. We believe
that these new results will be useful in the future development
of exchange-correlation functionals within DFT.
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