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The magnetic-field dependence of the energy and vortex occupation is calculated for the recently realized
superconducting double network consisting of two interlaced subnetworks of small and large loops. Two different
approaches are employed, both based on the J 2 model: Mean-field analysis that minimizes the network energy
assuming random-vortex configurations and numerical simulations in which energy is minimized avoiding this
assumption. In the mean-field analysis the vortex population in both subnetworks increases linearly with the
applied field. In contrast the simulations show that while the population of the large loops increases linearly with
field, the occupation of the small loops grows in steps, resembling the behavior of an ensemble of decoupled
loops. This decoupling is also reflected in the waveform of the energy versus applied field. A modified mean-field
analysis, which introduces decoupling between the small loops, yields results in excellent agreement with the
simulations. These findings suggest that the behavior of a single loop is reflected in the double network and thus
constitute it as a favorable system for the experimental study of quantization effects in superconducting loops.
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I. INTRODUCTION

In the early days of superconductivity London predicted
that the fluxoid,1 defined as the sum of the magnetic flux and a
term involving the persistent current, is quantized in a multiply
connected superconductor in units of φ0 = hc/2e. For a single
superconducting loop the fluxoid quantization, together with
the requirement for energy minimization, dictates periodic
changes in the screening current density J and step-wise
occupation of the loop with flux quanta. The energy, being
proportional to J 2, is also periodic with the magnetic field,
giving rise to periodic changes in the critical temperature Tc

as demonstrated by Little and Parks.2

Similar to a single superconducting loop, two-dimensional
periodic networks of superconducting loops also exhibit mag-
netoresistance oscillations with field periodicity φ0/A, where
A corresponds to the area of each loop in the network.3–11

Analyses of the current distribution and the energy versus
magnetic field in such networks is usually based on the J 2

model12–14 assuming current conservation in each node and
that the average field for the entire network is equal to the
externally applied field.15–17

Recently, we fabricated a novel type of superconducting
network18,19 made by connecting the vertexes of small square
loops with relatively long wires, forming two interlaced
subnetworks of small and large loops, see Fig. 1(a). The
motivation for designing such a network was to create an array
of decoupled small loops that behave like isolated loops. Here
we analyze this unique network employing two theoretical
approaches both based on the J 2 model. The first is the mean-
field approach that minimizes the network energy assuming
random vortex configurations, and the second is based on
numerical simulations in which energy is minimized avoiding
this assumption. We first demonstrate these two approaches in
the analysis of a simple square lattice [Fig. 1(b)]. Although in
this case both methods yield similar results for the periodicity
and the occupation rate, the numerical simulations show

additional local minima at normalized fields 0.5 + m, with
integer m corresponding to the checkerboard configuration
studied previously.3,12,14,20 More dramatic differences between
the two approaches are manifested in the analysis of the
double network [Fig. 1(a)]. While in the naı̈ve mean-field
analysis the vortex population in both sublattices of small
and large loops increases linearly with the applied field, the
numerical simulations show that the occupation of the small
loops grows in steps, resembling the behavior of an ensemble
of nearly decoupled loops. However, we show that a modified
mean-field analysis which includes decoupling between the
small loops reproduces the staircase-vortex occupation and the
energy waveform obtained in the simulations. Finally we point
to the advantage of the numerical simulations in providing the
actual spatial distribution of the vortices in the double network,
demonstrating visually the different occupation of the large and
small loops at various magnetic fields. These results will guide
future experimental efforts to measure vortex occupations in
such complex networks.

II. SQUARE NETWORK

We consider a network of M × M square loops, each of side
L, in an external magnetic field H [see Fig. 1(b)]. The fluxoid
quantization1,21 requires that the integral over the currents
around each loop is balanced by the flux quanta in the loop
and the external magnetic flux. Thus,

∑
δ

LJδα = Nαφ0 − HL2, (1)

where δ = 0,1,2,3 indexes the edges of the square loop α =
0,1 . . . M2 − 1, carrying a screening current Jδα , and Nα is the
number of vortices in the loop α.
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FIG. 1. Schematic diagram of (a) the double network and (b) the simple square network.

The energy is given by the sum of J 2 over all the network
wires,

E =
M2−1∑
α=0

L
(
J 2

0α + J 2
1α

)
, (2)

where two sides in each loop are considered, and the
summation over all loops ensures that each wire in the network
is accounted for. Equations (1) and (2) are the basis for both
the mean field and the numerical-simulation approaches. In
writing these equations we adopted the assumptions of the
J 2 model,12–14 namely that the magnetic-penetration length
is much larger than wires’ width and the screening currents
are therefore very small. These currents produce magnetic
fields that are perturbations on the applied field and are
therefore neglected. This model also neglects the geometric
inductance22,23 and the additional energy from the induced
currents interacting with the applied field as compared to the
kinetic energy. Notably, the model assumption on the screening
length is well satisfied in our experiments.18,19

A. Mean-field solution

We assume that a fraction F of the square loops have N + 1
vortices and the remaining 1 − F have N . Therefore the total
magnetic flux through the system is

NT [F (N + 1) + (1 − F )N ]φ0 = HNT L2, (3)

where NT = M2 is the number of loops in the lattice. Thus

N + F = HL2

φ0
. (4)

Because F is a fraction and N is an integer, we may write

F =
{

HL2

φ0

}
, N =

∣∣∣∣HL2

φ0

∣∣∣∣, (5)

where {•} denotes the fractional part and | • | the integer part.
We refer to a loop-carrying (N + 1) flux quanta as occupied

and to one carrying only N quanta as vacant. Each edge in the
network has two neighboring loops, and in the mean-field
approximation the probability that both loops are occupied is
F 2, that one is occupied and one is vacant 2F (1 − F ), and

that both are vacant is (1 − F )2. Moreover, we will assume
that these three types of edges carry currents J++, J+−, and
J−−, respectively. Hence, the average current in the system is

〈J 〉 = F 2J++ + 2F (1 − F )J+− + (1 − F )2J−−. (6)

Equation (1) for the occupied and vacant loops takes
the form

4L[FJ++ + (1 − F )J+−]= (N + 1)φ0 − HL2 = (1 − F )φ0

(7)
4L[FJ+− + (1 − F )J−−] = Nφ0 − HL2 = −Fφ0.

In writing Eq. (7), we assumed that for each one of the
four loops surrounding a given loop, there is a probability
F to be occupied and probability 1 − F to be vacant. It
is straightforward to verify from Eqs. (6) and (7) that the
requirement that the average current in the network 〈J 〉 = 0 is
automatically satisfied.

Equation (2), for the energy, takes the form

E = 2NT L[F 2J 2
++ + 2F (1 − F )J 2

+− + (1 − F )2J 2
−−]. (8)

We are interested in the minimal energy for a given external
field; therefore, we seek the current distribution in the system
that minimizes the energy given in Eq. (8). We use the
constraints of Eq. (7) to express J++ and J−− in terms of J+−,
then substitute these in Eq. (8) and minimize with respect
to J+− by requiring ∂E/∂J+− = 0. After some algebra this
yields

E = NT φ2
0

4L
F (1 − F ). (9)

The solid line in Fig. 2 shows the normalized energy per
loop as a function of the normalized external field. Note that
the energy waveform for the network is inverted and shifted
by a quarter of a period relative to that of a single loop (see,
e.g., Fig. 4.521). In addition, in contrast to an isolated loop in
which the occupation grows in steps,21 in the square network
the occupation grows linearly with the field, see Eq. (4).

This solution is valid as long as the vortex distribution
in the network is disordered, namely that there are no
correlations between the occupations of neighboring loops. It
is instructive to see how this breaks down for F = 1/2, where
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FIG. 2. (Color online) Normalized energy per loop obtained from
the mean-field analysis [Eq. (9)] and from the simulations (solid
line and open circles, respectively) plotted versus the normalized
field. The bold circles indicate the theoretical value of the energy
corresponding to the checkerboard configuration of vortices in the
square network E = NT φ2

0/(32L).

the minimum energy configuration is known to be that of a
checkerboard arrangement of the vortices on the lattice. For
such a configuration, all edges have an occupied loop on one
side and a vacant loop on the other.24,25 Equation (7) should be
modified to have only contributions from J+− for both types
of loops, which leads to J+− = φ2

0/(8L). Similarly, Eq. (8) for
the energy should be modified to include only a contribution
from J 2

+−, eventually leading to E = NT φ2
0/(32L), denoted

by the bold circles in Fig. 2, which is half of the mean-field
value of NT φ2

0/(16L) obtained by substituting F = 1/2 in
Eq. (9). Also note that for the checkerboard arrangement of
vortices, Eq. (6) may no longer be used, yet the total current
still vanishes. Here the magnitude of the current on all edges
is equal, but their directions alternate in space to achieve a net
current in one direction around the occupied loops and in the
opposite direction around the vacant loops.

The numerical simulation, discussed in the next section,
offers a more accurate solution, not limited to disordered
distributions of vortices in the network.

B. Numerical simulation

For a given external field H we calculate the total number
of vortices in the system as

NV = NT L2H/φ0. (10)

We initially distribute these vortices randomly throughout
the network. Then we employ the following procedure to find
the currents Jδα through all edges such that the total energy of
the network is minimized: We assign a circular current J̃β to
each loop β and express Jδα in terms of J̃β ,

Jδα =
∑

β

Kδ
αβJ̃β, (11)

where the four NT × NT matrices K0,K1,K2, and K3 are
evaluated in Appendix A, assuming current conservation at
every node of the network26 and periodic-boundary conditions.
Equation (11) provides four sets of M2-linear equations. By

substituting Eq. (11) into Eq. (1), one gets NT -linear equations
with M2 variables J̃β ,

Nαφ0 − HL2 =
∑
δβ

LKδ
αβJ̃β =

∑
β

ϒαβJ̃β . (12)

where ϒαβ = ∑
δ

LKδ
αβ is an M2 × M2 matrix. Having the

population vector N we evaluate the vector of the circular
currents J̃ by inversion

J̃ = Y−1(Nφ0 − HL2). (13)

Knowledge of J̃ for a given spatial distribution of the
vortices on the lattice allows calculation of the current matrix
Jδα using Eq. (11) and thus the total energy E using Eq. (2).

The minimum energy and the vortex configuration corre-
sponding to it are found as follows: One cell is randomly
chosen and the number of vortices in this cell is reduced
by one, and subsequently the number of vortices in one of
the neighboring cells is incremented by one. We calculate
the currents Jδα and the energy for the new configuration.
If the energy of this new configuration is lower than the
energy of the previous state, then we accept the new one.
Otherwise the old state is preserved. This process is repeated
for every cell in the network, completing one sweep of energy
minimization. Such sweeps are repeated (typically 500–1000
times) until we reach a steady state. Results of the calculated
energy for a 10 × 10 network are shown in Fig. 2 (open
circles). Convergence of the calculations presented in Fig. 2
was confirmed for several fields in a 20 × 20 network.

Notably, although the periodicity of the energy versus
field and the occupation rate are as in the mean-field case,
the simulation shows local minima at normalized fields
1/2 + m, with integer m corresponding to the checkerboard
configuration.3,12,14,24,25 Hints for additional minima at nor-
malized magnetic fields of 1/3 and 2/3 may be observed in
Fig. 2 in agreement with, e.g., Pannetier et al.9 Additional
possible minima are in the noise level. More dramatic
differences between the two approaches of the mean-field
solution and numerical simulations are found in the case of
the double network, as described in subsequent sections.

III. DOUBLE NETWORK

We refer to the double network of Fig. 1(a) made up of a
square lattice of side L and square loops of side � < L oriented
at 45o with respect to this lattice and placed at every vertex of
the large lattice. Each large loop has four short edges of length �

and four long edges of length x = L − √
2�. (We refer to these

edges as long even though for x < �,
√

2� < L < (1 + √
2)�.)

The area of each small loop is �2, and the area of each large
loop is L2 − �2.

A. Mean-field solution

When this system is placed in an external magnetic field H ,
a fraction f of the small loops have n + 1 flux quanta through
them, and a fraction 1 − f have n, and similarly, a fraction F

of the large loops have N + 1, and a fraction 1 − F have N .
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These quantities are related to the external field since the total
magnetic flux satisfies

NT [f (n + 1) + (1 − f )n + F (N + 1) + (1 − F )N ]φ0

= HNT L2. (14)

The left-hand side is the result of counting the number
of flux quanta according to the above definitions (NT is the
number of loops of each size), and the right-hand side is the
external field multiplied by the total area of the system. This
leads to

N + F + n + f = HL2

φ0
. (15)

In deriving the mean-field solution for the double grid, we
note that as for the simple square lattice, there are three types
of long edges: those separating two occupied loops (++),
those separating an occupied loop and a vacant loop (+−),
and those separating two vacant loops (−−). We assume that
the probabilities of finding each of these types are given by
F 2, 2F (1 − F ), and (1 − F )2, respectively. We assume these
types of edges carry currents J++, J+−, and J−−, respectively.
Therefore, the requirement that the average current vanishes26

reads

〈J 〉 = F 2J++ + 2F (1 − F )J+− + (1 − F )2J−− = 0.

(16)

Each short edge separates a small loop and a large loop,
therefore the types (+−) and (−+) are not symmetric as for
the long edges, and we need to deal with four types of edges:
separating two occupied loops (++), separating an occupied
small loop and a vacant large loop (+−), separating a vacant
small loop and an occupied large loop (−+), and separating
two vacant loops (−−). We assume currents j++, j+−, j−+,
and j−− on them, and within the mean-field approximation,
the probabilities of finding each of them are given by f F ,
f (1 − F ), (1 − f )F , and (1 − f )(1 − F ), respectively. The
requirement that the average current on the short edges
vanishes is

〈j 〉 = f Fj++ + f (1 − F )j+− + (1 − f )Fj−+
+ (1 − f )(1 − F )j−− = 0. (17)

An occupied small loop has the following relation between
the integral of the currents around it and the magnetic flux
through it,

4�[Fj++ + (1 − F )j+−] = (n + 1)φ0 − H�2. (18)

For a vacant small loop we similarly have

4�[Fj−+ + (1 − F )j−−] = nφ0 − H�2. (19)

The currents on each of the edges are determined by the
flux in the large loop on the other side of that edge, and we
have used the mean-field assumption that the flux in adjacent
loops is uncorrelated, thus the probabilities for having each
of the neighboring large loops occupied or vacant are F and
1 − F , respectively.

Similarly, an occupied large loop has

4�[fj++ + (1 − f )j−+] + 4x[FJ++ + (1 − F )J+−]

= (N + 1)φ0 − H (L2 − �2), (20)

and a vacant large loop has

4�[fj++ + (1 − f )j−+] + 4x[FJ++ + (1 − F )J+−]

= Nφ0 − H (L2 − �2). (21)

Multiplying Eq. (18) by F and Eq. (19) by 1 − F and then
adding leads, by the use of Eq. (17), to

n + f

N + F
= �2

L2 − �2
. (22)

It is easy to see that now Eq. (16) is satisfied as well.
Together with Eq. (15), we obtain N + F = H (L2 − �2)/φ0

and n + f = H�2/φ0. Because N and n should be integer and
f and F fractional, we obtain

F =
{

H (L2 − �2)

φ0

}
, N =

∣∣∣∣∣H (L2 − �2)

φ0

∣∣∣∣∣,
(23)

f =
{

H�2

φ0

}
, n =

∣∣∣∣∣H�2

φ0

∣∣∣∣∣,
where {•} denotes the fractional part and | • | the integer part.

We are now left with four Eqs. (18)–(21), connecting the
seven unknown currents (J++, J+−, J−−, j++, j+−, j−+, j−−).
We use these four equations to express J++, J−−, j++, and j−−
in terms of J+−, j+−, and j−+. The energy, given by the sum
of xJ 2 over 2NT long edges and the sum of �j 2 over 4NT short
edges,

E = 2NT x[F 2J 2
++ + 2F (1 − F )J 2

+− + (1 − F )2J 2
−−]

+ 4NT �[f Fj 2
++ + f (1 − F )j 2

+− + (1 − f )Fj 2
−+

+ (1 − f )(1 − F )j 2
−−] (24)

may now be expressed in terms of the parameters J+−, j+−,
and j−+. We minimize E with respect to these parameters
by demanding that ∂E/∂J+− = ∂E/∂j+− = ∂E/∂j−+ = 0.
After some algebra, this yields

E = NT φ2
0

4

[
F (1 − F )

x + �
+ f (1 − f )

�

]
. (25)

Figure 3(a) and 3(b) show the mean-field calculations [Eq.
(25)] of the normalized energy per unit-cell of the double
network and the occupation Nv = N + F and nv = n + f

of the large and the small loops, respectively, for L/� = 5.
The short period oscillations shown in Fig. 3(a) are associated
with the large loops. These oscillations are superimposed on
oscillations of longer periods associated with the small loops.
Figure 3(b) shows that the mean-field solution predicts that
the occupation of both the large and small loops increases
linearly with the field, behaving as in two separate square
networks consisting of large and small loops. As described in
the following section, the numerical simulations show that
while the occupation of the large loops increases roughly
linearly with the applied field, the occupation of the small
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FIG. 3. (Color online) (a) Mean-field calculations [Eq. (25)]
of the normalized energy per unit-cell of the double network, and
(b) the occupation Nv = N + F of large and small loops nv = n + f

for L/� = 5. Note that the ratio of the slopes of the two lines is 24,
which corresponds to the ratio between the areas of the large and
small loops.

loops grows in steps, resembling the behavior of an ensemble
of nearly decoupled loops.

B. Numerical simulations

For the double network [Fig. 1(a)] the fluxoid quantization
takes a form of two systems of discrete sums∑

δ

LδJδα = Nαφ0 − H (L2 − �2)

(26)∑
γ

�jγα′ = nα′φ0 − H�2.

where Jδα is the current through the side δ = 0,1 . . . 7 of the
loop α in the subnetwork of the large loops, and jγα is the
current through the side γ = 0,1 . . . 3 of the small loop α′
adjacent to the large loop α [see Fig. 1(a)]. Lδ = x for δ =
1,3,5,7, and Lδ = � for δ = 0,2,4,6. Thus we have NT -linear
equations for the population of vortices in the large loops, and
NT equations for the vortices in the small loops. As for the
simple network, we rather use the notation of circular currents:
J̃ for large loops and j̃ for small loops. The total current in a
specific wire is then expressed using these circular currents:

Jδα =
∑

β

Aδ
αβJ̃β +

∑
β

Bδ
αβ j̃β

(27)
jγα =

∑
γβ

C
γ

αβJ̃β +
∑
γβ

D
γ

αβ j̃β,

where the NT × NT matrices Aδ,Bδ,Cγ , and Dγ are evaluated
in Appendix B, assuming current conservation at every node of
the network26 and periodic boundary conditions. Substitution

of the total currents from Eq. (27) to Eq. (26) leads to the
quantization rule expressed in terms of the circular currents∑

δβ

LδAδ
αβJ̃β +

∑
δβ ′

LδBδ
αβ ′ j̃β ′ =

∑
β

Y
(0)
αβ J̃β +

∑
β ′

Y
(1)
αβ ′ j̃β ′

= Nαφ0 − H (L2 − �2)
(28)∑

γβ

�C
γ

α′β J̃β +
∑
γβ ′

�D
γ

α′β ′ j̃β ′ =
∑

β

Y
(2)
α′β J̃β +

∑
β ′

Y
(3)
α′β ′ j̃β ′

= nα′φ0 − H�2.

Using vector form we can invert Eq. (28) and derive the
vectors of circular currents J̃ and j̃[

J̃
j̃

]
=

[
Y(0) Y(1)

Y(2) Y(3)

]−1 [
Nφ0 − H (L2 − �2)

nφ0 − H�2

]
, (29)

where Y(0), Y(1), Y(2), and Y(3) are NT × NT submatrices, N
and n are the number of vortices in the large and the small
loops, respectively, written in vector form.

The energy of the network is expressed in terms of the
currents in each wire:

E =
∑

α
δ=0,1,2,3,4,6

LδJ
2
δα, (30)

by summing over α we ensure that each of the sides, including
δ = 5,7, are accounted for.

As described in Sec. I, the algorithm is based on minimizing
the energy associated with the kinetic energy of the screening
currents induced in the superconducting network. For the
double network the occupation is described by a vector of
length 2NT , corresponding to NT small and NT large loops.
For a given external field H , at the initial step the loops are
randomly filled with NT HL2/φ0 vortices. Using Eqs. (27)
and (29), we calculate the currents induced in the sides
of the small and large loops. Knowledge of these currents
allows the calculation of the energy of the network using
Eq. (30).

The minimum energy of the double network and the vortex
configuration corresponding to it are found following a similar
procedure as described previously. Namely one cell, small or
large, is randomly chosen and one vortex is moved from this
cell to one of its nearest neighbors, and the currents Jδα and
jγα , and the energy for the new configuration, are calculated.
If the energy of this new configuration is lower than the energy
of the previous state, then we accept the new one. Otherwise
the old state is preserved. We repeat this procedure for every
cell in the network (i.e., 2NT times), completing one sweep of
the energy minimization. Such sweeps are repeated (typically
500–1000 times). The symbols in Fig. 4 present the results of
these calculations for a network consisting of 10 × 10 large
and 10 × 10 small loops for different values of the ratio L/�.
Numerical convergence of the calculations was confirmed for
several fields in a 20 × 20 network of L/� = 5.

The squares in Fig. 4(a) show the normalized energy of the
double network for L/� = 10, 5, and 3. As in the mean-field
solution, oscillations of short periods, corresponding to the
large loops, are superimposed on the oscillations of large
periods corresponding to the small loops. However, we note
that the waveform of the large-period oscillations resemble that
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FIG. 4. (Color online) (a) Normalized energy per unit-cell obtained theoretically after minimizing Eq. (33) (bold solid lines) and from
simulations (squares connected by thin lines as guide for the eye). (b) Average number of vortices per large loop 〈Nv〉 and per small loop 〈nv〉
obtained theoretically [Eq. (33)] (dashed and solid lines, respectively) and from simulations (diamonds and circles, respectively). The different
panels relate to double networks with size ratios L/� = 10, 5, and 3 (from top to bottom). Both numerical and analytical solutions show breaks
around the middle of the steps resulting from competition in occupation of large and small loops. This competition occurs in the field range
where the energy cost to insert a vortex into a small loop or a large loop is similar. The field increment (in units of H�2/φ0) in the simulations
is 0.02 for L/� = 3 and 0.01 for L/� = 5 and 10. The step in the 〈nv〉 plot for L/� = 10 is relatively sharp (<0.01) and hence points on this
step are absent.

of a single loop (i.e., minima at integer multiples of flux quanta
and cusps at integer multiples of half-flux quanta) in contrast
with the results of the mean-field solution [Fig. 3(a)], which
exhibits a waveform similar to the simple square network
shown in Fig. 2.

The diamonds and circles in Fig. 4(b) show the average
number of vortices per loop calculated for the large and
small loops, respectively, as a function of the magnetic flux
normalized to the area of the small loops. Results are shown
for three ratios L/� = 3,5,10. The large loops are filled with
vortices approximately linearly as the magnetic field increases.
In contrast, the small loops are filled in a step-wise manner
that becomes sharper as the ratio L/� increases. This indicates
that the system prefers to distribute vortices between the large
loops and to expel vortices from the small loops. Only when
the normalized magnetic field is close to 0.5 + m, the system
may accept vortices into the small loops. This behavior is
not predicted in the framework of the mean-field solution as
described in the previous section. The step-wise occupation
and the energy waveform both imply that the sublattice of
the small loops behaves as an ensemble of decoupled single
loops.27 In the next section we show how these results may

be obtained theoretically from a modified mean-field model,
assuming decoupling of the small loops.

C. Modified mean-field model

As mentioned previously, the mean-field analysis of the
double network described in Sec. IIA shows that the two
sublattices of the double network are populated as two
separate square lattices. This is in contrast with the results
of the simulations presented in Sec. IIB that show stepwise
occupation of the small loops. We will now show how an
assumption on the decoupling between the small loops may be
introduced into the mean-field description, and that this hybrid
framework explains the numerical findings. We incorporate the
decoupling of the small loops by ignoring the requirement that
the currents around them should match with the currents on
their neighboring large loops. Namely, for the large loops we
assume the square-lattice mean-field description with Eq. (7)
replaced by:

βL[FJ++ + (1 − F )J+−] = (N + 1)φ0 − αLH
(31)

βL[FJ+− + (1 − F )J−−] = Nφ0 − αLH.
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Here, the total area NT L2 is covered by a square lattice of
NT large loops, each with area αL = L2 − �2 and perimeter
βL = 4(x + �) = 4(L + (1 − √

2)�), and with NT discon-
nected small loops, each with area αS = �2 and perimeter
βS = 4�. We use the convention N , F , n, and f from Sec. IIA
to describe the population of these loops, and as in the
mean-field solution, compliance of the total magnetic flux with
the external field leads to Eq. (15).

For each small loop we assume that the current is distributed
uniformly around its perimeter; for a small loop carrying k

vortices, this current is thus j = (kφ0 − αsH )/βs , resulting in
an energy E = j 2βS = (kφ0 − αsH )2/βs . From Eq. (31) we
express J++ and J−− in terms of J+− and substitute the result
in the expression for the energy:

E

NT

= βL

4
[F 2J 2

++ + 2F (1 − F )J 2
+− + (1 − F )2J 2

−−] +

+ f

βS

[(n + 1)φ0 − αSH ]2 + 1 − f

βS

[nφ0 − αSH ]2,

(32)

where the first term is the mean-field expression for the
contribution to the energy from the large loops [see Eq. (8)],
and the last two terms average the contributions from populated
and vacant small loops according to their abundance. By
minimizing E with respect to J+− we eventually obtain

E

NT

= [(N + F )φ0 − αLH ]2 + 2F (1 − F )φ2
0

4βL

+ [(n + f )φ0 − αSH ]2 + f (1 − f )φ2
0

βS

. (33)

Note that we are still free to choose the ratio (N + F )/(n +
f ) such that Eq. (33) is minimized.

The bold solid lines in Fig. 4(a) show the normalized energy
per unit-cell obtained after minimizing Eq. (33) for L/� = 10,
5, and 3 (from top to bottom). Impressive agreement with
the results of the simulations [circles in Fig. 4(a)] is evident.
The dashed and solid lines in Fig. 4(b) show the average
number of vortices per large loop Nv and per small loop
nv , respectively, as calculated from Eq. (33). These results
are in perfect agreement with the results of the simulations
described by diamonds and circles in Fig. 4(b). Note that our
hybrid model treats the large loops by mean-field interactions
and the small loops as disconnected. Yet the behavior of the
small loops is not identical to that of loops without network,
since the presence of the large loops affects the distribution of
vortices in the small ones. For example, as shown in Fig. 4(b),
for small L/� the steps in nv are not sharp as expected for loops
without network. These steps become sharper as the ratio L/�

increases.

D. Spatial configuration of vortices

Our numerical simulation allows mapping the occupation
of the small and large loops in the double network in the state of
minimum energy for different external fields. Figure 5 shows
the distribution of vortices in a double network with L/� = 5
at low normalized fields. In this field range the large loops
are occupied in the same way as a simple square network: For

Normalized field=0.01 

0.02 

0.03 

Number of vortices per cell 

1 0 

FIG. 5. (Color online) Vortex configuration in the double network
at low normalized fields, H�2/φ0 = 0.01,0.02 and 0.03 for L/� = 5.
The large loops are continuously occupied in the same way as in a
simple square network, while the small loops remain empty. Note the
checkerboard distribution at H�2/φ0 = 0.02 corresponding to half
filling of the large loops H (L2 − �2)/φ0 ≈ 0.5.

H�2/φ0 = 0.01, vortices are located far away from each other;
at H�2/φ0 = 0.02 corresponding to half filling of the large
loops H (L2 − �2)/φ0 ≈ 0.5, a checkerboard distribution3,12,14

is observed in the large loops, while all small loops are
empty; however, at H�2/φ0 = 0.03 most of the large loops
are occupied with one vortex. The small loops, however, are
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Normalized field= 0.48 

0.5 

0.52 

Number of vortices per cell 

1 0 12 

FIG. 6. (Color online) Vortex configuration in the double network
at relatively high fields, H�2/φ0 = 0.48,0.5, and 0.52 for L/� = 5.
Note that in this narrow field range the number of vortices in the small
loops increases sharply from zero to one.

empty at all these fields and, therefore, a plateau in nv(H ) is
observed in Fig. 4(b).

Figure 6 shows the vortex distribution in a double network
with L/� = 5 at relatively high fields of H�2/φ0 = 0.48,0.50,
and 0.52. In this narrow field range the number of vortices in
the small loops increases sharply from zero at 0.48 to one at
0.52. The nv(H ) curve at these fields [Fig. 4(b)] corresponds

to the transition from one plateau to another. As the field is
further increased the number of vortices in the large loops
increases linearly while the number of vortices in the small
loops remains constant.

IV. SUMMARY

We have theoretically studied the recently realized super-
conducting double network consisting of two interlaced sub-
networks of small and large loops. Our numerical simulations
show that the vortex occupation of the large and small loops is
completely different. Vortices prefer to occupy the large loops,
even in large numbers, before the occupation of the small
loops begins. The population of the subnetwork of the large
loops increases linearly with the field, while the occupation
of the subnetwork of the small loops grows in steps. The
energies of both subnetworks oscillate with the field with
different periodicities determined by the areas of the large
and small loops. The energy oscillations of the subnetwork
of the large loops are of low amplitude and short period and
resemble that of a simple square network, exhibiting cusps at
the beginning and at the end of each period. These oscillations
are superimposed on the high amplitude and long period
energy oscillations of the subnetwork of the small loops, which
resemble the energy oscillations of isolated loops exhibiting
cusps at the middle of each period. The low amplitude of the
energy oscillations of the large loops is a result of the relatively
small-screening current induced in the large loops. At the end
of the first short period each of the large loops is occupied
with one vortex, in the next period with two vortices, etc. In
contrast, the subnetwork of the small loops remains empty
up to fields of approximately half of the long period, i.e.,
φ0/2�2. Up to this field the screening current in the small
loops increases linearly, and consequently the contribution
to the energy increases quadratically with the field. Around
φ0/2�2 in a relatively narrow field range defined by the ratio
L/�, all the small loops are filled with one vortex. In the next
long period at 3φ0/(2�2), each of the small loops is occupied
with two vortices, etc. Thus the behavior of the small loops
resembles that of a single loop.

The above physical picture is explained by a modified
mean-field analysis in which we treat the large loops by
mean-field interactions and the small loops as disconnected.
This hybrid framework yields the stepwise population and
energy oscillations in excellent agreement with the numerical
simulations. We therefore conclude that the subnetwork of the
small loops behaves as a large ensemble of decoupled loops. As
demonstrated in Fig. 4(b), the degree of decoupling improves
as the size ratio L/� between the two networks increases.

The numerical simulations have the advantage in providing
the actual vortex distribution in the network as a function
of the external field, as demonstrated in Figs. 5 and 6. Ex-
perimental imaging of vortex distribution in simple networks
of micron-size squares has been previously performed us-
ing Hall-probe technique,28,29 scanning-SQUID microscopy,30

and Bitter decoration.31–33 Extension of these works to imaging
of vortex distribution in nano-loops of the double network
may be realized by exploiting Magnetic Force and SQUID
microscopy. This study may lead to novel designs of network
and methods of controlling the position of a single vortex, with
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implications to future nano-scale superconducting devices.
Our work may also be applicable to the recent activity on
arrays of single-domain ferromagnetic islands.34–36
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APPENDIX A

1. Kirchoff-law’s matrices for the simple square network

The four M2 × M2 matrices, K0,K1,K2, and K3, with
periodic boundary conditions have the form

K0
αβ =

⎧⎪⎨⎪⎩
1 if α = β

−1 if α = β + 1 and α �= 0, M, 2M . . .M2 − M

−1 if α = β − M + 1 and α = 0, M, 2M . . . M2 − M

0 otherwise

; (A1)

K1
αβ =

⎧⎪⎨⎪⎩
1 if α = β

−1 if α = β + M and α � M

−1 if α = β − M2 + M and α < M

0 otherwise

; (A2)

K2
αβ =

⎧⎪⎨⎪⎩
1 if α = β

−1 if α = β − 1 and α �= M − 1, 2M − 1 . . . M2 − 1
−1 if α = β + M − 1 and α �= M − 1, 2M − 1 . . . M2 − 1
0 otherwise

; (A3)

K3
αβ =

⎧⎪⎨⎪⎩
1 if α = β

−1 if α = β − M and α < M2 − M

−1 if α = β + M2 − M and α � M2 − M

0 otherwise

. (A4)

These matrices use Kirchoff’s law to express the total current in a specific wire in a square network using the circular currents in
two adjacent loops sharing the same wire, using Eq. (11) one can get, for example, J0,M+1 = J̃M+1 − J̃M , J1,M+1 = J̃M+1 − J̃1,
J1,M+1 = J̃M+1 − J̃M+2, and J1,M+1 = J̃M+1 − J̃2M+1.

APPENDIX B

1. Kirchoff-law’s matrices for the double network

The matrices Aδ , Bδ,Cγ , and Dγ with periodic boundary condition are evaluated as

A1
αβ = K0

αβ ; A3
αβ = K1

αβ ; A5
αβ = K2

αβ ; A7
αβ = K3

αβ ;

A0
αβ = A2

αβ = A4
αβ = A6

αβ =
{

1 if α = β

0 otherwise ;
(B1)

B1
αβ = B3

αβ = B5
αβ = B7

αβ = 0;

B0
αβ =

⎧⎨⎩−1 if α = β − M and α < M2 − M

−1 if α = β + M2 − M and α � M2 − M

0 otherwise
;

B2
αβ =

{−1 if α = β

0 otherwise ;

B4
αβ =

⎧⎨⎩−1 if α = β − 1 and α �= M − 1, 2M − 1 . . . M2 − 1
−1 if α = β + M − 1 and α = M − 1, 2M − 1 . . . M2 − 1
0 otherwise

;

B6
αβ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if α = M2 − 1 and β = 0
−1 if α = β − M − 1 and α < M2 − M and α �= M − 1, 2M − 1 . . . M2 − M − 1
−1 if α = β − 1 and α = M − 1, 2M − 1 . . . M2 − M − 1
−1 if α = β + M2 − M − 1 and α �= M2 − 1 and α �= M − 1, 2M − 1 . . . M2 − M − 1
0 otherwise

;
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C0
αβ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if α = 0 and β = M2 − 1
−1 if α = β − M2 + M + 1 and 0 < α < M

−1 if α = β + 1 and α = M, 2M . . .M2 − M and α �= 0
−1 if α = β + M + 1 and α > M − 1 and α �= M, 2M . . . M2 − M

0 otherwise

;

C1
αβ =

⎧⎨⎩
−1 if α = β − M2 + M and α < M

−1 if α = β + M and α � M

0 otherwise
;

C2
αβ =

{−1 if α = β

0 otherwise
;

C3
αβ =

⎧⎨⎩
−1 if α = β − M + 1 and α = 0, M . . . M2 − M

−1 if α = β + 1 and α �= α = 0, M . . . M2 − M

0 otherwise
;

(B2)

D0
αβ = D1

αβ = D2
αβ = D3

αβ =
{

1 if α = β

0 otherwise
. (B3)

These matrices use Kirchoff’s law to express the total current in a specific wire in the double network using the circular
currents in two adjacent loops sharing the same wire. Using Eq. (27) one can get, for example, J1,M+1 = J̃M+1 − J̃M and
j2,M+1 = j̃M+1 − J̃M+1.
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