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Bose-Einstein condensation of rotons
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Bose-Einstein condensation of rotons in helium was considered long ago. It was shown that the relative velocity
of the normal motion in this state must be equal to the Landau critical velocity. We argue that the condensation
can be attained at a smaller velocity if the temperature is low enough.
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I. INTRODUCTION

As a Bose gas is cooled down, the Bose-Einstein con-
densation (BEC) emerges to avoid a conflict between the
statistics and the particle conservation requirement. Behavior
of quasiparticles, unlike behavior of real particles, is not
dominated by such conflict: their number is not an independent
variable, it adjusts itself to maximize entropy in equilibrium.
Conventional Bose-Einstein condensation of quasiparticles is
therefore thought to be impossible; an ingenious mechanism1

of the condensation for rotons via gap cancellation by a
critical (vn − vs ≡ v = vL ≡ �0/P0, where �0 is the roton
energy gap and P0 is its momentum) superfluid counterflow is
required.2

Actually, even real particles hardly ever conserve exactly.
Consider atoms of a cold gas in a trap: they can combine into
molecules or even evaporate from the trap altogether. Nor is
particle conservation present in exact relativistic theory. The
BEC is still possible if it forms much faster than the particle
population decays. It is therefore necessary to compare all
relevant thermalization time scales. It turns out that any finite
counterflow and low enough temperature T � vP0 are the
conditions favorable for the roton BEC creation.

Suppose these conditions are satisfied, and the roton number
relaxation is much slower than that of their energy and
momentum. The roton distribution is then characterized by
the temperature, velocity, and finite chemical potential μ:

NP =
(

exp
E − Pv − μ

T
− 1

)−1

, (1)

where P is the roton momentum and E = �0 + (P − P0)2/

(2μ0) is its energy. Let the z axis run along the v direction.
The roton distribution argument can be expanded in powers of
small deviation from its most probable value,

E − vP − μ ≈ �0 − μ − P0v − μ0v
2 + f 2

z

2μ0
+

(
f 2

x + f 2
y

)
v

2P0

≡ � + f 2
z

2μ0
+

(
f 2

x + f 2
y

)
v

2P0
= � + g2

2μ0
, (2)

where f = P − v (μ0 + P0/v),

gx,y = fx,y

√
μ0v/P0,

gz = fz. (3)

This expansion is applicable if

T � μ0v
2. (4)

Whether the roton BEC state is a Bogolyubov-like gas or a
degenerate Bose liquid depends on the concentration. Critical
concentration (particles per unit volume) required for Bose-
Einstein condensation is

Nc = ζ

(
3

2

) (
T

2π

)3/2
μ

1/2
0 P0

vh̄3 . (5)

The system is almost ideal (see Ref. 4) if

N
V 3

0 μ0P
2
0

26π3h̄6v2
� 1, (6)

where5 V0 ∼ 10−38 erg cm3 is the interaction strength.
Combining Eqs. (5) and (6) we get

T � 25π3h̄6

ζ (3/2)2/3V 2
0 μ0P

2
0

v2 ∼ 103μ0v
2.

This inequality is satisfied as a consequence of Eq. (4),
implying that the condensation considered is a transition
between gaseous phases.

II. RELAXATION

A. Roton number decay

Suppose initial roton distribution is characterized by some
positive chemical potential μ. This means that the roton
number is greater than that in complete equilibrium. The
most important process at low temperature T � vP0 for the
chemical potential relaxation is the transformation of two
rotons into one roton and one phonon. Little is known about
the transformation probability in such collisions. It seems
reasonable to assume that the transformation cross section
(providing the process is allowed at all by the conservation
laws) can be bounded from above by complete scattering cross
section5 known from the experimental viscosity data.

Momentum conservation for this transformation imposes
severe restriction on the angle φ between momenta of the
incident rotons (see Fig. 1). Namely, this restriction is reduced
to φ � 2π/3 if the inequality � � P0c is taken into account.
Here c is the speed of sound. To simplify all assessments
below we take T � �, i.e., assume Boltzmann statistics for
the rotons:

NP = exp
Pv + μ − E

T
. (7)

This is certainly incorrect for the BEC state itself but must
provide reasonable relative order of magnitude for different
relaxation rates.
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FIG. 1. Excitation spectrum of superfluid helium; dark-gray ring

(spherical layer in real three dimensions) corresponds to the rotons.
Transformation of two rotons with momenta P1 and P2 into one with
momentum P′ is impossible if the angle between incident rotons is
less than 2π/3. Extra energy can be carried away by a phonon (not
shown) whose momentum is negligibly small.

As an estimate, not more than about
exp [−2(1 − cos π/3)vP0/T ] fraction of all collisions
end up with the transformation. For the chemical potential
relaxation rate this gives (see Ref. 5)

τ−1
μ � 4N |V0|2P0μ0

h̄4 exp
−vP0

T
, (8)

where N is the total roton concentration. The relaxation rate
here is defined according to

μ̇ + τ−1
μ μ = 0.

B. Phonon-roton velocity relaxation

To find the upper boundary for the phonon-roton relaxation
time it is sufficient to consider the two-particle scattering of
rotons by phonons. Conservation laws for this process are
(primes denote the final state)

p + P = p′ + P′, ε + E = ε′ + E ′, (9)

where p and ε = cp are the phonon momentum and energy.
Landau and Khalatnikov have pointed out5 that since P � p, it
follows that the scattering of rotons by phonons is analogous to
the scattering of heavy particles by light ones and the conserva-
tion laws (9) simply amount to the momenta parallelism of the
incident and scattered rotons P ‖ P′. Similarly, the momenta
magnitudes of the incident and scattered phonons are almost
equal, p ≈ p′. Really, substituting the first equation in Eq. (9)
into the second one we get

p − p′ = (m,p − p′)
μ0c

(P − P0) + (m,p − p′)2

2μ0c
� p, (10)

where round brackets denote scalar product and m is the unit
vector directed along P and P′.

Let the roton and phonon subsystems be separately in
equilibrium. The roton and the phonon “bath” velocities will be
v and v + δv, respectively. Velocity relaxation has two distinct
time scales τph,v‖ and τph,v⊥; they correspond to δv ‖ v and
to δv ⊥ v. In linear approximation (δv � v) the relaxation is
described by the equations

j̇r‖ = δv‖ρr‖τ−1
ph,v‖,

j̇r⊥ = δv⊥ρr⊥τ−1
ph,v⊥,

where jr is the roton momentum density and ρr is the roton
contribution to the differential normal density ρn = ∂j/∂v.
To calculate these contributions we note that in the low-
temperature limit all rotons have equal momentum P0 + μ0v

directed along the velocity v. This gives

jr =
(

P0

v
+ μ0

)
Nv

and

ρr‖ = μ0N,
(11)

ρr⊥ = P0N/v.

Each elementary scattering changes the roton subsystem
momentum by P′ − P. The scattering rate is the Bose factor
(n′ + 1)nNP, where

n =
(

exp
ε − p(v + δv)

T
− 1

)−1

,

times the scattering probability dw = cdσ , where dσ is
differential cross section of this process (rotons are much
slower than sound). Combining this together we obtain

j̇r =
∫

(P′ − P) (n′ + 1)nNP cdσ
dp

(2πh̄)3

dP
(2πh̄)3

. (12)

According to the fundamental work,5 the phonon-roton
cross section is

dσ =
(

P0p
2

4πh̄2ρc

)2{
(n + n′,m)(n,n′)

+ P0

μ0c
(n,m)2(n′,m)2 + A

}2

dn′, (13)

where n and n′ are the unit vectors directed along p and p′,
respectively. The parameter A is given6 by

A = ρ2

P0c

[
∂2�0

∂ρ2
+ 1

μ0

(
∂P0

∂ρ

)2 ]
.

Expression (13) remarkably involves only excitation spec-
trum parameters and does not rely on random assumptions
about the phonon-roton interaction. It is derived by treating
the roton as a small particle in a slowly varying hydrodynamic
phonon field and is independent on the unknown internal
structure of the roton.

At low temperature most rotons have momentum parallel to
the velocity and the vector m ‖ v can be regarded as a constant.
To transform Eq. (12) we employ the usual relation between
distribution functions:

(n′ + 1)nNP − (n + 1)n′NP′ ≈ (n + 1)n′NP′
(P′ − P,δv)

T
,
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and the principle of detailed balance:

j̇r = 1

2T

∫
(P′ − P)(P′ − P,δv)(n + 1)n′NP′dw

dp
(2πh̄)3

dP
(2πh̄)3

= c

2T

∫
p2(n − n′)(n − n′,δv)(n + 1)n′NP′dσ

dp
(2πh̄)3

dP
(2πh̄)3

= π3P 2
0 T 8

60c10h̄7ρ2

∫
NP

dP
(2πh̄)3

∫
(n − n′)(n − n′,δv)

{
(n + n′,m)(n,n′) + P0

μ0c
(n,m)2(n′,m)2 + A

}2

dn′dn. (14)

For the relaxation rate this gives (lengthy but straightforward transformations are omitted)

τ−1
ph,v‖ = 8π5P 2

0 T 8

15c10h̄7ρ2μ0

(
4

225
+ 2AP0

15μ0c
+ P 2

0

35μ2
0c

2
+ A2

3

)
∼ 500

T 8P 2
0

c10h̄7ρ2μ0
, (15)

τ−1
ph,v⊥ = 8π5vP0T

8

15c10h̄7ρ2

(
8

225
+ 2AP0

45μ0c
+ P 2

0

175μ2
0c

2
+ A2

3

)
∼ 300

T 8P0v

c10h̄7ρ2
. (16)

C. Phonon-roton temperature relaxation

Let us now find the temperature equilibration rate between
the roton and the phonon subsystems. The phonon gas
temperature is T + δT and the phonon distribution is

n =
(

exp
ε − pv
T + δT

− 1

)−1

.

This function satisfies the equality

(n′ + 1)nNP − (n + 1)n′NP′ ≈ (n + 1)n′NP′
E ′ − E

T 2
δT .

From Eq. (4) it follows that the second term in Eq. (10) is
much smaller than the first one,

E ′ − E = P − P0

μ0
(m,P′ − P) = v(m,P′ − P).

The energy inflow to the roton subsystem is

Ėr =
∫

(E ′ − E)(n′ + 1)nNP dw
dp

(2πh̄)3

dP
(2πh̄)3

= v2δT

2T 2

∫
(m,P′ − P)2(n + 1)n′NP′dw

dp
(2πh̄)3

dP
(2πh̄)3

.

(17)

The phonon-roton temperature relaxation rate defined by

Ėr = Crτ
−1
ph,T δT ,

where Cr = 3N/2 is the roton contribution to the specific
heat per unit volume, can be immediately extracted using the
obvious similarity between Eqs. (17) and (14):

τ−1
ph,T = v2ρr‖

CrT
τ−1
ph,v‖

= 16π5P 2
0 T 7v2

45c10h̄7ρ2

(
4

225
+ 2AP0

15μ0c
+ P 2

0

35μ2
0c

2
+ A2

3

)

∼ 300
T 7P 2

0 v2

c10h̄7ρ2
. (18)

D. Roton-roton velocity relaxation

Equilibrium within the roton subsystem is reached via the
roton-roton collisions. Like a two-body problem in classical
mechanics, these collisions are efficiently described [if Eq. (2)

holds] in the center of inertia frame. Namely, suppose reduced
momenta, defined according to Eq. (3), of the scattering rotons
are g1 and g2. After a transformation

G = g1 + g2,

g = (g1 − g2)/2,

the net energy of two rotons is given by

E1 + E2 − vG − 2μ = 2� + G2

4μ0
+ g2

μ0
(19)

and the conservation laws are simplified to

G′ = G

g′ = g.

Accurate definition of the roton-roton equilibration time
constants is hardly possible (cf. the discussion on the establish-
ment of equilibrium of a phonon gas in Ref. 6). As an estimate
we employ the relations similar to those for the phonon-roton
relaxation:

ρr‖τ−1
r,v‖ = 1

2T

∫
(P′

1 − P1,m)2NP1NP2dw
dP1

(2πh̄)3

dP2

(2πh̄)3
,

ρr⊥τ−1
r,v⊥ = 1

2T

∫
[P′

1 − P1,m]2NP1NP2dw
dP1

(2πh̄)3

dP2

(2πh̄)3
.

Here the scalar (P′
1 − P1,m) and vector [P′

1 − P1,m] products
are used to decompose the momentum difference into parallel
and perpendicular projections.

Unfortunately, no roton-roton counterpart of Eq. (13) is
available: interaction between rotons does not yet allow for
exact theoretical treatment. It eventually turns out (see below)
that details of this interaction are not important and we adopt
the simplest model5 for the roton-roton scattering probability,

w = 8π |V0|2
h̄

δ(E1 + E2 − E1′ − E2′ )
dP1′

(2πh̄)3
.
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For the relaxation time this gives

ρr‖τ−1
r,v‖ = 4π |V0|2e−2�/T

h̄T

∫
(g1z′ − g1z)

2 exp

(
−g2

1 + g2
2

2μ0T

)
δ(E1 + E2 − E1′ − E2′ )

dP1′

(2πh̄)3

dP1

(2πh̄)3

dP2

(2πh̄)3

= 4π |V0|2P 3
0 e−2�/T

h̄T μ3
0v

3

∫
(g1z′ − g1z)

2 exp

(
− G2

4μ0T
− g2

μ0T

)
δ

(
g2 − g′2

μ0

)
dg′

(2πh̄)3

dg
(2πh̄)3

dG
(2πh̄)3

= 8N2|V0|2P0μ
3/2
0 T 1/2

3π3/2h̄4v

and

ρr⊥τ−1
r,v⊥ = 8N2|V0|2P 2

0 μ
1/2
0 T 1/2

3π3/2h̄4v2
.

Here we substituted the roton concentration according to

N = e−�/T

∫
e−g2

1/(2T μ0) dP1

(2πh̄)3

= 23/2π3/2T 3/2μ
1/2
0 P0

v(2πh̄)3
e−�/T .

Eventually, using Eq. (11), we see that the two rates are equal,

τ−1
r,v‖ = τ−1

r,v⊥ = 8N |V0|2P0μ
1/2
0 T 1/2

3π3/2h̄4v
. (20)

E. Roton-roton temperature relaxation

Employing the same approach as in Eq. (17) we express the
roton-roton temperature relaxation rate through the parallel
velocity relaxation rate (19),

τ−1
r,T = v2ρr‖

CrT
τ−1
r,v‖ = 16N |V0|2P0μ

3/2
0 v

9π3/2h̄4T 1/2
. (21)

III. DISCUSSION

As we mentioned above, possibility of the Bose-Einstein
condensation of rotons depends on the relative magnitude of
the different relaxation rates. We begin with the notion that
within the roton gas the temperature relaxation (21) is much
faster than the velocity relaxation (20),

τ−1
r,T

τ−1
r,v

= 2μ0v
2

3T
� 1.

The latter in turn is always faster than the chemical potential
relaxation (8),

τ−1
r,v

τ−1
μ

= 2

3π3/2

√
T

μ0v2
exp

2vP0

T
� 1.

This completes the proof that a roton subsystem with an
initially narrow momentum distribution around some under-
critical momentum P such that 0 < P − P0 < μ0�0/P0 must
pass through a BEC state.

Another process is equilibration between the roton and
phonon subsystems. Consider a roton cloud propagating with
the velocity v and interacting with the phonon environment.
The rotons cool down if the phonon temperature is lower than
the roton one. Cooling rate is determined by the expressions
obtained in Secs. II B and II C. Whether this “phonon
cooling” can be experimentally used to condense a cloud

of rotons with wide initial distribution depends not only on
the relation between the rates of the phonon-roton relaxation
(15), (16), (18), and of the roton number decay (8). The
latter has exponential dependence on the temperature and
can in principle be made arbitrary slow relatively, but at
low temperature the phonon-roton relaxation is very slow
itself and may take too long, therefore demanding a very
large experimental cell. To overcome this difficulty one could
try to condense rotons at rest in the laboratory frame of
reference while the superfluid passes through a capillary.
Andreev reflection of rotons7 at low temperature will protect
the distribution width in the roton-wall collisions.

Note that exponentially slow roton number decay (in
contrast with specific power-law temperature dependency of
other equilibration rates) is a general result and does not
depend on exact roton-roton interaction.

Experimental observation of the roton BEC should be
possible by a number of techniques:

(i) The coherent roton quantum state has finite momen-
tum. Upon BEC formation, bulk helium acquires a spatial
inhomogeneity,8 a one-dimensional density wave. The wave-
length is the roton wavelength and the modulation direction
is the velocity v direction. The periodicity should manifest
itself as a Bragg peak in the x-ray-scattering experiments.
Actually this roton BEC state is a supersolid as it simul-
taneously has superfluid and crystalline order. Note that
one-dimensional crystalline order is not destroyed by Landau-
Peierls fluctuations9,10 thanks to the true three-dimensional
superfluid order.

(ii) Another option to probe BEC is to explore excitations
of the condensate. The roton second sound is well studied in
normal roton systems11 and may be used for the condensate
detection.

(iii) The roton distribution can be measured directly by the
quantum evaporation.12 The δ-shaped peak in the distribution
function would become an explicit confirmation of the BEC
formation.

Finally, let us remark that the stability analysis performed
in Ref. 13 is irrelevant for the metastable BEC considered in
present paper, because the roton number is fixed.
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