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Classical realization of two-site Fermi-Hubbard systems
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A classical wave optics realization of the two-site Hubbard model, describing the dynamics of interacting
fermions in a double-well potential, is proposed based on light transport in evanescently coupled optical
waveguides.
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Quantum-classical analogies have been explored on many
occasions to mimic and visualize in a purely classical setting
the dynamical aspects embodied in a wide variety of quantum
systems.1,2 In particular, in the past two decades engineered
photonic lattices have provided a useful model system to
investigate wave optics analogous of solid state phenomena.2–5

Most of the optical analogues of solid-state phenomena ob-
served so far, including electronic Bloch oscillations,3,6 Zener
tunneling,7 dynamic localization,8 Anderson localization,9

Rabi flopping,10 and topological photonic crystals,11 refer
to single-particle phenomena and are based on the formal
similarity between the paraxial optical wave equation in
photonic lattices and the nonrelativistic Schrödinger equation
of a single particle in periodic potentials.2 However, much
of the richer physics in condensed matter comes from many-
body phenomena and electron correlations. The simplest and
paradigmatic model which describes correlation effects of
electrons in a lattice, arising from the the competition among
chemical bonding, Coulomb repulsion and Pauli exclusion
principle, is perhaps provided by the Hubbard model (HM).12

This model is capable of capturing some many-body aspects
of the electronic properties of condensed matter, such as
metal-insulator transitions, itinerant magnetism, and electronic
superconductivity (see, e.g., Refs. 13 and 14, and references
therein). In spite of the simplicity of its Hamiltonian structure,
very few exact results are known for the HM, mainly for
finite clusters or for the infinite one-dimensional chain.13–15

The simplest solvable and nontrivial system, which can still
capture some of the main relevant properties of larger clusters
and of the infinite chain, is provided by the two-site Hubbard
Hamiltonian (see, for instance, Ref. 16). The two-site HM,
being exactly solvable, has been considered by several authors
as a simplified theoretical model.16–22 In particular, it is useful
as a toy model for understanding the binding of molecules
like H2,17–19 and it was proposed to model electron-molecular
vibration coupling in organic charge-transfer salts20 and
the electronic structure in π systems.21 Since photons are
bosons and they do not interact when propagating in linear
optical structures, one would expect that photonics is not a
suited system to simulate in a classical setting the physics
of interacting electrons in solids. In recent works,23 it has
been pointed out that photonic structures could provide a
noteworthy laboratory system to simulate the physics of few
interacting bosons in the framework of the Bose-Hubbard
model. In this Brief Report it is shown that light transport in
suitably engineered coupled waveguide structures can mimic
the dynamics of interacting fermions as well. In particular, an

optical realization of the two-site HM is proposed, in which
light propagation in four evanescently-coupled waveguides
reproduces the temporal dynamics of the occupation number
amplitudes of the electrons in the two-site potential.

The HM describing electron dynamics in a one-dimensional
chain of N potential sites with nearest-neighboring hopping is
defined by the Hamiltonian (see, for instance, Ref. 14)

Ĥ =−κ

N−1∑
j=1

∑
σ=↑,↓

(â†
j,σ âj+1,σ + â

†
j+1,σ âj,σ ) + U

N∑
j=1

n̂j,↑n̂j,↓,

(1)

where κ is the hopping amplitude between adjacent sites, U is
the on-site Coulomb interaction strength, â†

j,σ is the fermionic
creation operator that creates one electron at site j with
spin σ (j = 1,2, . . . ,N , σ =↑ , ↓), and n̂j,σ = â

†
j,σ âj,σ are

the particle number operators. The fermionic operators
â
†
j,σ and âj,σ satisfy the usual anticommutation re-

lations {â†
j,σ ,â

†
k,ρ} = {âj,σ ,âk,ρ} = 0 and {âj,σ ,â

†
k,ρ} =

δj,kδσ,ρ . The space of states of the HM is spanned by all linear
combinations of Wannier states of the form14

|n1,n2, . . . ,nN ,m1,m2, . . . ,mN 〉 ≡ |n,m〉
= â

† n1
1,↓ â

† n2
2,↓ · · · â† nN

N,↓ â
† m1
1,↑ â

† m2
2,↑ · · · â† mN

N,↑ |0〉, (2)

where |0〉 is the vacuum state. The state |n,m〉 corresponds
to nj electrons occupying the site j with spin ↓ and mj

electrons occupying the site j with spin ↑. Owing to the
anticommutation rules of the Fermi operators, the integers
nj and mj can take only the two values 0 and 1, according
to the Pauli exclusion principle. Hence, the number of all
linearly independent Wannier states is 22N . If the state vector
|ψ(t)〉 of the system is decomposed on the Wannier basis,
|ψ(t)〉 = ∑

n,m f (n,m,t)|n,m〉, the evolution equations for
the 22N occupation amplitudes f (n,m,t) are formally given
by (assuming h̄ = 1)

i
df (n,m,t)

dt
=

∑
s,q

〈n,m|Ĥ |s,q〉f (s,q,t). (3)

Since the total number of electrons Nt and total number of
electrons with spin ↑ (N↑) and ↓ (N↓) are conserved quanti-
ties for the Hubbard Hamiltonian,24 the amplitude Eqs. (3)
are decoupled into a set of equations acting on different
subspaces of the Hilbert space. Each subspace is defined by
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the Wannier states with an assigned number of electrons Nt =
N↓ + N↑, with N↑ electrons with spin ↑ and N↓ electrons
with spin ↓; the number of amplitudes in such a subspace

is hence ( N
N↑

)( N
N↓

). The two-site HM [i.e., N = 2 in Eq. (1)]

provides the simplest and exactly solvable model which can
still capture some of the main relevant properties of larger
clusters and of the infinite chain. The two-site HM has been
investigated by several authors16–22 and proposed as a toy
model for understanding the binding of molecules like H2,17–19

to model electron-molecular vibration coupling in organic
charge-transfer salts,20 and to describe the electronic structure
in π systems.21 Here we propose an optical realization of
the two-site Hubbard Hamiltonian based on light transport in
evanescently coupled optical waveguides which is capable of
mimicking the temporal dynamics of the Hubbard system in
the Wannier basis representation (3). For the two-site Hubbard
Hamiltonian, there are 16 possible configurations of electrons
on two sites: one with no electrons, four with one electron
(an up or down electron on each of the two sites), six with
two electrons (one with two up electrons on different sites,
one with two down electrons, and four with an up electron
and a down electron), four with three electrons, and one with
four electrons. The most interesting dynamics is provided
by the subspace consisting of two electrons with opposite
spins, i.e., to Nt = 2 and N↑ = N↓ = 1, which is spanned by
the four states |1,0,1,0〉, |0,1,0,1〉, |0,1,1,0〉, and |1,0,0,1〉
with amplitudes c1(t) ≡ f (1,0,1,0,t), c2(t) ≡ f (0,1,0,1,t),
c3(t) ≡ f (0,1,1,0,t), and c4(t) ≡ f (1,0,0,1,t) [see Fig. 1(a)].
In this case, the coupled Eqs. (3) for the amplitudes cl(t)
(l = 1,2,3,4) read explicitly

i
d

dt

⎛
⎜⎜⎝

c1

c2

c3

c4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

U 0 −κ −κ

0 U −κ −κ

−κ −κ 0 0
−κ −κ 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

c1

c2

c3

c4

⎞
⎟⎟⎠ . (4)

An optical realization of the Hamiltonian system (4) is
provided by propagation of monochromatic light waves at
wavelength λ in four evanescently coupled optical waveg-
uides in the geometrical setting shown in Fig. 1(b). In the
optical structure, the time t represents the spatial propagation
distance along the waveguide axis, whereas the Wannier
amplitude cl corresponds to the modal amplitude of light
trapped in the lth waveguide (l = 1,2,3,4). In fact, in the
tight-binding approximation the spatial part of the electric
field E(x,y,t) of the optical wave propagating along the t

spatial direction of the guiding structure can be written as
E(x,y,t) � ∑4

l=1 cl(t)ul(x,y) exp(2πin0t/λ), where (x,y) are
the spatial coordinates transverse to the optical t axis, ul(x,y)
is the spatial modal profile of the lth waveguide, and n0 is
an effective reference mode index. The spatial evolution of
the modal amplitudes cl arising from the weak evanescent
coupling of adjacent waveguides is governed by coupled mode
equations2–4 which are formally analogous to Eq. (4), provided
that the cross-coupling between waveguides 1 and 2, and
between waveguides 3 and 4 in Fig. 1(b), is negligible. In
the optical setting, the hopping rate κ entering in Eq. (4)
is analogous to the spatial tunneling rate of light waves
between two adjacent waveguides arising from evanescent

FIG. 1. (a) Wannier basis of the two-site Hubbard Hamiltonian
corresponding to two electrons with opposite spins, and (b) cor-
responding optical realization based on four evanescently-coupled
optical waveguides. The coupling rate between nearest waveguides
is κ , whereas the propagation constant of the modes of waveguides
1 and 2 is shifted by U from one of the waveguides 3 and 4. The
waveguides 1, 2, 3, and 4 correspond to the four quantum states
|1,0,1,0〉, |0,1,0,1〉, |0,1,1,0〉, and |1,0,0,1〉, respectively.

field coupling, whereas the on-site Coulomb interaction
strength U corresponds to a shift of the propagation constants
of waveguides 1 and 2 as compared to waveguides 3 and 4
[see Fig. 1(b)]. The optical structure shown of Fig. 1(b) could
be easily realized in fused silica by the recently developed
femtosecond writing technique, in which the propagation
constant shift U is realized by varying the writing speed of
waveguides (see, for instance, Ref. 5).

The energies of the two-site Hubbard Hamiltonian can be
calculated analytically as the eigenvalues of the 4 × 4 matrix
entering in Eq. (4), and read explicitly (see, for instance,
Ref. 20) E1 = 0, E2 = U , E3 = (U/2) +

√
(U/2)2 + 4κ2,

and E4 = (U/2) −
√

(U/2)2 + 4κ2. In the optical analogy,
such energies correspond to the propagation constant mis-
match of the various supermodes of the coupled waveguides.
It is worth noticing that the energy spectrum of the simple two-
site HM contains some important physical features of more
complex chains, such as the onset of metal-insulator transition
in a half-filled linear chain as the parameter κ/U is varied.16

To see this, let us consider the limit of small κ/U , and let us
expand the sector of Hilbert space to include all sectors with
two electrons by adding the states |0011〉 and |1100〉. These
states are eigenstates of Ĥ with eigenvalue 0. All together,
the two electron space of the two site HM has four “small”
eigenvalues 0, 0, 0, and (U/2) −

√
(U/2)2 + 4κ2 � −4κ2/U ,

and two “large” ones U and (U/2) +
√

(U/2)2 + 4κ2 � U .
The large eigenvalues are associated with eigenvectors whose
components have significant mixtures of the states with doubly
occupied sites. The existence of the two groups of states
whose eigenvalues are separated by U is a reflection of the
upper and lower Hubbard bands in a lattice. The “Mott-
Hubbard” gap in the spectrum gives rise to a metal-insulator
transition.14 For a given initial state |ψ(t = 0)〉 = |ψ0〉, there
are two interesting observables related to the dynamical
evolution of the two-site HM, namely the return probability
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FIG. 2. (Color online) Temporal evolution of (a) the return
probability P (t), and (b) the spin imbalance N12(t) for the two-site
Hubbard model for U/κ = 0.5. The system is initially prepared in
the state |0,1,1,0〉.

P (t) = |〈ψ(t)|ψ0〉|2 and the spin imbalance between
the two sites, N12(t) = (1/2)〈ψ(t)|n̂1,↑ − n̂1,↓ + n̂2,↓ −
n̂2,↑|ψ(t)〉 (see, for instance, Ref. 22). The latter describes
the exchange dynamics of the two spins ↑ and ↓, located at the
two sites. As an example, Figs. 2 and 3 show a typical behavior
of the return probability P (t) and spin imbalance N12(t) for
the two-site HM corresponding to a weak (U/κ = 0.5, Fig. 2)
and a strong (U/κ = 5, Fig. 3) on-site Coulomb interaction
for a system initially prepared in the Wannier state |0,1,1,0〉,
i.e., for the initial condition cl(0) = δl,3. In the Wannier basis
representation, the return probability P (t) and spin imbalance
N12(t) take the simple form

P (t) =
4∑

l=1

|c∗
l (0)cl(t)|2, N12(t) = |c3(t)|2 − |c4(t)|2. (5)

Note that in the optical analog the spin imbalance has a very
simple meaning: it is just the power imbalance of light between
waveguides 3 and 4. Moreover, if the system is initially
prepared in one of the Wannier state, the return probability
is simply mapped into the fractional optical power trapped in
the initially excited waveguide. For example, if the system is
initially prepared in the state |0,1,1,0〉 as in Figs. 2 and 3, one
has P (t) = |c3(t)|2. It is worth noticing that, the optical analog
of the strong on-site Coulomb interaction regime U/κ 	 1
(as in Fig. 3) corresponds to a nearly-sinusoidal exchange of
optical power between waveguides 3 and 4, like in an ordinary

FIG. 3. (Color online) Same as Fig. 2, but for U/κ = 5.

synchronous optical direction coupler.25 In fact, in the large
U/κ limit and for the initial condition c1(0) = c2(0) = 0, the
amplitudes c1 and c2 remain small and can be eliminated
from the dynamics by standard perturbation methods. This
yields the reduced dynamical equations for the amplitudes
c3 and c4

i
dc3

dt
� −κec4 + δc3, (6)

i
dc4

dt
� −κec3 + δc4, (7)

where κe ≡ 2κ2/U is an effective coupling constant and δ =
−κe a common propagation constant detuning. Hence light
coupling in the four-waveguide structure in the large on-site
Coulomb interaction regime is like the one of an ordinary two-
waveguide directional coupler, showing Rabi-like exchange
of the optical power between the (not directly coupled)
waveguides 3 and 4 mediated by the two off-resonance
waveguides 1 and 2. The observed oscillatory power exchange
between two uncoupled waveguides, arising from indirect
coupling via weakly excited off-resonance waveguides, is
analogous to the process of two-photon Rabi oscillations
observed in Ref. 26.

In conclusion, a simple classical realization of the two-site
Fermi-Hubbard Hamiltonian, based on light propagation in
evanescently coupled optical waveguides, has been theoreti-
cally proposed. While previous theoretical and experimental
studies on optical simulations of quantum phenomena in
solid-state physics have been concerned with single-particle
phenomena, here it has been shown that photonics can provide
a laboratory tool to visualize and simulate in simple optical
settings the dynamical aspects embodied in the physics of
interacting fermionic systems. The present study has been
focused on a simple Hubbard system, however it is envisaged
that photonic simulators of others and more complex models
of interacting fermions can be realized. Possible extensions
of the present study include the photonic realization of the
Hubbard-Holstein Hamiltonian,27 which describes bipolarons
dynamics arising from electron-phonon coupling, and the
Hubbard-Anderson Hamiltonian28 describing the dynamics of
two electrons on a linear chain with long-range correlated dis-
order and on-site Hubbard interaction. The Hubbard-Anderson
Hamiltonian can be simulated using a two-dimensional square
array of waveguides with engineered propagation constants,
which can be used to test in an optical setting the interplay
between disorder, localization and electron-electron inter-
action. Phonon-electron coupling dynamics for a two-site
Hubbard-Holstein Hamiltonian can be realized by coupling
two of the four waveguides of Fig. 1(b) with two semi-infinite
linear arrays with non-homogeneous hopping rates, which
simulate the vibrational (phonon) degrees of freedoms of the
two sites.
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