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Gap in KFe2As2 studied by small-angle neutron scattering observations of
the magnetic vortex lattice
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3Laboratory for Neutron Scattering, Eidgenössische Technische Hochschule Zurich and Paul Scherrer Institut,

CH-5232 Villigen PSI, Switzerland
4School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom

5National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
6Japan Science and Technology Agency, Transformative Research-Project on Iron Pnictides (TRIP), Chiyoda, Tokyo 102-0075, Japan

7Department of Physics, Chiba University, Chiba 263-8522, Japan
8Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble, France

9Laboratory for Developments and Methods, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
(Received 5 May 2011; published 7 July 2011)

By neutron scattering, we have observed a well-ordered magnetic vortex lattice (VL) in KFe2As2 single
crystals. With the field along the c axis, a nearly isotropic hexagonal VL is formed, with no symmetry transitions
up to high fields, indicating a small anisotropy of the superconducting state around this axis. This rules out line
nodes parallel to the c axis, and thus d-wave or anisotropic s-wave pairing. However, the strong temperature
dependence of the signal at T � Tc shows that extremely small gap values exist; these may arise from nodal
lines perpendicular to the c axis.
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I. INTRODUCTION

Understanding the mechanism and symmetry of electron
pairing in iron-based superconductors represents an important
challenge in condensed matter physics. Many theorists have
suggested that high temperature superconductivity in these
materials may be due to a magnetic interaction.1 It is
proposed that in optimally doped materials, there is a repulsive
interaction between holes on Fermi surface (FS) sheets at the
center of the Brillouin zone and the almost equal number of
electrons on other sheets at the corners. The simplest form of
pairing that could arise from this interaction has the opposite
sign of the order parameter for the two types of carrier. Such a
pairing state may be described as extended s-wave or s± since
the order parameter has the same symmetry as the crystal
and is nonzero on all parts of the FS, despite changing sign.
In this respect it may be contrasted with d-wave pairing in
cuprate materials, in which the order parameter has a lower
symmetry than the underlying crystal, changes sign around
a single sheet of FS, and therefore has nodes. Other pairing
states have been proposed for the pnictides,2,3 which maintain
s± symmetry, but in which the order parameter also changes
sign on at least one FS sheet. Our material, KFe2As2, belongs to
the 122 family of iron pnictide superconductors; the optimally
doped BaFe2(As1−xPx)2 member shows clear indications of
nodes in the order parameter,4,5 which may imply either nodal
s± pairing or alternatively d-wave gap symmetry.3 On the
other hand, in optimally doped Ba1−xKxFe2As2 with Tc >

35 K, the order parameter appears to be nodeless on all parts
of the FS, although with large and small gaps on different
FS sheets.6,7 Optimally doped BaFe2−xCoxAs2 is similarly
nodeless.8 Such observations raise the question whether all
the iron-based superconductors, even within the 122 family,
have the same gap symmetry and pairing mechanism. We note,

however that nodal gaps may be observed in clean materials
with long mean free paths as indicated by the observation
of de Haas-van Alphen (dHvA) signals from some major
portions of the Fermi surface.9,10 Conversely, nodeless gaps
may be observed in dirtier materials.6–8 This indicates that
low-energy states due to electron scattering are not a major
cause of nodal behavior. It is of importance in this context to
note that isovalent anion doping in the As/P material can give a
long mean free path but heterovalent doping on the Fe site does
not.

The vortex state in superconductors reflects the electron
pairing state. However, small-angle neutron scattering (SANS)
and decoration experiments before now on pnictide super-
conductors have shown disordered vortex lattices (VLs).11–14

It is likely that nanoscale compositional inhomogeneity is
a major source of vortex pinning and disorder in doped
crystals. In KFe2As2, with Ba fully replaced by K, we have
an overdoped but clean 122 material. Here we show how
SANS measurements on the VL in this material can make
a contribution to the debate on the gap structure in pnictide
superconductors.

The rest of the paper is organized as follows. The next
section briefly describes the sample preparation and character-
ization and experimental procedure. The experimental results
are described and analyzed in Sec. III (details of the methods
of analysis are given in the Appendices). A discussion and
conclusions are in Sec. IV.

II. EXPERIMENTS

A. Sample preparation and characterization

Single crystals of KFe2As2 were grown in a potassium
flux. The FeAs precursor was prepared from Fe and As at
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FIG. 1. Sample characterization measurements. The magnetiza-
tion data were taken in an applied field of μ0H = 1 mT; the upper
curve was taken on cooling and the lower curve on heating after
zero-field cooling.

900 ◦C for 10 h in an evacuated atmosphere and then mixed
with K and As in the atomic ratio K:As:FeAs = 3:2:2. The
mixture was then placed in an Al2O3 crucible and sealed in a
stainless steel tube. The tube was heated to 900 ◦C, maintained
at that temperature for 10 h, and cooled to 650 ◦C at a rate
of −1 K/h, followed by quenching. The typical size of the
single crystals obtained is about 7 × 7 × 0.5 mm3. To check
the sample quality, we performed magnetization and resistivity
measurements and results are shown in Fig. 1. Magnetization
data show that Tc is 3.6 K with a 10–90 % width of 0.2 K
and resistivity data give a typical residual resistance ratio
∼400. Note that the field cooled (FC) and zero-field cooled
(ZFC) data in the magnetization plot show large hysteresis,
indicating that noticeable pinning exists at low applied field.
However, we point out that the surfaces of KFe2As2 crystals are
somewhat air sensitive, and measurements by both resistivity
and superconducting quantum interference device (SQUID)
techniques can be affected by surface quality. Nevertheless,
dHvA (and SANS) measurements are bulk properties and show
the intrinsic properties of the crystals. In addition, the upper
critical field, Bc2(T ), was determined down to 1.8 K from the
temperature dependence of magnetization data with B applied
parallel to [0 0 1] [see Fig. 2(f)].

B. Experimental Procedure

A neutron passing through the mixed state of a supercon-
ductor experiences a spatial variation of magnetic field, and
hence a variation of its spin potential energy, which can lead
to diffraction of a neutron beam. Due to the long length scale
of the VL (∼1000 Å in our case, compared with a typical cold
neutron wavelength of 10 Å) the diffraction occurs at small
Bragg angles ∼1◦.

Small-angle neutron scattering experiments were per-
formed on instruments D11 and D22 at the Institut Laue-
Langevin (ILL), France and SANS-I at the Swiss Spallation
Neutron Source (SINQ), Paul Scherrer Institut (PSI), Switzer-
land. A mosaic of coaligned crystals with the c axis and one of
the tetragonal [1 0 0] axes in a horizontal plane was glued
to aluminium sample plates with hydrogen-free CYTOP R©

varnish and cooled to a minimum of 1.5 K using a 4He cryostat
at D11 and to 50 mK using dilution refrigerators at D22 and
SANS-I. The total mass of the crystals for the ILL experiments
was about 100 mg and 250 mg at PSI. Magnetic fields were
applied parallel to the crystal c axis and approximately parallel
to the incident beam of neutrons of wavelength λn = 10 Å. A
position-sensitive detector was set at 15 m (ILL) and 18 m
(PSI) from the sample position to obtain a reasonable q

resolution. Except when measuring the main beam intensity,
the undiffracted beam was caught on a neutron-absorbent
beamstop. The sample had sufficiently weak pinning at the
fields we employed so that the VL could be formed by applying
the field well below Tc; field-cooling through Tc was not
required. Indeed, the VL perfection was slightly improved
by oscillating the value of the field by ∼0.01 T about its final
value at base temperature, before taking measurements. To
observe the VL diffraction, the sample and magnet were rocked
together either vertically or horizontally by small angles about
the B ‖ beam direction to take the various diffraction spots
through the Bragg condition. Backgrounds were taken with no
VL present, either above Tc or by removing the applied field.
Note that the real-space VL nearest-neighbor positions may
be visualized by rotating the diffraction patterns by 90◦ about
the field axis and adding another spot at the central main beam
position. The SANS data were displayed and analyzed using
the GRASP analysis package.15 Further details of the analysis
are given in Appendices B and D.

III. EXPERIMENTAL RESULTS

A. Vortex lattice patterns

Figures 2(a)– 2(d) show VL diffraction patterns with clear
Bragg spots, measured at T = 50 mK and 1.5 K at selected
magnetic fields applied parallel to the fourfold [0 0 1] crystal
axis and approximately parallel to the neutron beam. The 12
spots arise from a mixture of two domain orientations of
hexagonal VLs, which have nearest-neighbor vortices along
the tetragonal [1 0 0] and [0 1 0] axes. These two orientations
are degenerate because of the tetragonal crystal symmetry, and
an equal mixture is to be expected from random nucleation in
different parts of the sample. As shown in Appendix A, this
interpretation may be confirmed, since one of these domains
may be selected by rotating the field away from the c axis.
White circles in the figures indicate the distance from the main
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FIG. 2. (Color online) Small-angle neutron scattering patterns, VL structure, and B-T phase diagram for KFe2As2. (a)–(d) Diffraction
patterns from the VL at (a) 0.1 T, 50 mK; (b) 0.2 T, 1.5 K; (c) 0.4 T, 1.5 K; (d) 0.9 T, 50 mK. Backgrounds obtained without VL present were
subtracted. To improve visibility, the data were smoothed with a Gaussian of width comparable to the instrument resolution, and Poisson noise
near the main beam was masked. The higher field patterns are mosaics of results taken at the maximum intensities of four sets of three spots,
and at 0.1 T a sum over tilts is shown. (e) Field dependence of the apical angle, β, of the VL structure at T = 50 mK. [for definition of β see
Fig. 2(a)]. (f) The Bc2-T phase diagram (from magnetization data with H ‖ [0 0 1]) indicating all conditions under which VL measurements
were carried out.

beam at which regular hexagonal VL spots would appear. The
offsets of the spots from the circles indicate that the VL is
somewhat distorted from a pure hexagonal structure. Although
the angles of the spots, which we refer as angle β, change with
increasing field [Fig. 2(e)] and the observed intensity becomes
weaker, the VL symmetry does not change for all conditions
under which a VL signal is observed [see Fig. 2(f)].16 In
this respect, KFe2As2 is unlike almost all conventional and
unconventional superconductors with a fourfold axis.17–21

In conventional materials, anisotropy of the Fermi velocity
leads to VL phase transitions as the field is increased.22 This
mechanism is operative in unconventional materials, too, so
we conclude that the FS anisotropy is weak in KFe2As2.
In addition, first-principles calculations using the Eilenberger
theory show that gap anisotropy has similar effects,23,24 and
that a d-wave nodal gap gives rise to a square VL at a
small fraction (∼0.15 at T = 0.5Tc) of Bc2.

25 Experiments
on d-wave materials20,21 confirm these calculations. Since in
KFe2As2, a square VL is absent up to 1.2 T.26 More than half
the upper critical field Bc2 at 50 mK—we rule out a nodal
order parameter with the gap varying around the c axis.

B. Field dependence of form factor

Figure 3(a) shows the B-field dependence of the VL form
factor (F ) derived from the integrated intensity of the on-axis
VL diffraction spots at 50 mK and at 1.5 K (details are given
in Appendix B). F is a measure of the spatial variation of the
field inside the mixed state; it generally decreases at large field

as the vortex cores begin to overlap. These data were fitted to
a modified London model with core/nonlocal corrections27

F = B

1 + q2λ2
exp(−cq2ξ 2) (1)

Here, λ is the London penetration depth, ξ is the coherence
length, and c is an empirical core cutoff parameter. The good
fit suggests a conventional field dependence without multigap
effects28 and allows us to extrapolate to obtain the zero-field
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FIG. 3. (Color online) (a) Field dependence of the form factor
(F ) of the on-axis VL diffraction spots at T = 50 mK and 1.5 K. The
theoretical fit is described in the text. (b) F for on- and off-axis spots
at 50 mK and 1.5 K (plotted versus q values, which are different for
the two types of spot).
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value of λ. The best fit at 50 mK gave λ = 203 nm and c =
0.52, using ξ = 13.5 nm (from Bc2 = 1.8 T), and at 1.5 K: λ =
240 nm and c = 0.55, with ξ = 15.9 nm (from Bc2 = 1.3 T).
Random errors in λ were small compared with probable
systematic (calibration) errors ∼5%. The T = 0 value of λ

may be combined with normal state properties of KFe2As2

(see Appendix C) to confirm a strongly enhanced carrier mass
and that our samples are clean (i.e., the electron mean free path,
� � ξ0, the coherence length). Furthermore, in Fig. 3(b), F for
both on- and off-axis spots is plotted, but against q, rather than
field because the VL distortion gives the off-axis spots a larger
q than the on-axis spots. We see that all results lie on nearly
the same line, confirming the essential basal-plane isotropy of
the pairing.

C. Temperature dependence of form factor

Measurements of the intensity I of the flux lattice diffrac-
tion signal at low fields give the magnetic penetration depth.
(The B � Bc2 limit of Eq. (1) gives I (∝ |F |2) ∝ λ−4 for fixed
VL structure.) The temperature dependence of the penetration
depth (or equivalently superfluid density) is a direct measure
of the thermal excitation of quasiparticles over the gap.29

Figure 4(a) shows the temperature dependence of the peak
intensity at our lowest field of B = 0.1 T. The sample tilt
was fixed at a value maximizing the diffracted intensity in
the top spots, and data were taken versus either increasing
or decreasing temperature. The constancy of the rocking
curve width in the low-temperature region was checked at the
arrowed temperatures. The results from SANS-I were the most
complete; the data taken at other instruments were included
after scaling in the overlapping regions (see Appendix D for
more details). It is clear that all temperature dependencies are
in agreement within statistical errors in all cases, indicating
that the system is in the thermal equilibrium state and the
vortices are not relaxing to a new state on temperature cycling.

Figures 4(b)–4(d) show fits of these data using the su-
perfluid density given by sinusoidally varying nodal gaps or
k-independent gaps,29 with T = 0 values and weights wi given
in the insets. (Full details of the fitting functions are given in
Appendix D.) From Fig. 4(b), it is clear that a single nodeless
gap cannot fit the low-temperature behavior; also a simple
nodal gap, ignoring nonlocal effects30 deviates from the data.
However, a single nodal gap including these effects [Fig. 4(c)]
can reproduce the data very well, with only one additional
fitting parameter. Here nonlocal effects cause a crossover from
T -linear to T 2 behavior below a temperature T �30. Similar
effects can occur due to impurity scattering,31 but are not
expected to be strong in our clean material.

Alternatively, we can obtain a good fit if at least three
nodeless gaps, which requires six parameters, of very different
magnitudes are included, as shown in Fig. 4(d). Although this
fit uses an overlarge number of parameters, we cannot rule
it out, because KFe2As2 has multiple FS sheets,10,32,33 which
might support multivalued nodeless gaps. In all these fits, the
temperature dependence of the gaps is taken as BCS-like for
simplicity but the low-temperature behavior is dominated by
the smallest value of the gap present at T = 0. The strong
temperature dependence of the intensity of our diffraction
signal, continuing down to at least T ∼ 0.02 Tc, indicates

FIG. 4. (Color online) (a) Temperature dependence of peak
intensity at B = 0.1 T. (b)–(d) Fits of the data to various gap functions
versus T/Tc, with Tc set to the value Tc2(0.1 T) = 3.25 K. The
fitted parameters are shown inset in the graphs: (b) single nodeless
and nodal gap; (c) single nodal gap including nonlocal effects;
(d) multigap model.

that KFe2As2 has a range of gaps extending down to very low
values. We expect that the gap is nodal, which is also suggested
by recent penetration depth33 and other measurements34,35

performed down to various fractions of Tc.

IV. DISCUSSION AND CONCLUSIONS

A. Gap Values

We now consider the fitted ratios �(T = 0)/kBTc. The
largest gap in a material may give a larger ratio than the weak-
coupling isotropic BCS value of 1.76, either because of gap
anisotropy or strong coupling. However, the largest gap cannot
give a smaller ratio. This confirms that the single nodeless gap
in Fig. 4(b) can be ruled out. Even in Fig. 4(d) the maximum
gap is closer to the BCS limit than expected, since the other gap
values are well below the limit. This argues against multiple
nodeless gaps. In contrast, the fitted values of the nodal gaps in
Figs. 3(b) and 3(c) have amplitudes close to the weak-coupling
BCS ratio (2.14) for a sinusoidally varying order parameter.
We conclude that unlike the optimally doped compositions,
KFe2As2 is a fairly weakly coupled superconductor.

B. Gap Structure

Finally we discuss the gap structure, bearing in mind that
the temperature dependence of the signal argues for a nodal
state, but the VL structure measurements rule out vertical
line nodes in the gap. An axially isotropic nodal pairing state
would satisfy both these constraints. In this model, illustrated
schematically in Fig. 5, the nodes circulate around the approx-
imately cylindrical sheets of the FS, with the order parameter
changing sign as a function of kz, but not in the kx-ky plane.
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FIG. 5. (Color online) A sketch of the kz dependence for the order
parameter with a horizontal nodal gap.

For such a state, the pairing interaction should be operative
in the z direction, which requires some three-dimensionality
in the electronic structure; dHvA measurements10 and the
moderate anisotropy of Hc2

36 show that some of the FS sheets
in KFe2As2 have a three-dimensional character. We note that
Tc in (Ba/K)Fe2As2 appears to decrease continuously and
monotonically as the doping is increased above optimal.37 This
strongly suggests that the symmetry of the order parameter
does not change with doping, even though the electron sheets
in optimally doped materials are replaced by small hole
pockets in KFe2As2.

10,32,33 Our model can account for this
if the in-plane pairing interaction in (Ba/K)Fe2As2 becomes
weaker as doping is increased beyond optimal, and a nodeless
gap changes into a kz-dependent nodal gap. These two
states have the same s± symmetry, and the node positions
are accidental (not symmetry determined)38 so the system
may go continuously from one to the other as doping or
carrier scattering are varied. Independently of these intriguing
suggestions, we emphasize that our results rule out strongly
anisotropic (e.g., d-wave) pairing in this material, but also
demand that there exist Fermi surface regions with a very
small gap. We also show that our sample is clean (the electron
mean free path, � � ξ0, the coherence length) and that the
low-temperature values of ξ and λ may be understood in terms
of the expected Fermi surface properties of this weakly coupled
superconductor with enhanced carrier mass.
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FIG. 6. (Color online) VL domain selection by altering the
applied field direction.
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APPENDIX A: SELECTION OF ONE VORTEX LATTICE
DOMAIN ORIENTATION

Figure 6 shows the VL pattern observed at T = 1.5 K
and B = 0.2 T with the sample rotated about the vertical
axis so that the magnetic field is applied 10◦ away from the
c axis toward the [1 0 0] direction [which corresponds to the
horizontal axis in Figs. 2(a)– 2(d) of the main text]. Essentially
a single VL domain is formed which has nearest-neighbor
vortices along the [1 0 0] direction. This result confirms
our interpretation of the 12-spot pattern, and shows that the
field rotation removes the degeneracy between the two VL
orientations. Similar effects have been observed in low-pinning
crystals of niobium.39

APPENDIX B: METHOD TO OBTAIN FIELD
DEPENDENCE OF FORM FACTOR

The local field in the mixed state may be expressed as a
sum over its spatial Fourier components at the various different
wave vectors q belonging to the two-dimensional reciprocal
lattice of the VL. The form factor at wave vector q is the
magnitude of the Fourier component F (q), and the value of
the form factor is obtained from the integrated intensity of a
Bragg reflection as the VL is rotated through the diffraction
condition. The integrated intensity, Iq is related to the modulus
squared of the form factor, |F (q)|2, by40

Iq = 2πV φ
(γ

4

)2 λn
2

�0
2q

|F (q)|2. (B1)

Here, V is the illuminated sample volume, φ is the incident
neutron flux density, λn is the neutron wavelength, γ is
the magnetic moment of the neutron in nuclear magnetons
(= 1.91), and �0 = h/2e is the flux quantum.

The form factors for Fig. 3(a) of the main text were
determined using the on-axis (top and bottom) spots of the flux
line lattice (FLL) diffraction pattern. The integrated intensity
of these spots was obtained from an up-down rocking curve.
Typical results are shown in Fig. 7.
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FIG. 7. (Color online) A typical example of rocking curves, taken
at H = 0.3 T and T = 50 mK.

The figure shows the total counts per standard beam monitor
within a box of suitable area on the detector, versus rocking
angle. Annular sector-shaped boxes for these spots were
chosen to capture the total intensity for the low-field data,
while not being so large as to increase the Poisson error
unnecessarily. The areas of the boxes (in pixels ≡ solid angle)
were kept approximately field independent for larger values of
B. In different experiments, both angle-dependent and angle-
independent backgrounds were observed. Where appropriate,
backgrounds were averaged over the rocking curve, to reduce
the Poisson error in the subtraction. The integrated intensity
was fitted using a Lorentzian function of rocking angle, as
this function minimized χ2 at low values of field. The rocking
curve width fell slightly with increasing field at low fields, and
then remained constant. The statistical accuracy of the data
at the highest two fields was sufficiently low that the fitted
widths were not well-determined. We therefore obtained the
integrated intensities at high fields by fitting the rocking curves
with a Lorentzian of width set at the average value obtained at
intermediate fields. When the rock direction is parallel to the
q vector, the integrated intensity is the area under the rocking
curves; for off-axis spots, the integrated intensity is multiplied
by the Lorentz factor, cos(α), where α is the angle between
the q vector and the rock direction.

The incident beam intensity required for Eq. (B1) was
obtained from measurements of the transmitted beam and mask
area. The volume of sample employed was divided by two
because of the existence of equal populations of the two FLL
domain orientations. The values of q were calculated from
the magnetic field and known distortions of the VL plotted
in Fig. 2(e) of the main text. Errors in F were calculated
either from the statistical error or the spread of the two values
obtained from the top and bottom spot, whichever was the
larger in each case.

APPENDIX C: RELATIONSHIP TO NORMAL
STATE PROPERTIES

For a clean superconductor (the electron mean free path,
� � ξ0, the coherence length), the value of London penetration
depth, λL, extrapolated to zero field and temperature, is
independent of the pairing state. For our experiments, with

λL determined by supercurrents flowing in the basal plane of a
fairly two-dimensional material, it may be related to the band
electronic properties by

1

λL
2

=
∑

i

nie
2μ0

m∗
i

. (C1)

In this equation are added the contributions of each
approximately cylindrical piece of Fermi surface, containing
a number density ni of carriers of average effective mass m∗

i .
ARPES measurements,32 band structure calculations, and dHvA
measurements10 agree that all Fermi surface sheets are hole
sheets. Thus, given the unit valence of K, the total hole density
n must add up to 1 per formula unit of KFe2As2. We therefore
know the value of n =

∑
i

ni ∼ 9.7 × 1027m−3.

From this, the measured value of λL ∼ 2.03 × 10−7m al-
lows us to calculate a band-weighted average inverse effective
mass. 〈

1

m∗
i

〉
= 1

ne2μ0λL
2
. (C2)

The reciprocal of this quantity has the value 1.3 ×
10−29 kg, which is ∼14 me, the free electron value. This may
be compared with the dHvA masses,10 which vary from 6 to
18 me. These strongly enhanced carrier masses combine with
a carrier density that is smaller than that of potassium metal to
give the relatively long London penetration depth.

Using the following expression for the conductivity σ in
the basal plane:

σ =
∑

i

nie
2τi

m∗
i

, (C3)

a band-averaged impurity scattering time τ = 〈τi〉 may be
calculated from a combination of σ and the penetration depth:

τ = μ0λL
2σ. (C4)

The room temperature basal-plane resistivity of KFe2As2

is ρ ∼ 4.8 × 10−6 �m36. Our crystals have residual resistance
ratio ∼400. From this, we obtain a low-temperature value of
τ ∼ 4.3 × 10−12 s. For a two-dimensional material, the ratio
of electron mean free path to coherence length is ∼3.5kTc ÷
(h̄/τ ). Using Tc(B = 0) = 3.6 K, we obtain 〈l/ξ0〉 ∼ 7.1,
which shows that our initial assumption of a clean material is
self-consistent. This means that the gap function is not strongly
affected by impurities, and we are observing its intrinsic form.
From the low-temperature value of Bc2 ∼1.8 T, we estimate
ξ0 = 13.5 nm and hence the mean free path 〈l〉 ∼ 100 nm. For
a typical observed dHvA frequency of ∼2 kT10, the cyclotron
radius in a field of 17 T is 95 nm. We see that the sample is
just clean enough for dHvA measurements at this field.

We can make further estimates of average properties
(we note that weighting of an average depends on the
quantity concerned; for instance, the average mass calculated
from heat capacity will not in general be equal to that
from penetration depth). From the total carrier density of
1 per formula unit, which is predominantly distributed in
three approximately cylindrical Fermi surfaces, we estimate
the average magnitude of the Fermi wave vector 〈kF 〉 to
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be 3.8 × 109m−1. Using 〈m∗vF 〉 = h̄〈kF 〉, we obtain an aver-
age Fermi velocity 〈vF 〉 = 3.1 × 104 ms−1. Using the relation-
ship between coherence length and 〈vF 〉 for a two-dimensional
material: ξ0 = h̄vF /2�0 = h̄vF /3.52kTc, we obtain ξ0 =
19 nm. This is close to the value 13.5 nm estimated from Bc2.
We therefore find that we can obtain a good overall description
of the relationships between the superconducting and normal
state properties, and the electronic band structure using
our approximate model, which could be further refined by
treating each band separately. We conclude that our KFe2As2

crystals are a clean, weakly coupled, fairly two-dimensional
superconductor, with strongly enhanced carrier mass, and a
Ginzburg-Landau (GL) parameter κ ∼ λ0/ξ0 ∼ 15 when the
field is parallel to the c axis.

APPENDIX D: METHODS TO OBTAIN AND ANALYZE
TEMPERATURE-DEPENDENCE DATA

At low fields, the core effects on the form factor F are
small, so we may approximate to the simple London equation

F = B

1 + q2λ2
≈ B

q2λ2
∝ 1

λ2
∝ ρs, (D1)

where ρs is the superfluid density. The integrated intensity I

of a diffraction spot is the peak rocked-on intensity Imax× the
rocking curve width and is ∝ |F |2 [Eq. (B1)]. The rocking
curve width was not found to vary with temperature, and
it would have used too much beamtime to measure it at
every temperature, so we measured the temperature-dependent
Imax(T ) ∝ ρ2

s (T ); fitting this to theoretical models allows us
to obtain information about the gap structure.

The temperature dependence of the superfluid density may
be calculated in the local limit using the following equations
appropriate for a two-dimensional cylindrical Fermi surface.29

ρaa/bb(T ) = 1 − 1

2πT

∫ 2π

0

(
cos2(φ)
sin2(φ)

)

×
∫ ∞

0
cosh−2

⎛
⎝

√
ε2 + �2

k(T ,φ)

2kBT

⎞
⎠ dφdε.

(D2)

Here, T is the reduced temperature, φ is the azimuthal
angle about the cylindrical Fermi surface, and

√
ε2 + �2

k(T ,φ)
defines the excitation energy spectrum. Due to the fourfold
rotational symmetry of the crystal, ρaa(T ) = ρbb(T ), and
therefore we may write

ρs(T )=1 − 1

4πT

∫ 2π

0

∫ ∞

0
cosh−2

⎛
⎝

√
ε2 + �2

k(T ,φ)

2kBT

⎞
⎠ dφdε,

(D3)

for the superfluid density. The gap function is assumed
separable into temperature- and momentum-dependent factors
such that �k(φ,T ) = �k(φ)�0(T ), where �k(φ) describes the
angular dependence of the gap function, and �0(T ) describes

the temperature dependence. For simple estimates in the weak
coupling limit, �0(T ) is well approximated by41

�0(T ) = �0(0) tanh

(
1.78

√(
Tc

T
− 1

))
, (D4)

where �0(0) is the zero-temperature magnitude of the gap.
The gap functions considered in our analysis include �k(φ) =
1, appropriate for an isotropic s-wave gap, and the vertical
node function �k(φ) = cos(2φ), which describes the angular
variation due to a d-wave pairing state. An anisotropic s-wave
state with equal positive and negative gap amplitudes may also
vary sinusoidally with φ, and would give the same ρs (T ) as a d-
wave state. (For simplicity, and to reduce the number of fitting
parameters, we do not consider s-wave states with unequal
positive and negative amplitudes.) Finally, a horizontal node
function �k(kz) = �0cos(kzc/2), which describes a gap that
varies along the cylindrical axis of the Fermi surface (see Fig. 5
in the main text), also gives the same ρs(T ) as d wave. Hence,
the temperature dependence on its own can only signal the
presence or absence of nodes. However, from our SANS VL
structural data we can infer the anisotropy of the gap and hence
the geometry of any nodes. Finally, we note that for any chosen
form of �k(φ), the only fitting parameter for ρs(T )/ρs(0) as a
function of T/Tc is �0(0)/kBTc.

At low temperatures, the local London approximation λ �
ξ0 is expected to break down in cases where the gap function
is strongly anisotropic. This arises due to the momentum
dependence of the coherence length according to ξ0(k) ∝
1/�(k). Therefore in regions where �(k) → 0 the extreme
nonlocal limit ξ0 � λ is realized and nonlocal corrections
cannot be neglected. For nodal gap functions, Kosztin and
Leggett30 showed that nonlocal corrections to λ will cause
the approximately T -linear behavior of ρs(T ) (which would
control field penetration over distances much longer than
ξ0) to cross over to a T 2 behavior below a temperature T ∗.
Here, kBT ∗ ∼ �0/κ , and κ is the GL parameter. The simplest
expression for superfluid density ns(T ), which captures the
behavior expected from such a nonlocal effect, is

ns(T ) = 1 − [1 − ρs(T )]

(
Tc + T ∗

Tc

) (
T

T + T ∗

)
, (D5)

where ρs(T ) is as calculated above in the local approximation.
When fitting the data with this function, the temperature T ∗ is
left free to be determined by the fit. A similar behavior at low
temperatures in a nodal superconductor may also result from
strong impurity scattering.31

For fitting multiple gaps, we make use of a simple model,42

assuming that the contributions to the superfluid density due to
each gap are both separate and additive. For a two-gap model,
the total superfluid density ρtot(T ) is given by

ρtot(T ) = ωρ1(T ) + (1 − ω)ρ2(T ), (D6)

where ρ1(T ) and ρ2(T ) describe the superfluid densities due to
�1,k(φ,T ) and �2,k(φ,T ), and ω is a fitted parameter that is �1
and assumed T -independent. The extension for the three-gap
model is

ρtot(T ) = ω1ρ1(T ) + ω2ρ2(T ) + (1 − ω1 − ω2)ρ3(T ). (D7)
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Due to the finite field of 0.1 T being employed, the observed
intensity should go to zero when the upper critical field line
is crossed. Hence, the value of Tc in the fits was set to
Tc2(B = 0.1 T) which was 3.25 K. In Fig. 4, we also use this
value of Tc2 to calculate �0(0)/kBTc, rather than the zero-field
Tc of 3.6 K. We note that the intensity near Tc is small, goes to
zero quadratically, and has little effect on the fits. On the other
hand, the low-temperature behavior is determined by the gap
values and gives very clear indications that small gap values
are present.

In addition to the models reported in the main text, we
considered a combination of a nodal nonlocal gap plus a full
gap, but the weight given for the latter was so small that this
did not seem a suitable model.

The data fitted in Fig. 4 in the main text were obtained
from three separate experiments on three instruments: initially
D11 at ILL for data above 1.5 K, then on D22 at ILL below
1.2 K, and finally on SANS-I at PSI below 2.2 K, with extra
sample mass added. The data have been normalized to coincide
in the crossover regions; the normalization factors used are
close to those expected from absolute comparisons of the
intensities on the different instruments. The sample was rocked

to bring the top three diffraction spots onto the peak of their
rocking curve, and held in that position during a temperature
scan. A few additional measurements were taken of rocking
curves at selected temperatures to confirm that the rocking
curve width remained constant within errors in the lower
temperature region, and hence confirm the low-temperature
behavior of the temperature dependence that we obtain at
fixed sample angle. The data taken on D22 was acquired
by heating from base temperature, followed by cooling, and
on SANS-I by cooling followed by heating. The data above
1.5 K from D11 was obtained by heating only. The agreement
on temperature dependence between the instruments in their
regions of overlap, and between heating and cooling in the low-
temperature region provide a valuable check on the reliability
of our conclusions about the low-energy gap structure.

The temperature dependence of the intensity of all spots
agreed within errors, and the best statistical error (as measured
by the ratio: signal/Poisson error) was obtained by taking the
total scattered intensity inside an annular sector of the detector
containing the top five spots. This is the quantity normalized
to its value at zero temperature that is plotted in Fig. 4 in the
main text.
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