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The main features in iron pnictide superconductors are summarized as (i) the orthorhombic transition accom-
panied by a remarkable softening of the shear modulus, (ii) high-Tc superconductivity close to the orthorhombic
phase, and (iii) stripe-type magnetic order induced by orthorhombicity. To present a unified explanation for
these features, we analyze the multi-orbital Hubbard-Holstein model with Fe-ion optical phonons based on the
orbital fluctuation theory. In the random-phase approximation (RPA), a small electron-phonon coupling constant
(λ ∼ 0.2) is enough to produce large orbital (charge quadrupole) fluctuations. The most divergent susceptibility is
the Oxz-antiferroquadrupole (AFQ) susceptibility, which causes s-wave superconductivity without sign reversal
(s++-wave state). At the same time, divergent development of Ox2−y2 -ferroquadrupole (FQ) susceptibility is
brought about by the “two-orbiton process” with respect to the AFQ fluctuations, which is absent in the RPA.
The derived FQ fluctuations cause the softening of the C66 shear modulus, and its long-range order not only
triggers the orthorhombic structure transition, but also induces the instability of the stripe-type antiferromagnetic
state. In other words, the condensation of composite bosons made of two orbitons gives rise to the FQ order and
structure transition. Therefore, the theoretically predicted multi-orbital criticality presents a unified explanation
for the above-mentioned features of iron pnictide superconductors.
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I. INTRODUCTION

In iron pnictide superconductors,1 both spin and orbital
degrees of freedom play important roles on various electronic
properties, such as high-Tc superconductivity, orthorhombic
structure transition, and magnetic transition. As for the
origin of the superconductivity, a fully gapped sign-reversing
s-wave (s±-wave) state had been studied based on spin
fluctuation theories.2–5 The origin of the spin fluctuations
is the intra-orbital nesting and the Coulomb interaction.
However, the robustness of Tc against the randomness in
iron pnictides indicates the absence of sign reversal in the
superconducting (SC) gap.6–8

Later, an orbital-fluctuation-mediated s-wave state
without sign reversal (s++-wave) was proposed based on the
Hubbard-Holstein (HH) model.9–11 The origin of the orbital
fluctuations is the interorbital nesting and the electron-phonon
(e-ph) interactions due to non-A1g optical phonons. One of
the merits of this scenario is the robustness of the s++-wave
state against impurities. Another merit is that the close
relation between Tc and the crystal structure revealed by
Lee,12 namely that Tc becomes the highest when the As4

cluster is a regular tetrahedron, is automatically explained.10

Moreover, the orbital-fluctuation-mediated s++-wave state
scenario is consistent with the large SC gap on the z2-orbital
band in Ba122 systems,10 observed by bulk-sensitive
laser angle-resolved photoemission spectroscopy (ARPES)
measurement.13

The “resonance-like” hump structure in the neutron inelas-
tic scattering14 is frequently explained as the spin resonance
due to the sign reversal in the SC gap.15,16 However, an
experimental hump structure is well reproduced in terms of the
s++-wave SC state, rather than the s±-wave SC state, by taking
the suppression in the inelastic scattering γ (ω) for |ω| � 3�

in the SC state (dissipation mechanism).17,18 To distinguish

between both SC states, measurements of a phonon spectral
function for |ω| � 2� would be useful.19 In the normal state,
prominent non-Fermi-liquid transport phenomena in ρ and
RH (Ref. 20) are frequently ascribed to the evidence of
spin fluctuations.21 However, they are also explained by the
development of antiferro-orbital fluctuations.11

To identify the mechanism of superconductivity, we have
to understand the origin of the ordered state, although it is
still unsolved in iron pnictides. For example, in many heavy
fermion superconductors, the SC phase appears next to the
spin-density-wave (SDW) state, indicating the occurrence of
spin-fluctuation-mediated superconductivity. In contrast, the
ordered state in iron pnictides is not a simple SDW state: In
fact, the tetragonal to orthorhombic structure transition occurs
at TS ∼ 100 K, usually above the SDW transition temperature
TN.22 In addition, a large imbalance of xz and yz orbitals at the
Fermi level and reconstruction of the Fermi surfaces (FS’s) had
been observed by ARPES measurements.23–25 These results
indicate that the ferro orbital-density wave (ODW) is the origin
of the orthorhombic structure transition. The SDW state
may originate from the in-plane anisotropy in the exchange
interaction (J1a �= J1b) associated with the ODW order.26

In addition, prominent symmetry breaking C4 → C2 is
realized in detwinned 122 systems even above TS and TN, under
very small uniaxial pressure. For example, it is recognized
as the large in-plane anisotropy in the resistivity27,28 and the
optical conductivity29 at T ∗ ∼ 200 K, which is much higher
than TS and TN. Moreover, the reconstruction of the FS’s starts
at T ∗ in detwinned Ba(Fe1−xCox)2As2.25 The discovery of this
“electronic nematic phase” would indicate that the the ODW
fluctuations develop divergently above TS , and the structure
transition is (almost) second-order.

Recently, prominent softening of the shear modulus in
undoped and underdoped Ba(Fe1−xCox)2As2 was reported by
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acoustic measurements.30,31 Yoshizawa et al.31 observed all
shear moduli C44, C66, and CE . Recently, they also performed
systematic measurement for x = 0–0.225, and found that only
C66 shows prominent softening in both under- and overdoped
systems.32 Similar results were reported by Goto et al.
independently.33 This observation can be explained by the
development of ferro-orbital fluctuations10 or spin-nematic
fluctuations.30 Considering large quadrupole-strain coupling
in iron pnictides, all the observations mentioned above
suggest the importance of orbital physics, and pose a serious
challenge for theories of iron pnictide superconductors. In
fact, Goto et al. have shown that C66 is almost independent
of the magnetic field up to ∼50 T, indicating the nonmagnetic
origin of the softening.33

Thus, the main features of the iron-pnictide supercon-
ductors would be summarized as (i) the orthorhombic (or
nematic) transition accompanied by remarkable C66 softening,
(ii) the emergence of high-Tc superconductivity next to the
orthorhombic phase, and (iii) the stripe-type magnetic order
induced by the orthorhombicity. The unified explanation has
not been achieved as far as we know.

In this paper, we develop the orbital fluctuation theory to
explain the above-mentioned features (i)–(iii) based on the
random-phase approximation (RPA) and beyond the RPA. In
the RPA, large Oxz-antiferroquadrupole (AFQ) fluctuations are
produced by the e-ph interactions, while they do not produce
the softening of C66 or C44. If we go beyond the RPA, however,
we find that the Ox2−y2 -ferroquadrupole (FQ) fluctuations are
brought about by the “two-orbiton process” near the AFQ
quantum-critical point (QCP). The induced FQ fluctuations
cause the softening of C66, and the commensurate ferro-orbital
order is realized at T = TS . It is predicted that the AFQ-QCP
is located at the FQ-QCP, which is the end point of the or-
thorhombic phase. Near this multi-orbital QCP, the supercon-
ductivity is caused mainly by the AFQ fluctuations, and the or-
thorhombic transition is brought about by the FQ fluctuations.
Moreover, the stripe-type antiferromagnetic state is induced
in the orbital-ordered state, since the orbital polarization gives
strong in-plane anisotropy in the spin-nesting. The present
study gives a microscopic justification for the anisotropic
Heisenberg model description in the SDW state.26,34

There is a long history in the study of superconductivity
due to charge or orbital fluctuations in multi-orbital systems,
starting from the exciton-assisted superconductivity.35–39 In
multi-orbital systems, on-site Coulomb interaction is com-
posed of the intra-orbital term U , the interorbital one U ′, and
Hund’s or the exchange term J . Since U is usually larger than
U ′ ≈ U − 2J , spin fluctuations induced by U give non-s-wave
SC states. However, Takimoto et al.40 showed that charge
(or orbital) fluctuations induced by U ′ give a conventional
s-wave SC state if the relations U ′ > U and J ∼ 0 are
assumed. Although this idea was applied to pnictides,41 the
relation U ′ ∼ 0.6U is realized in many compounds.42 Even if
U ′ ∼ 0.6U and J ∼ 0.2U , the present authors have shown that
the orbital-fluctuation-mediated superconductivity is realized
by quadrupole-quadrupole interaction mediated by non-A1g

phonons, which works as the “negative effective exchange Jeff

for the charge sector.”9 In iron pnictides, orbital fluctuations
develop even when the dimensionless e-ph coupling λ due
to Fe-ion optical phonons is just ∼0.2, according to the

RPA10 and FLEX approximation.11 As for the As-ion A1g

mode,41 orbital fluctuations develop only when λA1g
∼1, which

is unrealistic in iron pnictides.
Recently, Yanagi et al.43 added the “orthorhombic phonon”

to the HH model proposed by the present authors,9–11 and
studied the ferro-orbital fluctuations. However, neither high-Tc

nor structure transition are explained by their theory: First, the
“orthorhombic-phonon” is acoustic (ωq ∝ |q|), although it is
treated as optical in Ref. 43 incorrectly. Their theory belongs
to the cooperative Jahn-Teller structure transition due to
acoustic phonons such as manganites; see details in Appendix
A. In this case, the energy scale of “ferro-orbital fluctuations”
is too low (∼ωq) to explain high-Tc, since Tc is much higher
than ωq∼10 K for |q|∼0.1π .44,45 Small orthorhombicity
(a − b)/(a + b) ∼ 0.003 in iron pnictides is also inconsistent
with the cooperative Jahn-Teller scenario. Second, the derived
orbital order is “incommensurate,”46 which is inconsistent with
the orthorhombic structure transition and the C66 softening.

These problems are resolved in the present theory since
both high-energy AFQ and low-energy “commensurate” FQ
fluctuations develop at the same time, without the necessity of
fine-tuning model parameters. The former (latter) fluctuations
give the superconductivity (orthorhombic transition).

II. MODEL HAMILTONIAN

First, we briefly explain the relation between five-orbital
and ten-orbital models for iron pnictides. In this study, we
set x and y axes parallel to the nearest Fe-Fe bonds, and
represent the z2, xz, yz, xy, and x2 − y2 d orbitals in the
xyz coordinate as 1, 2, 3, 4, and 5, respectively. The FS’s
are mainly composed of t2g orbitals (l = 2–4), although eg

orbitals also play non-negligible roles in producing orbital
fluctuations.10 Figure 1 shows the crystal structure of the FeAs
plane. Since the As-A (As-B) ions form the upper (lower)
plane, the unit cell contains Fe-A and Fe-B, which we call
the two-iron unit cell. Since each Fe ion contains five orbitals,
the original tight-binding model for iron pnictides is given as
the “ten-orbital model.”

In Refs. 2 and 42, the authors introduced the gauge
transformation |2,3〉 → −|2,3〉 only for Fe-B sites, which we
call the “unfold gauge transformation.” Due to this gauge
transformation, the unit cell of the kinetic term is halved
to become the single-iron unit cell, shown in Fig. 1. In the

As-A

Fe-A

Fe-B

As-B

two-iron
 unit cell

single-iron
 unit cell

 x

 y

FIG. 1. (Color online) Crystal structure of the FeAs layer, in
which the unit cell is given by the two-iron unit cell composed of
Fe-A, Fe-B, As-A, and As-B. The single-iron unit cell is realized by
applying the “unfold gauge transformation.”
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FIG. 2. (Color online) (a) FS’s for n = 6.0 in the unfolded model.
The colors correspond to 2 (green), 3 (red), and 4 (blue), respectively.
The interorbital nesting between FS α2 (green) and FS β2 (blue)
causes the AFQ fluctuations. (b) FS’s for the original ten-orbital
model.

obtained “five-orbital model,” the kinetic term is given as

H0 =
∑

ij ;lm;σ

t
ij

lmc
†
i,lσ cj,mσ , (1)

where i,j denotes the unit cell, l,m = 1–5 represent the d

orbital, and σ = ±1 is the spin index. c
†
i,lσ is the creation

operator of the d electron, and t
ij

lm with i �= j (i = j ) is the
hopping integral (local potential). This five-orbital model is
convenient to study the Eliashberg gap equation.2,9 In studying
the orbital physics, however, we have to keep in mind the fact
that the sign of the quadrupole operators Ôxz and Ôyz at the
Fe-B sites is reversed by the unfold gauge transformation. By
taking care of this fact, we study the softening of shear moduli
based on the five-orbital model hereafter. In Appendix B, we
calculate the orbital fluctuations using the original ten-orbital
model, and make a comparison between the results of the two
models.

Figure 2 shows the FS’s in (a) the five-orbital model and (b)
the ten-orbital model. The FS’s in (a) coincide with the FS’s
in (b) if we fold the former FS’s into the two-iron Brillouin
zone (BZ). We use the hopping parameters for LaOFeAs given
in Ref. 2. The colors correspond to 2 (green), 3 (red), and
4 (blue), respectively. The interorbital nesting between orbital
2 on FS α2 and orbital 4 on FS β2 causes the most divergent
AFQ fluctuations.

Next, we introduce the e-ph interaction due to Fe-ion
Einstein optical modes. The Hamiltonian given in Eq. (4) of

Ref. 10 is simply rewritten as the following bilinear form in
the xyz coordinate:

He-ph = η
∑

i

(
Ôi

yzu
i
x + Ôi

xzu
i
y + Ôi

xyu
i
z

)
, (2)

where η = 60e2a2
d/7

√
3R4

Fe-As; ad is the radius of the d orbital

(e.g., the Shannon crystal radius of Fe2+ is 0.77
◦
A), and

RFe-As ≈ 2.4
◦
A. ui is the displacement vector of the ith Fe

ion, and Ôi
� (� = xz,yz,xy) is the charge quadrupole operator

given as

Ôi
� ≡

±∑
lm

o
l,m
� m̂i

l,m, (3)

where m̂i
l,m ≡ ∑

σ c
†
i,lσ ci,mσ , and the coefficient is defined as

ol,m
xz = 7〈l|x̂ẑ|m〉 for � = xz, where x̂ = x/r and so on. The

nonzero coefficients are given as

o2,5
xz = o3,4

xz =
√

3o1,2
xz = 1, (4)

−o3,5
yz = o2,4

yz =
√

3o1,3
yz = 1, (5)

o2,3
xy = −

√
3o1,4

xy

/
2 = 1. (6)

Be careful not to confuse Ôxz with the xz-orbital operator. The
other two quadrupole operators are Oz2 and Ox2−y2 , whose co-
efficients are, respectively, defined as o

l,m

x2−y2 = (7/2)〈l|(x̂2 −
ŷ2)|m〉 and o

l,m

z2 = (7/2
√

3)〈l|(3ẑ2 − 1)|m〉. (They are written
as O0

2 and O2
2 in the literature.) The nonzero coefficients are

given as

o
2,2
x2−y2 = −o

3,3
x2−y2 = −(

√
3/2)o1,5

x2−y2 = 1, (7)

o
1,1
z2 = 2o

2,2
z2 = 2o

3,3
z2 = −o

4,4
z2 = −o

5,5
z2 = 2/

√
3. (8)

Except for � = z2, all the matrix elements of ô� with respect
to the t2g orbital (2–4) are ±1.

Here, we derived the e-ph interaction based on the point-
charge model. Although e-ph interaction is also induced by
the change in the d-p hopping, as discussed in Ref. 47, we
expect it is small since the weight of the p electron on the
Fermi surface is just ∼ 5% in iron pnictides. Fortunately,
because of the Wigner-Eckart theorem, the matrix elements of
the local quadrupole-phonon interaction are always given by
the quadrupole operator Ôi

� , independently of the details of the
interaction. Since the magnitude of the hexadecapole-phonon
interaction is (ad/RFe-Fe)2 ∼ 0.1 times that of the quadrupole-
phonon interaction, we can safely use Eq. (2).

Equation (2) means that the displacement ux produces
the quadrupole potential Ôyz, which causes the scattering of
electrons between orbitals 2 and 4. The e-ph interactions in
Eq. (2) within t2g orbitals are shown in Fig. 3. Then, the

xu

4
yzO

2
yu

4
xzO

3
zu

3
xyO

2

(a) +η +η +η

FIG. 3. (Color online) Interorbital scattering processes due to the
e-ph interaction by uμ (μ = x,y,z) within the t2g orbitals (l = 2–4).
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phonon-mediated el-el interaction V
ph

el-el is obtained by taking
the contraction of ui , which gives the local phonon Green
function D(τ ) ≡ 〈Tτu

i
μ(τ )ui

μ(0)〉(μ = x,y,z). By taking the
Fourier transformation, we obtain

D(ωl) = 2〈u2〉0ωD

ω2
l + ω2

D

, (9)

where ωl = 2πT l is the boson Matsubara frequency, ωD is
the optical phonon frequency, and

√
〈u2〉0 = √

1/2MFeωD is

the uncertainty in position for Fe ions;
√

〈u2〉0 = 0.044
◦
A for

ωD = 0.02 eV.10 Then, V
ph

el-el is expressed as the following
quadrupole-quadrupole interaction:

V
ph

el-el =−g(ωl)
∑

i

{
Ôi

yz · Ôi
yz + Ôi

xz · Ôi
xz + Ôi

xy · Ôi
xy

}
,

(10)

where g(ωl) = gω2
D/(ω2

l + ω2
D), and g is the phonon-mediated

el-el interaction at zero frequency; g = 0.34 eV in the present
point-charge model.9,10

III. RANDOM-PHASE APPROXIMATION

Now we explain the RPA for the five-orbital HH model.40

The irreducible susceptibility in the five-orbital model is given
by

χ0
ll′,mm′ (q) = − T

N

∑
k

G0
lm (k + q) G0

m′l′ (k) , (11)

where Ĝ0(k) = [iεn + μ − Ĥ 0
k ]−1 is the d-electron Green

function in the orbital basis, q = (q,ωl), k = (k,εn), and
εn = (2n + 1)πT is the fermion Matsubara frequency. μ is
the chemical potential and Ĥ 0

k is the kinetic term. Then, the
susceptibilities for spin and charge sectors in the RPA are given
as40

χ̂ s (q) = χ̂0 (q)

1 − �̂s χ̂0 (q)
, (12)

χ̂ c (q) = χ̂0 (q)

1 − �̂c(ωl)χ̂0 (q)
, (13)

where the bare four-point vertices �̂s,c are

�s
l1l2,l3l4

=

⎧⎪⎨
⎪⎩

U, l1 = l2 = l3 = l4,

U ′, l1 = l3 �= l2 = l4,

J, l1 = l2 �= l3 = l4,

J ′, l1 = l4 �= l2 = l3,

(14)

�̂c(ωl) = −Ĉ − 2V̂
ph

el-el(ωl), (15)

Cl1l2,l3l4 =

⎧⎪⎨
⎪⎩

U, l1 = l2 = l3 = l4,

−U ′ + 2J, l1 = l3 �= l2 = l4,

2U ′ − J, l1 = l2 �= l3 = l4,

J ′, l1 = l4 �= l2 = l3.

(16)

In Eq. (15), (V ph
el-el)l1,l2,l3,l4 = −g(ωl)

∑xz,yz,yx

� o
l1,l2
� o

l3,l4
� . Here,

we neglect the ladder diagram for phonon-mediated interaction
because of the relation ωD � Wband.9

In the RPA, the enhancement of the spin susceptibility χ̂ s

is mainly caused by the intra-orbital Coulomb interaction
U , using the “intra-orbital nesting.” On the other hand,
the enhancement of χ̂ c in the present model is caused
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FIG. 4. (Color online) Quadrupole susceptibilities in the five-
orbital model for (a) χQ

xz(q), (b) χQ
yz(q), and (c) χQ

xy(q), respectively.
The used model parameters are n = 6.05, T = 0.05, and g = 0.22
(αc = 0.98). The correlation length in (a) or (b) is derived as ξ =
π/�q ∼ 3, where �q is the half-width of the peak. Therefore, we
obtain the relations 6ξ 2 ∼ (1 − αc)−1 and cξ 2 ∼ 2(1 − αc)−1 ∼ 12ξ 2.

by the phonon-induced quadrupole-quadrupole interaction in
Eq. (10), utilizing the “interorbital nesting” in the present
model. The SDW (ODW) state is realized when the spin
(charge) Stoner factor αs(c), which is the maximum eigenvalue
of �̂s(c)χ̂0(q,0), is unity. When n = 6.05, the critical value of
U is Uc = 1.26 eV, and the critical value of g (at U = 0) is
gc = 0.233 eV. The smallness of gc in iron pnictides originates
from the better interorbital nesting. Hereafter, we set the unit
of energy as eV unless otherwise noted.

Here, we introduce the diagonal charge quadrupole suscep-
tibilities in the five-orbital model as

χ
Q
� (q) =

∑
ll′

∑
mm′

oll′
� χc

ll′mm′ (q)omm′
� (17)

for � = xz,yz,xy. Their momentum dependence at zero
frequency is shown in Fig. 4 for αc = 0.98. More generally,
the quadrupole susceptibility is defined as

χ
Q
�,�′ (q) =

∑
ll′

∑
mm′

oll′
� χc

ll′mm′ (q)omm′
�′ . (18)
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FIG. 5. (Color online) Quadrupole susceptibilities as a function
of αc for n = 6.0 and 6.05 given by the RPA. Model parameters
are U = 0.8 and T = 0.05. We can recognize the relation χQ

xz( Q) ∝
(1 − αc)−1 ∝ (gc − g)−1, which diverges at αc = 1 or g = gc.

However, its off-diagonal terms with � �= �′ are negligi-
bly small in the present model in the “xyz coordinate.”
In this approximation, in the absence of Coulomb inter-
action, the quadrupole susceptibility in the RPA is given
as

χ
Q
� (q) ≈ χ

Q,0
� (q)

/[
1 − 2gχ

Q,0
� (q)

]
, (19)

where χ
Q,0
� is the irreducible quadrupole susceptibility. Con-

sidering the fact that χ0
ll′,mm′ (q) takes a large value for l = m

and l′ = m′, we obtain χQ,0
xz (q) ≈ 2χ0

25,25(q) + 2χ0
34,34(q) +

(2/3)χ0
12,12(q). Since χQ,0

xz (q) ≈ 2.5 at q = (π,0), the critical
value of g is gc ∼ 0.2 in the present model. We stress that
the relations χ

Q
�,�′ (q) = χ

Q
� (q)δ�,�′ and Eq. (19) hold exactly

for q = (0,ωl). We utilize this relation in calculating the shear
modulus.

As for the contributions by t2g orbitals (l = 2–4), χQ
xz(q) ∝

χc
34,34(q), χQ

yz(q) ∝ χc
24,24(q), and χQ

xy(q) ∝ χc
23,23(q). In

Fig. 4(a), χQ
xz(q) has the highest peak at q = (π,0), which

is given by the interorbital nesting between orbital 3 on FS α2

and orbital 4 on FS β1 in the five-orbital model in Fig. 2(a).
Also, χQ

yz(q) has the highest peak at q = (0,π ) in Fig. 4(b)
due to the interorbital nesting between orbital 2 on FS α2 and
orbital 4 on FS β2. We will see that χ

Q
xz(yz)(q) is modified by

the unfolding procedure.
Also, χQ

xy(q) in Fig. 4(c) is given by the interorbital nesting
between orbitals 2 and 3, due to the out-of-plane oscillations
of Fe ions. The interband and intraband scattering processes
produce the enhancement of χQ

xy(q) at q = (π,0),(0,π ) and
q = 0, respectively. We note that χQ

xy(q) is not affected by the
unfolding procedure.

Figure 5 shows both χQ
xz(q) at q = (π,0) and χQ

xy(0) as
a function of αc for n = 6.0 and 6.05 given by the RPA.
We see that χQ

xz(q) develops divergently in proportion to
(1 − αc)−1 ∝ (gc − g)−1, while χQ

xy(0) shows an enhanced but
saturated value even at g = gc.

In Appendix B, we will calculate χ
Q
� (q) in the ten-orbital

model, and make a comparison to Fig. 4 in the five-orbital

Fe

As
(a)

q=(π,π)q=(π,0)
Fe

As

(b)

q=(π,0)
Fe

As

q=(0,0)
Fe

As

FIG. 6. (Color online) (a) Fe-ion in-plane optical phonons with
momentum q = (π,0) and (π,π ). (b) Fe-ion out-of-plane optical
phonons with momentum q = (π,0) and (0,0).

model: Although both results coincide for � = xy,z2,x2 − y2,
they are different for � = xz,yz. The reason is that the signs
of Oxz/yz at Fe-B sites are changed by applying the “unfold
gauge transformation.” As we will explain in Appendix B,
the development of χ

Q
xz/yz(0,0) in Fig. 4 is the artifact of

the unfold gauge transformation. For this reason, the correct
AFQ susceptibility in the ten-orbital model is given as
χ

Q
xz/yz(q) = χ

Q,five-orbital
xz/yz [q + (π,π )]. The optical modes that

give the enhancements of χQ
yz(q) at q = (π,0) and (π,π ) in

the ten-orbital model [q = (0,π ) and (0,0) in the five-orbital
model] are caused by the in-plane ux oscillations shown in
Fig. 6(a). Also, the enhancements of χQ

xy(q) at q = (π,0) and
(0,0) are caused by the out-of-plane uz oscillations in Fig. 6(b).

IV. ACOUSTIC PHONONS

In previous sections, we studied the e-ph interaction due to
optical phonons, and calculated the quadrupole susceptibilities
by the RPA. To obtain the shear modulus, we also must have
knowledge of the e-ph interaction due to acoustic phonons with
momentum q ≈ 0. In fact, shear modulus is proportional to the
square of the acoustic phonon velocity, which is renormalized
by the electron–acoustic-phonon interaction in the presence of
strong quadrupole fluctuations. In this section, we derive the
e-ph interaction due to acoustic phonons with q ≈ 0. Hereafter,
we use the unit h̄ = 1, and take the nearest-neighbor Fe-Fe
distance aFe-Fe as the unit of length.

Figure 7 shows the transverse acoustic modes that are
related to (a) C44, (b) CE = (C11 − C12)/2, and (c) C66.31 Now,
we calculate the e-ph interaction based on the point-charge
model by following the procedure in Ref. 9 for the optical
phonons. The quadrupole potential energies at the Fe site
caused by the transverse acoustic phonons in Fig. 7 are given
as

V44 = − 3e2

R4
Fe-As

8√
3
xz · ũ44, (20)

VE = − 3e2

R4
Fe-As

8√
3
xy · ũE, (21)

V66 = 3e2

R4
Fe-As

√
6(x2 − y2) · ũ66 (22)
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//k

(c)(b)

Fe

As
As

Fe

//k

As

Fe-A
//k

(a)

Fe-B

uE

66u

44u

FIG. 7. (Color online) Displacement vectors uAs and uFe in the
transverse acoustic modes that couple with (a) C44, (b) CE , and
(c) C66. The C66 mode corresponds to the orthorhombic structure
transition.

for both Fe-A and Fe-B sites, where (x,y,z) are the coordinates
of the d electron. ũφ ≡ uφ − uFe (φ = 44,66,E) is the relative
displacements of the nearest As ions from the center Fe ion;
uφ (uFe) is the displacement vector of the As (Fe) ion we
are considering from the original position. Note that the shear
strain tensors are given as ε44(E) = ũ44(E)/(aFe-Fe/2) = 2ũ44(E)

and ε66 = ũ66/(aFe-Fe/
√

2) = √
2ũ66.

The corresponding operators in the ten-orbital model are
given, respectively, as

V̂44 = − 3e2a2
d

R4
Fe-As

8

7
√

3
Ôxz · ũ44, (23)

V̂E = − 3e2a2
d

R4
Fe-As

8

7
√

3
Ôxy · ũE, (24)

V̂66 = 3e2a2
d

R4
Fe-As

2
√

6

7
Ôx2−y2 · ũ66. (25)

Therefore, the acoustic modes in Figs. 7(a)–7(c) couple with
the quadrupole susceptibilities at q ≈ 0; χQ

xz(0), χQ
xy(0), and

χ
Q

x2−y2 (0) for φ = 44, E, and 66 in the ten-orbital model,
respectively.

To study the softening in the five-orbital models, we have
to perform the “unfold gauge transformation” for Eqs. (23)–
(25). Under the gauge transformation, Eqs. (24) and (25) are
invariant, while Eq. (23) is changed to

V̂ ′
44 = ∓ 3e2a2

d

R4
Fe-As

8

7
√

3
Ôxz · ũ44, (26)

where the − (+) sign corresponds to the Fe-A (Fe-B) site. In
the “five-orbital model,” therefore, the softening of CE and
C66 is caused by χQ

xy(0,0) and χ
Q

x2−y2 (0,0), respectively, while

the softening of C44 is caused by χQ
xz((π,π ),0). Therefore, the

softening in the shear modulus (C66 and C44) does not occur
within the RPA.48

Next, we derive the effective el-el interaction due to k → 0
transverse acoustic modes. In the case of k = k(1,1)/

√
2 and

k � 1 shown in Fig. 7(c), the displacement operator for the
As site at Rs is

us =
∑

k

√
1

2NMωk

[
ake

ik·Rs + a
†
ke

−ik·Rs
]
, (27)

where ak and a
†
k satisfy the commutation relation [ak,a

†
k′] =

δk,k′ , M is the mass of the As ion, and ωk = vk|k|; vk is
the bare acoustic phonon velocity. The Fourier transforma-

tion of us is given as uk =
√

1
2Mωk

(ak + a
†
−k). Then, the

Fourier transformation of the acoustic-phonon Green function
Dk(τ ) ≡ 〈Tτu

i
k(τ )ui

k(0)〉 is

Dk(ωn) = 2ωk

ω2
n + ω2

k

〈
u2

k

〉
0, (28)

where 〈u2
k〉0 = (1/2Mωk).

As understood in Fig. 7(c), the relative displacement with
the origin at the Fe ion, ũs , is given as 1

2 (us ′ − us), where
Rs ′ = (0.5,0.5) and Rs = (−0.5,−0.5) with the origin at the
Fe ion. Considering that (Rs ′ − Rs) · k = √

2k, its Fourier
transformation is given as

ũk ≡
∑

s

ũse
−ik·Rs ∼ ik√

2
uk. (29)

To calculate the shear modulus, we need the quadrupole
susceptibility in the “k limit,” in which we set ω = 0 first,
and take the limit k → 0 later.49 For this purpose, we derive
the effective el-el interaction due to the transverse acoustic
phonon in the k limit. The el-el interaction due to the phonon
in Fig. 7(c) is given by the second-order term of Eq. (25).
Using the relation Dk(0)k2 = 2(1/2Mωk)k2/ωk = 1/Mv2

k, it
is given as

H66 = −g66

∑
kk′,ll′mm′,σσ ′

oll′
x2−y2o

mm′
x2−y2

× c
†
lkσ cl′kσ c

†
mk′σ ′cm′k′σ ′, (30)

g66 = B2

R2
Fe-As

1

Mv2
k

, (31)

where B ≡ 3e2

RFe-As
( ad

RFe-As
)2 2

√
3

7 ; B = 0.95 eV for ad = 0.77
◦
A (which is the Shannon crystal radius of Fe2+) and

RFe-As = 2.4
◦
A. Therefore,

g66 = η2
66C

−1
66,0, (32)

where C66,0 ≡ Mv2
k is the bare shear modulus and η66 =

BR−1
Fe-As is the quadrupole-strain coupling constant. If we set

vk ∼ 0.024 eV
◦
A (vk ∼ 0.018 eV

◦
A) according to the first-

principles study,50 we obtain g66 = 0.12 eV (g66 = 0.21 eV).
On the other hand, we obtain g = 0.34 eV for the Fe-ion optical
phonons with ωD = 0.02 eV.10 Thus, g66/g = 1/2 ∼ 1/3 in
the present point charge model.

In the same way, we also derive the el-el interactions due
to the acoustic phonon with k = k(0,1), shown in Fig. 7(b).
For this mode, the relative displacement ũk is given as ũs ≡
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1
2 (us ′ − us) with Rs ′ = (0.5,0.5) and Rs = (0.5,−0.5). Since
(Rs ′ − Rs) · k = k, its Fourier transformation is given by

ūk ≡
∑

s

ũse
−ik·Rs ∼ ik

2
uk. (33)

Then, the phonon-mediated el-el interactions are given by
the second-order terms of Eq. (24). As a result, the el-el
interactions due to phonons in Fig. 7(b) are given as

HE = −gE

∑
kk′,ll′mm′,σσ ′

oll′
xyo

mm′
xy c

†
lkσ cl′kσ c

†
mk′σ ′cm′k′σ ′, (34)

where gE = B ′2
R2

Fe-As

1
Mv2

k
and B ′ ≡ 3e2

RFe-As
( ad

RFe-As
)2 4

7
√

3
. In the same

way, we obtain g44 = gE . Therefore, gφ = η2
φC−1

φ,0 and η2
φ =

0.44η2
66 for φ = 44,E. In conclusion, gE = g44 = 0.44g66 if

vk is equivalent for all modes.

V. SOFTENING OF SHEAR MODULI

A. Softening due to the one-orbiton process; the RPA

Here, we calculate the shear modulus given by the one-
orbiton process using the RPA. For this purpose, we introduce
the following shear modulus susceptibilities in the five-orbital
model, in the absence of e-ph interaction due to the q ≈ 0
acoustic phonon:

χE = 2χQ
xy(0,0), (35)

χ44 = 2χQ
xz((π,π ),0), (36)

χ66 = 2χ
Q

x2−y2 (0,0), (37)

where the factor 2 comes from the spin degeneracy. They are
schematically depicted in Fig. 8(a). Note that χ44 = 2χQ

xz(0,0)
in the ten-orbital model. According to Sec. 2 in Ref. 51, the
shear modulus is given by the second derivative of the free
energy with respect to the shear strain tensor: The expression
for the shear modulus Cφ (φ = E,44,66) is51,52

Cφ = Cφ,0 − η2
φχφ, (38)

where Cφ,0 = v2
φρ is the bare shear modulus, where vφ is the

bare acoustic phonon velocity and ρ is the mass density. ηφ is
the quadrupole-strain coupling constant due to the “acoustic
phonon” given in Sec. IV. In Eq. (38), the condition for the
structure transition, Cφ = 0, is satisfied when χφ = g−1

φ (�1).
That is, the structure transition occurs prior to the divergence
of χφ .

We can rewrite the expression for Cφ given in Eq. (38) as
follows:

C−1
φ = C−1

φ,0[1 + gφχ̃φ], (39)

χ̃φ = χφ/(1 − gφχφ), (40)

where gφ ≡ η2
φC−1

φ,0 is the effective el-el interaction due to
acoustic phonons given in the previous section. In Eq. (39), the
condition Cφ = 0 corresponds to the divergence of χ̃φ , since
χ̃φ is the total susceptibility including the e-ph interactions
due to acoustic phonons.

If we set U = 0 for simplicity, Eq. (40) is expressed as

χ̃44 = χ0
44

/[
1 − (g + g44)χ0

44

]
, (41)

OΓ OΓ

OΓ OΓ

OΓ
OΓ

( , )εQ

2   2x  -y
O O

(a)

(c)
Qχ
Γ

(  , )ε-QQχ
Γ '

' '

yzO

yzO

xz

xz

xyk

k k Q+

Q

-Q

xzO

xzO

yz

yz

xyk

k k Q+

Q

-Q

(d)

2   2x  -y

O2   2x  -y
O2   2x  -y

χ
44/66/E

(b)
A(3) A(3)

D(k+q)

D(-k)

u  (q)
66

u  (q)
66Σ

k

Σ
Q

x2, x2

2
1−

2
1−
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2   2x  -y
O

2   2x  -y
O

xzOxzO

xzO xzO
2   2x  -y

O2   2x  -y
O xzOxzO

(f)yz

xy

yz yzxy

FIG. 8. (Color online) (a) Diagrammatic expression for the
shear modulus susceptibilities χφ (φ = 44,66,E) in the RPA. (b)
The second-order term with respect to the third-order anharmonic
phonon-phonon interaction A(3)u

2
xu66. This diagram represents the

virtual process in which an acoustic phonon with q = 0 breaks
into two optical phonons conserving the total momentum. (c) Two-
orbiton term for the shear modulus susceptibilities χTO

66 , which is
the irreducible susceptibility of χx2−y2 (0,0). This term gives the
softening of C66. (d) Dominant contribution for the three-point vertex
Ax2−y2 (�,�; q) for � = xz and yz. (e) Self-energy correction due
to χQ

xz(q). (f) Second-order Maki-Thompson-type vertex correction
with respect to χQ

xz(q).

χ̃E = χ0
E

/[
1 − (g + gE)χ0

E

]
, (42)

χ̃66 = χ0
66

/(
1 − g66χ

0
66

)
, (43)

where the suffix 0 represents the bare susceptibility. According
to χ̃44 in Eq. (41), g in Eq. (19) for χQ

xz is replaced with
g + g44 when both optical and acoustic phonons are taken into
account. Therefore, we have to reduce g to g − g44 to keep the
charge Stoner factor αc and χQ

xz( Q) unchanged. Considering
the relation g44 ∼ gE that we derived in the previous section,
we obtain χ̃E ∼ χE . Then, we conclude that (i) C44 ∼ C44,0

since χ44 is seldom enhanced in the RPA. Also, (ii) CE softens
to some extent since χQ

xy(0) is weakly enhanced as shown
in Fig. 5, although the relation CE = 0 will not be satisfied
because of the relation χ̃E ∼ χE .
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As for C66 given in Eq. (43), χ0
66 in the present model

is ∼2 eV−1, while we estimate g66 = 0.1–0.2 eV. Therefore,
we expect (iii) C66 ∼ C66,0 in the RPA, which is inconsistent
with experimentally observed large softening in C66.31 In
the RPA, the softening in the shear modulus (C66, C44, and
CE) is small according to Eqs. (35)–(37) and Figs. 4(a)–
4(c). In the next subsection, we analyze χ66 by taking into
account the two-orbiton process, which is not included in
the RPA.

B. Softening due to the two-orbiton process; the
Aslamazov-Larkin-type diagram

In the previous subsection, we studied the softening of shear
moduli within the RPA. However, the obtained softening is
very small since only the AFQ fluctuations develop in the
present model. In this subsection, we analyze χ66 by taking into
account the “two-orbiton process,” which is not included in the
RPA. In usual cases, this higher-order process is negligible.
However, it gives divergent increase in χ66, and creates the
FQ-QCP near the AFQ-QCP. For this reason, the orthorhombic
structure transition (C66 = 0) is induced by the two-orbiton
process.

Before calculating the two-orbiton process, let us con-
sider the third-order anharmonic phonon-phonon coupling
∼A(3)u

2
xu66, where ux is the displacement of the Fe-ion optical

mode in Eq. (2), and u66 is the displacement of the As-ion
acoustic node in Eq. (22) or Eq. (25). Figure 8(b) shows
the second-order-term with respect to A(3), where D(q) is
the optical phonon Green function in Eq. (9), and the factor
1/2 is introduced to cancel the overcounting with respect
to the upside-down diagrams. This term gives a self-energy
correction for the acoustic phonon Green function. This two-
phonon process would be measurable in Raman spectroscopy.
By considering the e-ph interaction, each D(q) in (b) is
replaced with D(q) + [ηD(q)]2χQ

yz(q).
Here, we study the ferroquadrupole susceptibility due to

the “two-orbiton term” given by Fig. 8(c), and analyze for
the softening of C66. Since the coefficient of the anharmonic
phonon-phonon coupling A(3) would be small in iron pnictides,
we consider instead the three-point vertex given by the
electron Green functions in Fig. 8(d). The two-orbiton term
in Fig. 8(c) is similar to the Aslamazov-Larkin (AL) term for
the excess conductivities due to superconducting fluctuations,
such as longitudinal53 and Hall54 conductivities, and the Nernst
coefficient.55 Figure 8(c) is a virtual process in which one
Ox2−y2 -type orbiton with q = 0 breaks into two Oxz-type
orbitons with zero total momentum (± Q). After taking the
momentum summation, the two-orbiton term (c) in 2D systems
would be strongly enhanced for q = 0 since χQ

yz(k) has a large
peak at finite momentum k. The mathematical expression for
the two-orbiton process in Fig. 8(c) for χ66, which we call
χTO

66 , is given as

χTO
66 = 1

2
(2g)2T

∑
q,l,�,�′

Ax2−y2 (�,�′; q,ωl)Ax2−y2 (�,�′; q,ωl)

× [
1 + 2gχ

Q
� (q,ωl)

][
1 + 2gχ

Q
�′ (q,ωl)

]

≈ 1

2
(2g)4T

∑
q,l,�,�′

Ax2−y2 (�,�′; q,ωl)Ax2−y2 (�,�′; q,ωl)

×χ
Q
� (q,ωl)χ

Q
�′ (q,ωl), (44)

where Ax2−y2 (�,�′; q,ωl) is the three-point vertex with respect
to V̂66 in Eq. (25) and quadrupole operators Ô� and Ô�′ , shown
in Fig. 8(d). We used the relation χ

Q
� (q) = χ

Q
� (−q). When

U = 0, Ax2−y2 for ωl = 0 is given as

Ax2−y2 (�,�′; q) = −2T
∑
n,k

Tr{Ĝk(εn)ôx2−y2Ĝk(εn)

× ô�Ĝk+q(εn)ô�′ }, (45)

where the factor 2 in front of Eq. (45) accounts for the diagrams
with reversing three Green functions Ĝk(εn) → Ĝ−k(−εn).
Near the QCP g � gc, the most divergent quadrupole sus-
ceptibility is χ

Q
xz(yz). Therefore, the dominant contribution for

χTO
66 in Eq. (44) will be given by the term with � = �′ = xz

or yz. After the analytic continuation, the functional form of
χ

Q
xz/yz(q,ω) for q ≈ Qxz = (π,0) or q ≈ Qyz = (0,π ) would

be approximately given as

χ
Q
� (q,ω + iδ) = cξ 2

1 + ξ 2(q − Q�)2 − iω/ω0
(46)

for � = xz or yz, where ξ is the correlation length and ω0 is the
characteristic energy of the fluctuation. The relation ξ 2 ∝ ω−1

0
holds in the RPA.

Next, we consider the temperature dependence of ξ . In the
FLEX approximation11 or SCR theory,56 the bare susceptibil-
ity χ0

φ is approximately suppressed as χ0
φ − αT (α > 0) due to

the thermal fluctuations, which are described as the self-energy
and Maki-Thompson vertex corrections. In this case, we ob-
tain χQ

xz( Q,0) ∝ [1 − gχ0
xz( Q,0) + gαT ]−1 ∝ (T − TAFQ)−1

based on the RPA, where TAFQ = −[1 − gχ0
xz( Q,0)]/gα is

the transition temperature to the AFQ ordered state. Since
χQ

xz( Q,0) ∝ ξ 2, we assume the following relations:

ξ 2 = l(T − TAFQ)−1, (47)

ω0 = l′(T − TAFQ), (48)

where l,l′ are constants. Note that ω0ξ
2 is temperature-

independent.56 By carrier doping, TAFQ changes from positive
to negative, while other model parameters (c, l, and l′) would
be insensitive to doping. As shown in Fig. 5, χQ

xz( Q,0) ∼
2.4 × (1 − αc)−1 ∼ 12ξ 2. In the case (i) TAFQ > 0, the relation
ω0 < T is satisfied near TAFQ. In the opposite case (ii)
TAFQ < 0, the relation ω0 > T will hold for a wide range of
temperatures. Note that the present phenomenological model
in Eqs. (46)–(48) is reproduced by the microscopic calculation
by the FLEX approximation.11 As for the spin propagator in
cuprate superconductors, the relation ω0 > T (ω0 < T ) holds
in overdoped (underdoped) systems.

Here, we comment on the self-energy correction and the
Maki-Thompson-type vertex correction for χTO

66 , shown in
Figs. 8(e) and 8(f), respectively. The former term is included
in the FLEX approximation, and it gives the Curie-Weiss
behavior of χQ

xz( Q,0) given by Eqs. (46)–(48), as reported
in Ref. 11 or Ref. 56. The latter term would be negligible since
its temperature dependence is smaller than that of the former
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TABLE I. Three-point vertex A�(xz,xz, Q) for � = x2 − y2,
xz, yz, and xy. Q = (π,0) corresponds to the peak posi-
tion of χQ

xz(q,0) in the five-orbital model. We recognize that
A�(xz,xz, Q) ∼ O(1) only for � = x2 − y2; this selection rule
means that χTO

44,E � 1.

� x2 − y2 xz yz xy

A�(xz,xz, Q) −0.60 1.9 × 10−3 −1.0 × 10−3 3.2 × 10−4

term. For this reason, we concentrate on the two-orbiton term
in Fig. 8(c) hereafter.

From now on, we perform the numerical calculation of
the two-orbiton process in the case (i), in which the relations
ξ � 1 and ω0 � T are realized near the orbital-ordered state.
In this case, the dominant contribution in Eq. (44) comes from
the terms with � = �′ = xz and yz. Also, we can safely apply
the classical approximation, in which the terms with ωl �= 0
are dropped in Eq. (44). Under these approximations, Eq. (44)
is simplified as

χTO
66 = (2g)4T

∑
q

{
Ax2−y2 (xz,xz; q)χQ

xz(q,0)
}2

. (49)

To calculate Ax2−y2 (�,�′; q), we introduce a uniform FQ
potential term H ′ = h

∑
i Ô

i
x2−y2 , where h is an infinitesi-

mally small constant. Then, the three-point vertex is given
as the following Ward identity:57

Ax2−y2 (�,�′; q) = 1

h

[
χ̄

Q
�,�′ (q,0; h) − χ̄

Q
�,�′ (q,0; 0)

]
, (50)

where χ̄
Q
�,�′ (q,ωl ; h) is the “irreducible” quadrupole suscepti-

bility with respect to g. In the numerical calculation, we have
to fix μ against the change in h. Equation (50) gives the correct
three-point vertex even for U �= 0. In the case of U = 0, χ̄

Q
�,�′

is simply given as χ̄
Q
�,�′ (q,ωl ; h) = −T

∑
k,n Tr{ô�Ĝ(k +

q,εn + ωl ; h)ô�′Ĝ(k,εn; h)}. The obtained Ax2−y2 (xz,xz; q)
for U = 0 is presented in Fig. 9(a). A similar result is obtained
for U = 0.8 eV.

According to the functional form of χQ
xz(q,0) in

Eq. (46), χTO
66 /T ∝ ∑

q{χQ
xz(q,0)}2 ∝ ξ 2 ∝ (T − TAFQ)−1 in

two-dimensional systems. The numerical result for χTO
66 /T

given in Eq. (49) is shown in Fig. 9(b). The obtained
result follows the relation χTO

66 /T ∼ 0.1(1 − αc)−1. Since
6ξ 2 ∼ (1 − αc)−1, the relation χTO

66 /T ∼ 0.6ξ 2 is verified
numerically.

In the same way, two-orbiton processes for two other shear
modulus susceptibilities, χTO

44 and χTO
E , are proportional to

the square of A�(xz,xz; q) for � = xz and xy, respectively.
However, they are four orders of magnitude smaller than χTO

66 ,
as recognized in Table I: This selection rule for A� is under-
stood as follows: According to the relation Tr{Ô�ÔxzÔxz} = 0
for � = xz,xy, we recognize that Axz/xy originates from the
off-diagonal terms of the Green function Gl,m (l �= m) that
is much smaller than the diagonal terms. For this reason, the
two-orbiton process is negligible except for χTO

66 .

(0,0) q
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qy

(a)
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(b)

χΤΟ
66 /T

U=0
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1-αc

FIG. 9. (Color online) (a) Obtained Ax2−y2 (xz,xz; q) for U = 0.
We set n = 6.05 and T = 0.05. (b) χTO

66 /T given by Eq. (49) for
U = 0 and 0.8 as a function of αc. Using the relation 6ξ 2 ∼ (1 − αc)−1

given in the caption of Fig. 4, we obtain χTO
66 /T ∼ 0.1(1 − αc)−1 ∼

0.6ξ 2.

Here, we discuss the softening of C66 by taking the two-
orbiton process into account: According to Eqs. (39) and (40),
we obtain

C−1
66 = C−1

66,0[1 + g66χ̃66], (51)

χ̃66 = a66 + χTO
66

1 − g66
(
a66 + χTO

66

) , (52)

where a66 ≡ 2χ0
66(0,0). Now, we consider the case (i) TAFQ >

0 and ω0 � T . As we have obtained the relation χTO
66 ∝

T ξ 2, we set χTO
66 = b66T/(T − TAFQ). Since the temperature

dependence of a66 is small, we obtain

χ̃66 = a66 + b66

1 − g66(a66 + b66)

T − [a66/(a66 + b66)]TAFQ

T − TS

, (53)

TS = TAFQ
1 − g66a66

1 − g66(a66 + b66)
(>TAFQ). (54)

Then, the difference between TS and TAFQ, which is
conventionally denoted as EJT,51,52 is given by EJT =
TS(g66b66)/(1 − g66a66) > 0. According to Eq. (53), Eq. (51)
is rewritten as

C66 = C66,0[1 − g66(a66 + b66)]
T − TS

T − TAFQ
. (55)
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Here, g66 = 0.1–0.2 eV and a66 ∼ 2 eV−1. We stress that
Eqs. (53)–(55) are valid only for ω0 � T .

Finally, we calculate the two-orbiton process analytically
for general values of ω0/T . Since we cannot apply the classical
approximation that was used to derive Eq. (49), we have to
perform the analytic continuation57 of Eq. (44). The obtained
expression including the quantum fluctuation contribution is
given as

χTO
66 = (2g)4{Ax2−y2 (xz,xz; Q)}2

∑
q

∫ ∞

−∞

dx

π
n(x)

× 2 ImχQ
xz(q,x + iδ) ReχQ

xz(q,x + iδ), (56)

where n(x) = (eβx − 1)−1 is the Bose distribution function,
and we put Ax2−y2 outside of the q summation since its
momentum dependence is much smaller than that of χQ

xz. First,
we perform the x integration using the following equations:

1

ex − 1
=

∞∑
n=1

2x

(2nπ )2 + x2
+ 1

x
, (57)

∫ ∞

−∞

x2

(a2 + x2)(b2 + x2)2
dx = π

2b(a + b)2
, (58)

where a,b > 0. Then, the expression after the x integration in
Eq. (56) is given as

c2ξ 4

(
ω2

0T

∞∑
n=1

(Bqω0 + 2nπT )−2 + T

2B2
q

)
, (59)

where Bq = 1 + ξ 2(q − Q)2. Next, we take the q summation∑
q ≈ 1

2π

∫ π

0 q dq under the assumption ξ 2 � 1. Then, the q
summation of the second term in Eq. (59) is easily obtained as
c2ξ 2T/8. Also, the q-summation of the first term is given as

c2ξ 2ω0

8π

nmax∑
n=1

1

n + ω0
2πT

= c2ξ 2ω0

8π

[
ψ

(
nmax + ω0

2πT
+ 1

)
− ψ

(
ω0

2πT
+ 1

)]
,

(60)

where ψ(x) is the di-Gamma function, and the cutoff nmax ≡
(1 + ξ 2π2)ω0/2πT originates from the fact that the q summa-
tion is limited to the region |q| � π in periodic systems. As a
result, the final expression for the two-orbiton term is

χTO
66 = Xξ 2

{
ω0

π

[
ψ

(
nmax + ω0

2πT
+ 1

)

−ψ

(
ω0

2πT
+ 1

)]
+ T

}
, (61)

where X ≡ (2g)4c2

4π
{Ax2−y2 (xz,xz; Q)}2. Here, we verify

Eq. (61) in the opposite two limits: In the case (i) ω0 � T , the
di-Gamma functions in Eq. (61) are negligible. By applying
the relation ξ 2 = l/(T − TAFQ), we obtain

χTO
66 ≈ Xξ 2T

≈ b
T

T − TAFQ
, (62)

where b = Xl. The first line in Eq. (62) coincides with
Eq. (49) since

∑
q{χQ

xz(q,0)}2 = c2ξ 2/4π . In the opposite case
(ii) ω0 � T , the term T in the curly brackets in Eq. (61) is
negligible. Taking the relations ψ(x) ≈ log(x) for x � 1 and
ω0ξ

2 ∝ ξ 0 into account, we obtain

χTO
66 ≈ Xξ 2ω0 log(2 + π2ξ 2)

≈ b′
66 log

(
π2l

T − TAFQ

)
, (63)

where b′ = Xξ 2ω0. Therefore, in the case (ii) TAFQ < 0 and
ω0 � T , χ̃66 in Eq. (51) is given by replacing χTO

66 with
b′

66 log[π2l/(T − TAFQ)] in Eq. (52). In this case, the tem-
perature dependence of χTO

66 is quite moderate. In Sec. VI B,
we will discuss the temperature dependence of C66 based on
Eq. (61).

In the above derivation, we have neglected the effect of
the mass-enhancement factor brought about by the third point
vertex. If we take this effect into account, both Eqs. (62) and
(63) are multiplied by the factor (m∗/m)2 = 22–32, as we will
discuss in Sec. VI B.

VI. DISCUSSIONS

A. Why are Ox2− y2 -FQ fluctuations the most
divergent for TAFQ > 0?

In this paper, we have studied the development of
quadrupole susceptibilities in iron pnictides based on the RPA
and beyond the RPA. The main fluctuations in the present
study are the Oxz/yz-AFQ fluctuations, χ

Q
xz/yz( Q), which are

produced by Fe-ion in-plane optical phonons. The acoustic
phonons q ∼ Q with finite energy also assist in producing
the AFQ fluctuations; see Eq. (41). We also find that the
Ox2−y2 -FQ fluctuations, χ66, are induced by the “two-orbiton
process” described by the AL-type diagram in Fig. 8(c). Here,
the anharmonic three-phonon coupling is produced by the
three-point vertex in Eq. (45). The two-orbiton process is
important in iron pnictides because of the two-dimensionality.

We discuss the total susceptibility by including the
electron–acoustic-phonon interaction, χ̃

Q
� (q), by taking the

two-orbiton process into account. For � = xz and x2 − y2,

χ̃Q
xz( Q) = χ0

xz( Q)

1 − (g + g44)χ0
xz( Q)

, (64)

χ̃x2−y2 (0) = χ0
66(0) + χTO

66

1 − g66
[
χ0

66(0) + χTO
66

] , (65)

where χTO
66 is proportional to the square of the AFQ

correlation length ξ 2 ∝ χ̃Q
xz( Q). When g66 = 0, therefore,

χ̃Q
xz( Q) and χ̃

Q

x2−y2 (0) diverge at the same time in propor-

tion to ξ 2. As g66 increases from zero, only χ̃
Q

x2−y2 (0) is
enhanced because of the absence of the two-orbiton process;
A�(xz,xz; q),A�(yz,yz; q) � 1 for � = xz or yz as shown in
Table I. For this reason, the relation TS > TAFQ is universally
satisfied even if a fully self-consistent calculation is performed.

As a result, both the AFQ fluctuations (the origin of high-Tc)
and the FQ fluctuations (the origin of shear modulus softening)
develop at the same time, and latter fluctuations overcome
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the former near the TS . The orthorhombic phase transition in
underdoped compounds is caused by the divergence of the
two-orbiton process χ̃66.

B. Softening of C66: Comparison between
theory and experiment

Is this subsection, we discuss the softening of C66 in
under- and overdoped iron pnictides based on the results in
Sec. V. For this purpose, we first estimate the magnitude of
the three-point vertex Ax2−y2 (xz,xz, Q) based on the Ward
identity given in Eq. (50). Since χ̄Q

xz,xz( Q,0; 0) ∼ (2g)−1,
|Ax2−y2 | ∼ (2g)−1/δE, where δE is the bandwidth of the
xz/yz band. Since 2g ∼ 0.5 eV and δE ∼ 2 eV according
to the band calculations,2 and considering the effect of band
renormalization due to the mass-enhancement factor m∗/m

(= 2–3),58 we expect |Ax2−y2 | ∼ 1(m∗/m) (eV−2). This rough
estimation is consistent with the numerical result in Fig. 9(a).

Now, we discuss the underdoped case with TAFQ > 0. In this
case, χTO

66 /T ≈ Xξ 2 shown in Eq. (62). Using the relations c ∼
12 and 6ξ 2 ∼ (1 − αc)−1 as discussed in the caption of Fig. 4,
we obtain X ∼ 0.7 and χTO

66 ∼ 0.12(m∗/m)2(1 − αc)−1. This
estimation is consistent with the numerical result Fig. 9(b) if
we set (m∗/m) = 1.

We also discuss the optimum or overdoped systems without
structure transition, in which the relation ω0 � T is satis-
fied. In this case, χTO

66 ∼ b′ log[π2l/(T − TAFQ)]. Since the
temperature dependence of χTO

66 is moderate, χTO
66 would be

comparable to or smaller than a66. Therefore, in overdoped
systems, the softening in C66 would be quite moderate,
showing a deviation from the Curie-Weiss-type form in
Eq. (55).

Now, we analyze the temperature dependence of χTO
66

and C66/C66,0 by using Eq. (61). We can fix the prefactor
(2g)4c2ξ 2{Ax2−y2}2/4π ≡ Xξ 2 in front of Eq. (61) based
on the relation χTO

66 /T = Xξ 2 for ω0 � T : We obtain X ∼
0.6 according to Fig. 9(b). Hereafter, we set X = 5.4 by
multiplying the square of the mass-enhancement factor,
(m∗/m)2 ∼ 9. We also set ω0 = l′(T − TAFQ) with l′ = 2, and
ξ 2 = l(T − TAFQ)−1 with l = 0.086 (eV), which means that
ξ ∼ 2 when T − TAFQ = 250 K. Using the obtained χTO

66 ,
we plot C66/C66,0 in Fig. 10(b) based on Eqs. (51) and
(52). Here, we set g66 = 0.17 eV and a66 = 2.5 eV−1. In the
case of TAFQ = 100 K, we obtain EJT ≈ 27 K. In the FLEX
approximation,11 TAFQ changes from positive to negative by
carrier doping, while other parameters (X, l, l′, and a66) are
insensitive to the doping. Similarly to Fig. 10(b), we can
fit the recent experimental data by Yoshizawa et al.32 for
Ba(Fe1−xCox)2As2 with x = 0–0.1 by choosing TAFQ while
other parameters (X, l, l′, and a66) are fixed. This fact is strong
evidence for the success of orbital fluctuation theory in iron
pnictide superconductors.

In the present paper, we consider that the origin of high-Tc

is the AFQ fluctuations. On the other hand, Yanagi et al.43

claimed that high-Tc originates from the FQ fluctuations that
give the softening in C66: In the latter mechanism, a rough
estimation of Tc is given as

Tc ∼ ωc exp[−(1 + βλ)/βλ], (66)
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=10K

T   =127KS65K14K

3.38

FIG. 10. (Color online) (a) χTO
66 for TAFQ = 100, 50, 10, and

−10 K given by Eq. (61). (b) C66/C66,0 for TAFQ = 100, 50, 10,
and −10 K given by Eqs. (51) and (52). We set X = 5.7, l = 0.086,
l′ = 2, g66 = 0.17, and a66 = 2.5. C66 = 0 is realized when χTO

66 =
g−1

66 − a66, which is 3.38 in the present parameters. Using these same
parameters, we can fit the recent experimental data by Yoshizawa
et al.32 for Ba(Fe1−xCox)2As2 for x = 0–0.1 just by changing TAFQ.

where ωc is the phonon energy relevant for the orbital
fluctuations, which is just ∼10 K for |q|∼0.1π . β ≡ 1 +
g66χ̃66 = C66,0/C66 is the enhancement factor due to FQ
fluctuations.44 However, C66,0/C66 observed in optimally
doped Ba(Fe,Co)2As2 is just ∼1.2:30,32 Apparently, such a
small enhancement cannot reproduce high-Tc superconductiv-
ity in iron pnictides.

In the present study, in contrast, weak softening in optimally
doped samples is ascribed to the change in the scaling of χTO

66 ,
not to the weakness of AFQ fluctuations. In fact, the softening
is moderate in the case of TAFQ = −10 K in Fig. 10, while
the AFQ correlation ξ 2 ≈ 1000/[T (K) + 10] is enough to
cause the superconductivity at Tc ∼ 30 K. Therefore, moderate
softening and high-Tc are compatible in the present study.

C. Quadrupole-ordered state in underdoped compounds

Here, we consider the orbital or quadrupole ordered state
in underdoped compounds. In the mean-field approximation
for the multi-orbital Hubbard model for iron pnictides,59,60

stripe-type SDW order occurs for U > Uc, and weak orbital
polarization (nxz �= nyz) is induced as the secondary order
when the magnetization is large. However, in real materials,
orthorhombic transition occurs in the paramagnetic state, and
the SDW order is induced in the orthorhombic phase. To solve
this problem, we studied the multi-orbital HH model beyond
the mean-field theory, and found that the FQ order occurs in the
paramagnetic state due to the two-orbiton process. Fortunately,
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FIG. 11. (Color online) (a) Ox2−y2 -FQ order given by the diver-
gence of C−1

66 . Be careful not to confuse Ôx2−y2 with the (x2 − y2)-
orbital operator. (b) Oxz-AFQ order brought by the divergence of
χQ

xz( Q). (c) The correspondence between Ox2−y2 -quadrupole order
(Oxz-quadrupole order) and the d orbital with larger occupation
number.

this FQ order does produce the experimentally observed SDW
order, as we will explain in the next subsection.

As discussed in Sec. V B, the divergence of χ̃66, which is
the total FQ susceptibility given by both optical and acoustic
phonons, causes the orthorhombic structure transition when
C66 = 0. The Ox2−y2 -FQ order is realized in the orthorhombic
phase. The schematic quadrupole order is shown in Fig. 11(a).
Since Ox2−y2 ≈ n2 − n3 according to Eq. (7), the order
parameter Ox2−y2 > 0 (< 0) corresponds the orbital polarized
state with nxz > nyz (nxz < nyz). Figure 11(b) shows the AFQ
order brought about by the divergence of χQ

xz( Q). Although
the FQ order in (a) would occur earlier, we expect the AFQ
order in (b) would coexist with the FQ order when the structure
transition is the weak first order. In fact, the reconstruction of
the FS’s above TN in detwinned Ba(Fe1−xCox)2As2 (Ref. 25)
would indicate the presence of the AFQ order.61

In Fig. 11(c), we show the correspondence between the
quadrupole order and the d-wave function with larger electron
occupancy. In the Ox2−y2 -type quadrupole order, the electrons
mainly occupy the state |xz〉 for Ox2−y2 > 0, or the state |yz〉
for Ox2−y2 < 0. In the Oxz-type quadrupole order, the electrons

mainly occupy the state |xy〉 + |xz〉 for Oxz > 0 (|xy〉 − |xz〉
for Oxz < 0).

Finally, we make a comparison between the present study
and the previous work based on the RPA,43 which claims that
the divergence of Eq. (51) is caused by large g66a66 � 1 while
neglecting χTO

66 . However, the obtained Ox2−y2 -quadrupole
order is “incommensurate.”46 This result highlights the impor-
tance of the two-orbiton process χTO

66 to produce the “q = 0”
orthorhombic structure transition.

D. Stripe magnetic order produced by Ox2− y2 -FQ order

In underdoped iron pnictides, the collinear-SDW order is
induced in the orthorhombic phase at TN, which is slightly
lower temperature than TS . Various explanations for the origin
of this SDW transition have been proposed previously. From a
strong-coupling scheme, the square-lattice Heisenberg model
with in-plane anisotropy, the J1a-J1b-J2 model, has been
studied.26 According to the neutron scattering on CaFe2As2,34

the high-energy spin-wave dispersion indicates the relation
J1a � J1b in the orthorhombic phase. In this case, exper-
imentally observed staggered spin order along the x axis
(a axis) is expected to be realized. However, such strong
in-plane anisotropy J1a � J1b is surprising, considering the
small orthorhombicity (a − b)/(a + b) ∼ 0.003. These facts
indicate the existence of orbital or quadrupole order in the
orthorhombic phase.

In this subsection, we study the origin of the SDW state
based on the weak-coupling approach. Hereafter, we assume
that the x axis corresponds to the a axis (longer lattice constant)
in the orthorhombic phase. In the previous subsection, we
explained that the two-orbital process induces the Ox2−y2 -FQ
order in Fig. 11. Note that Ox2−y2 ≈ n2 − n3 according to
Eq. (7). The corresponding mean field is given as

H ′ = �E
∑

i

(|2〉〈2| − |3〉〈3|)i , (67)

which raises (lowers) the energy level of orbital 2 (3) by
�E. In a similar model, the change in the DOS and FS’s by
the orthorhombic potential �E was studied by Chen et al.62

Here, we study the change in the spin susceptibility by �E

using the RPA.
We calculate the total spin susceptibility χs(q,0) =∑
l,m χs

l,l;m,m(q,0) for U = 1.1 and g = 0. Figure 12(a) shows
the obtained χs(q,0) for �E = 0; the corresponding spin
Stoner factor is αS = 0.87. When �E is finite, the four-hold
symmetry in χs(q,0) disappears quickly. Figure 12(b) shows
the change in the spin susceptibility, χs(q; �E) − χs(q; 0),
induced by �E = +0.04. We see that χs(q,0) increases by
+6.5 at q = (0,π ) while it decreases by −4.0 at q = (π,0).
Therefore, magnetic frustration is resolved and stripe-SDW
order can be induced by small �E.

Figure 12(c) shows the �E-Uc phase diagram given by
the RPA, that is, by the mean-field approximation. It is
noteworthy that Uc quickly decreases in proportion to |�E|
because of the degeneracy of orbitals 2 and 3. When U � Uc,
the experimental SDW order with momentum q = (π,0) is
realized by the negative potential �E that corresponds to n2 >

n3. Figure 12(d) displays the relation between �n = �n2 −
�n3 and �E: If we take the band-renormalization effect
into account, we obtain the relation �n = −0.85(m∗/m)�E.
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FIG. 12. (Color online) (a) χs(q; �E) for �E = 0. Used
model parameters are n = 6.05, U = 1.1, g = 0, and T = 0.05.
(b) χs(q; �E) − χs(q; 0) for �E = 0.04. Model parameters are the
same as those in (a). (c) Uc as a function of �E given by the RPA
for m∗/m = 1. (d) �n2 and �n3 as a function of �E for m∗/m = 1.
Note that �n ≡ �n2 − �n3. (e) FS’s for �E = −0.04 for n = 6.05.
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for n = 6.05. In both cases, the best nesting vector is q = (π,0).

According to (c) and (d), we obtain the reduction in Uc due to
the FQ order as

�Uc = −1.4|�n| = −1.2(m∗/m)|�E|. (68)

Therefore, only a few percent of �n can induce a large change
in Uc that is linear in |�n|. According to recent ARPES
measurement in detwinned BaFe2As2,25 �E ∼ −0.03 eV
in the orthorhombic phase, which corresponds to �n =

+0.026(m∗/m) and �Uc = −0.036(m∗/m) in the present
five-orbital model. In this case, the realized SDW order is
q = (π,0), which is consistent with the famous stripe-type
SDW state in mother compounds.22

We can show that the SDW temperature TN also increases
linearly in |�n| based on the Landau theory. The free energy
in the present problem would be given as

F (�n) = F (0) + c�n
(
m2

(π,0) − m2
(0,π)

)
, (69)

where mQ is the AF order with momentum Q, and F (0) =
a(T − T 0

N)(m2
(π,0) + m2

(0,π)) + b(m4
(π,0) + m4

(0,π))/2 + · · · with
a,b > 0. Then, we obtain TN = T 0

N + |c�n|/a. The present
study shows that c < 0, which seems consistent with the
numerical result in Ref. 60.

Now, we consider the reason why SDW order is produced
by �E. Figures 12(e) and 12(f) show the change in the the FS
structure with �E. We can recognize that the intra-orbital (or-
bital 3) nesting between FS α2 and FS β1 becomes better, com-
pared to the case of �E = 0 in Fig. 2(a). Therefore, the origin
of the “FQ-order-induced stripe SDW” is the “anisotropy in
the intra-orbital nesting” caused by small |�E| ∼ 0.03 eV,
which corresponds to a small orbital polarization |�n| ∼
0.026(m∗/m). This result is consistent with the very small
orthorhombicity (a − b)/(a + b) � 0.003 in the orthorhombic
state.22 In the strong-coupling description, the origin of the
stripe-SDW state is the in-plane anisotropy in the exchange
interaction (J1a �= J1b)26,34 brought by two-orbiton process.

If we go beyond the RPA, the SDW state will be further
stabilized by the reduction in the quasiparticle damping γ

when the FQ order is established:11 In fact, in the FLEX
approximation,11 χs(q) is suppressed by γ due to strong orbital
fluctuations in the normal state. Since the orbital fluctuations
are suppressed when the AFQ order sets in, the resulting
increment in χs(q) would stabilize the SDW phase.

E. Summary

In the present paper, we have studied the realistic five-
orbital HH model for iron pnictides. In the RPA, only the
Oxz-AFQ fluctuations develop as shown previously,9 and
therefore the softening of shear moduli (C66, C44, and CE)
cannot be reproduced. In the present study beyond the RPA,
we revealed that both Oxz-AFQ fluctuations and Ox2−y2 -FQ
fluctuations develop at the same time. The former and the latter
fluctuations are the origins of the s++-wave superconductivity
and the orthorhombic structure transition, respectively. The
commensurate FQ fluctuations are brought about by the two-
orbiton process in Fig. 8(c) that is dropped in the RPA. (In the
mean-field theory, the orbital order due to large g66 is always
“incommensurate.”)46 Fluctuation-induced softening occurs
only in C66 out of three shear moduli because of the orbital
selection rule for the three-point vertex. The origin of softening
would be interpreted as “virtual anharmonicity of lattice
vibrations” that is induced by AFQ fluctuations; see Fig. 8(b).
Possible quadrupole orders in the ordered state are shown
in Fig. 11. Using the two-orbiton term in Eq. (61), we can
fit the recent experimental data of C66 in Ba(Fe1−xCox)2As2

(Ref. 32) for a wide range of doping, only by choosing TAFQ

while other parameters are fixed. This fact is strong evidence
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FIG. 13. (Color online) The phase diagram for iron-pnictide
superconductors obtained by the present orbital fluctuation theory. TS

is the orthorhombic transition temperature (= FQ order temperature),
and TN is the SDW transition temperature. The fact that two QCP’s at
TS = 0 and TAFQ = 0 almost coincide means that novel “multi-orbital
QCP’s” are realized in iron pnictides. The left-hand (right-hand) side
of the vertical dotted line corresponds to TAFQ > 0 (TAFQ < 0), in
which the two-orbiton process is relevant (irrelevant). At TAFQ, the
AFQ order does not occur since it is prevented by the FQ order at TS .

for the success of orbital fluctuation theory in iron pnictide
superconductors.

In addition, we should stress that the stripe-type antifer-
romagnetic state is realized in the orbital-ordered state, since
the small orbital polarization (�n � 0.05) can cause large
in-plane anisotropy in the exchange interaction (J1a �= J1b).
Thus, the present study presents a microscopic justification
for the anisotropic Heisenberg model description for the SDW
state.26,34

In Fig. 13, we summarize the phase diagram of iron pnic-
tides given by the present orbital fluctuation theory beyond the
RPA. We stress that TAFQ, which is determined experimentally
from C66, is positive in the underdoped case (TS > 0) while
it is negative in the overdoped case, as recognized from
Eq. (54) obtained in the classical approximation. In particular,
TS ≈ 0 for TAFQ = 0, consistently with experiments.31,33 This
result indicates that QCP’s for AFQ and FQ orders almost
coincide at the end point of the orthorhombic phase. The
emergence of “multi-orbital QCP’s” is favorable to the orbital-
fluctuation-mediated s++-wave SC state.9–11 In fact, TAFQ

is derived from experimentally observed C66 as follows: In
under-doped systems with TS > 0, TAFQ is given the Weiss
temperature of C66 ∝ (T − TS)/(T − θ ), and TAFQ = θ is
indeed positive experimentally. In over-doped systems, both
TS and θ are negative (TS > θ ), and C66 starts to deviate
from the Curie-Weiss behavior. These experimental results
are the strong evidence for the realization of the two-orbiton
process (∼ T/(T − TAFQ)) in iron pnictides. In contrast, in the
cooperative Jahn-Teller scenario due to large g66 by Yanagi
et al.,43 the parameter θ is always negative; see Appendix A
in detail.

In summary, the present study can explain the supercon-
ductivity, orthorhombic transition, and softening of C66 due
to FQ and AFQ quantum criticalities. The stripe-SDW order
is naturally produced by the “orthorhombicity” of the FQ
order. These results are strong evidence for the realization of
the orbital-fluctuation-mediated s++-wave superconductivity
in iron pnictides. Finally, we stress that the present study
enables us to derive the important parameters in the orbital
fluctuation model in Eqs. (46)–(48) from the experimental
data of shear modulus.
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APPENDIX A: STRUCTURE TRANSITIONS IN ITINERANT
ELECTRON SYSTEMS: QUADRUPOLE-QUADRUPOLE

INTERACTION VERSUS COOPERATIVE
JAHN-TELLER EFFECT

In this paper, we studied the structure transition due to
Ox2−y2 -FQ order in iron-pnictides. The ferroquadrupole inter-
action originates from the two-orbiton process with respect to
Oxz-AFQ fluctuations, which are induced by optical phonons.
The Ox2−y2 -FQ fluctuations give the softening of the elastic
constant C66.

In this Appendix, we present a general theory for the
structure transitions in itinerant metals, and we consider
the uniqueness of iron pnictides in the next step. The structure
transition due to ferroquadrupole order is classified as the
“cooperative Jahn-Teller type” or “quadrupole-quadrupole
interaction type.”52 The elastic constant Cφ is given by
Eqs. (39) and (40), where χφ is the quadrupole susceptibility
at q = 0 without acoustic phonons. Now, we introduce the
quadrupole-quadrupole interaction g like in Eq. (10), the origin
of which is the optical phonons or Coulomb interaction. In the
RPA, χφ = χ0

φ/(1 − gχ0
φ), where χ0

φ is the bare quadrupole
susceptibility. Then, Cφ is given as

Cφ

Cφ,0
= 1 − (gac + g)χ0

φ

1 − gχ0
φ

. (A1)

In rare-earth metals in which f electrons are localized, χ0
φ

is proportional to 1/T .51,52 However, this replacement is
inappropriate in itinerant metals. In nearly ferroquadrupole
itinerant metals, |1 − (gac + g)χ0

φ | � 1 at zero temperature.
Here, we consider the temperature dependence of Cφ

beyond the RPA. In the FLEX approximation11 or SCR
theory,56 χ0

φ is replaced with χ0
φ − αT (α > 0) due to the

thermal fluctuations, which are mainly described as the self-
energy. In this case, Eq. (A1) becomes

Cφ

Cφ,0
≈ T − TS

T − θ
, (A2)
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where TS = −[1 − (gac + g)χ0
φ]/(gac + g)α and θ = −(1 −

gχ0
φ)/gα. Therefore, Cφ shows the Curie-Weiss behavior in

the RPA by taking the thermal fluctuations into account.
First, we consider the case (i) gac � g, in which

the structure transition is driven by quadrupole-quadrupole
interaction.52 In this case, EJT ≡ TS − θ ≈ gac/g

2α, which is
much smaller than TS . (Note that Cφ does not soften when
gac = 0.) Then, the lattice distortion in the ordered state
will be very small (� 1%), as in PrRu4P12. In the opposite
case (ii) gac � g, the structure transition is driven by the
cooperative Jahn-Teller effect.52 In this case, θ ≈ −1/gα,
which takes a large negative value since α is small; θ ∼
−300 K. Then, the lattice distortion in the ordered state should
be very large (�1%), like manganites. In case (ii), the energy
of the “ferro-orbital fluctuations” induced by the acoustic
phonon is very low, and the Tc of the orbital-fluctuation
superconductivity is still lower. Therefore, the emergence of
high-Tc superconductivity is unlikely in case (ii).

In the case of C66 in iron pnictides, quadrupole-quadrupole
interaction g due to optical phonons is absent. Moreover,
Ox2−y2 -FQ fluctuations due to Coulomb interaction do not
develop even in the U ′ > U model.41 Therefore, if we try
to explain the C66 softening within the RPA, we have to
assume the case (ii), i.e., the cooperative Jahn-Teller transition
as proposed by Yanagi et al.43 However, it contradicts with
experiments facts, that is, (a − b)/(a + b) � 0.3% and nxz −
nyz � 5% in the orthorhombic phase irrespective of higher TS

(∼100 K), and θ > 0 in the underdoped pnictides. Therefore,
the RPA analysis done by Yanagi et al.43 is inconsistent with
experiments.

In this paper, we studied the structure transition in case (i),
i.e., the quadrupole-quadrupole interaction type. The origin
of quadrupole-quadrupole interaction is the “two-orbiton
process,” which is not taken into account in the RPA. In
two-dimensional systems, the two-orbiton process gives the
Curie-Weiss behavior in Eq. (A2), if allowed by the orbital
selection rule discussed in Sec. VI B. By using reasonable sets
of parameters (gac < g), experimentally observed Curie-Weiss
behavior of C66 in underdoped pnictides (TS > 0)31,33 is well
reproduced, given in Eq. (55): According to Eq. (54), TAFQ

(= θ ) is positive in underdoped pnictides and TAFQ ≈ 0 at the
critical point TS = 0, consistent with experimental reports.33

In overdoped pnictides, the softening of C66 becomes moderate
since the two-orbiton process gives a very weak temperature
dependence.

APPENDIX B: QUADRUPOLE SUSCEPTIBILITIES IN THE
TEN-ORBITAL MODEL: EFFECT OF UNFOLD

GAUGE TRANSFORMATION

In Sec. III, we calculated χ
Q
� (q,0) based on the five-orbital

model using the RPA, shown in Fig. 4. In this Appendix,
we discuss the effect of the unfold gauge transformation
in deriving the five-orbital model on χ

Q
� (q,0). This gauge

transition changes the signs of (2,3) orbitals for Fe-B sites.
Therefore, signs of quadrupole operators Ôi

xz/yz at Fe-B sites
are reversed, as recognized in Eqs. (4)–(8). For this reason,
χQ

xz,yz(q,ω) is not gauge-invariant since it contains linear

terms with respect to Ôi
xz/yz, although the el-el interaction

in Eqs. (14)–(16) is gauge invariant.
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FIG. 14. (Color online) Quadrupole susceptibilities in the ten-
orbital model for (a) χQ

xz(q), (b) χQ
yz(q), and (c) χQ

xy(q), respectively.
We set n = 6.05, T = 0.05, and αc = 0.98.

From now on, we calculate the quadrupole susceptibilities
in the ten-orbital model. We describe the orbitals of Fe-A
(Fe-B) ions as 1 ∼ 5 (6 ∼ 10). In the RPA, the susceptibilities
are given as

χ
Q
� (q) = χ

Q,AA
� (q) + χ

Q,AB
� (q), (B1)

χ
Q,AA(AB)
� (q) =

A∑
ll′

A(B)∑
mm′

oll′
� χc

ll′mm′ (q)omm′
� (B2)

for � = xz,yz,xy, where olm
� = o

l−5,m−5
� for l,m � 6. The

obtained quadrupole susceptibilities in Eq. (B1) is show in
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FIG. 15. (Color online) Quadrupole susceptibilities in the ten-
orbital model for (a) χQ,AA

xz (q) and χQ,AB
xz (q), (b) χQ,AA

yz (q) and
χQ,AB

yz (q), and (c) χQ,AA
xy (q) and χQ,AB

xy (q), respectively. We set
n = 6.05, T = 0.05, and αc = 0.98.
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Fig. 14, and its diagonal and off-diagonal terms with respect
to A and B are also shown in Fig. 15. In these figures, we have
unfolded the susceptibilities into the single-iron BZ to make
a comparison with Fig. 4. According to Eq. (B1), χ

Q
� (q) in

the ten-orbital model is given by χ
Q,AA
� (q) + χ

Q,AB
� (q). We

see that χQ
xz(q,0) is Fig. 14(a) has a sharp peak at q = (0,π ),

since both χQ,AA
xz (q) and χQ,AB

xz (q) in Fig. 15(a) have peaks at
q = (0,π ).

If we perform the unfold gauge transformation, the sign of
χ

Q,AB
� (q) is inverted for � = xz and yz. Therefore, in the five-

orbital model, χ
Q
� (q,0) = χ

Q,AA
� (q) − χ

Q,AB
� (q) for � = xz

and yz. For this reason, the peak in χQ
xz(q,0) moves from q =

(0,π ) to (π,0) under the gauge transformation, consistently
with the result in Fig. 4(a). In contrast to χ

Q,AB
xz/yz (q), χQ

xy(q) is
gauge invariant. For this reason, Fig. 14(c) in the ten-orbital
model coincides with Fig. 4(c) in the five-orbital model.
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