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Polarization dependence of Landau parameters for normal Fermi liquids in two dimensions
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We examine the polarization dependence of the Landau parameters for normal Fermi liquids in two dimensions
in the limit of low densities. We obtain the ground-state energy to second order in the s-wave and p-wave
low-energy T -matrix components. By functional differentiation, the Landau parameters, f ↑↑,f ↑↓,f ↓↓, are
obtained exactly and analytically as functions of the occupation of each Fermi sea. We generalize the expressions
for the state-dependent effective masses, specific heat, compressibility, spin susceptibility, and zero sound for a
two-dimensional Fermi liquid at arbitrary polarization. We then apply the theory to the thin film limit of 3He.
The 3He s-wave and p-wave T -matrix components at a density of 0.026 Å−2 were determined by fitting zero
polarization measurements of the effective mass and spin susceptibility. We find g0 = 0.76 and g1 = 1.89 Å2. The
value for g0 was tested using scattering theory and a first-principles, microscopic particle-hole interaction. Using
these interaction components, we calculate predictions for the polarization dependence of the 3He state-dependent
effective masses, specific heat, compressibility, spin susceptibility, and zero sound. We find that the effective
masses should be much smaller in the limit of full polarization. We compare our zero polarization first sound
speed to that obtained from a small-k analysis of a first-principles structure factor and find reasonable agreement.
Using the present technique for analyzing the Landau kinetic equation, we find that zero sound should be
stable at all polarizations, and the speed should monotonically increase with increasing polarization. However,
spin zero sound is probably not stable at any polarization. We show that the spin susceptibility decreases
with increasing polarization but in two-dimensions it does not vanish in the limit of full polarization. Finally,
we discuss the forward-scattering sum rule and conclude that it is not applicable to this sort of perturbation
expansion.
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I. INTRODUCTION

In the mid-1950s, Landau developed a first-principles
theory for the class of quantum fluids called normal Fermi
liquids. In particular, he showed1 that the low-temperature
collective excitations and thermodynamic properties could be
encoded in a few parameters, the Landau parameters, and that
these parameters were related to a certain limiting value of
the microscopic scattering function.2 The theory has been
applied with great success to numerous many-fermion systems
including 3He [Ref. 3] and atomic nuclei.4

From the very beginning, there was strong interest in the
application of Landau’s theory to polarized Fermi liquids.5

A rigorous discussion of Fermi liquid theory for polarized
systems was given by Bedell and Quader in the mid-1980s.6

This latter work culminated in the 1989 study of polarized
bulk liquid 3He by Sanchez-Castro, Bedell, and Wiegers.7 In
this paper, expressions for the thermodynamic properties and
collective excitations for three-dimensional 3He as a function
of polarization were derived and were then evaluated using a
phenomenological model for the Landau parameters.

In the 1970s, experiments on 3He adsorbed onto exfo-
liated graphite stimulated work on Fermi liquid theory for
two-dimensional systems.8,9 In particular, Bloom15 adapted
Galitskii’s approach10 for the three-dimensional Fermi gas to
the two-dimensional Fermi gas, and evaluated the resulting
principal value integrals numerically. In 1990, P. W. Anderson,
examining possible models for high-Tc superconductivity,
suggested11 that the ground-state of the two-dimensional
Hubbard model may be Luttinger-liquid type rather than a
normal Fermi liquid. Anderson’s argument would not exclude
the low-density Fermi gas in two dimensions from also having

a Luttinger-liquid ground state rather than a normal Fermi
liquid. Subsequently, Engelbrecht and Randeria12 re-examined
the low-density Fermi gas in two dimensions and argued that
their analysis showed no breakdown in Fermi liquid theory. In
1992, Engelbrecht, Randeria, and Zhang13 (ERZ) obtained an
analytic solution for the s-wave contribution to the low-density,
unpolarized Fermi gas in two dimensions. The exact solution
by ERZ provided some corrections to the previous numerical
results of Bloom. As stressed by ERZ the key to obtaining
analytic results in two dimensions is the constant density of
states.

The perturbation theory approach used by ERZ was first
applied to the low-density Fermi gas in three dimensions by
Abrikosov and Khalatnikov.14 In this paper, we generalize
the results of ERZ to include the p-wave contributions to the
low-density, two-dimensional Fermi gas Landau parameters.
This will enable us to calculate the polarization dependence
of the thermodynamic parameters and also the collective
excitations. In Sec. II we utilize second-order perturbation
theory to compute the Landau parameters. The perturbation
theory interactions are expanded to include s-wave and
p-wave contributions. The details of the integrations are
presented in the appendixes. In Sec. III we derive expres-
sions for the polarization-dependent effective masses, heat
capacity, compressibility, spin susceptibility, zero-sound and
spin-zero-sound collective excitations. We also derive the
forward-scattering sum rules at nonzero polarization. Section
IV is the application of the polarization-dependent Landau
theory to the system of thin 3He films. We utilize existing
experimental data to determine the values of the s-wave and
p-wave interaction components. Using scattering theory and a
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first-principles particle-hole effective interaction, we show that
the value of the s-wave interaction parameter is consistent
with the range of the effective interaction. Finally, we
compute the polarization dependence of the thermodynamic
quantities and the collective excitations for a 3He film of
density 0.026 Å−2.

II. GROUND STATE AND EXCITATIONS

A. Perturbation theory

We examine a system of N spin- 1
2 fermions in a box of

area L2. The particles have bare mass m and interact with
two-body potential V (r) that is assumed to depend only on
the scalar distance between the particles. The particles fill two
Fermi seas up to Fermi momenta k↑ and k↓, and we introduce
the convention that the spin-down Fermi sea will always be
the minority Fermi sea in the case of nonzero polarization. In
second-order of perturbation theory, the ground-state energy
can be written15

E = 1

2

∑
p,q,σ

[V (0) − V (2p)]
(
np+ q

2 ,σ n−p+ q
2 ,σ

)

+ 1

2

∑
p,q

V (0)
(
np+ q

2 ,↑ n−p+ q
2 ,↓ + np+ q

2 ,↓ n−p+ q
2 ,↑

)

+ 1

2

∑
p,p′,q,σ

|V (p − p′)|2 − V (p − p′)V (−p − p′)
�T

× [
np+ q

2 ,σ n−p+ q
2 ,σ

(
1 − np′+ q

2 ,σ

) (
1 − n−p′+ q

2 ,σ

)]
+

∑
p,p′,q

|V (p − p′)|2
�T

[
np+ q

2 ,↑ n−p+ q
2 ,↓

(
1 − np′+ q

2 ,↑
)

× (
1 − n−p′+ q

2 ,↓
)]

, (2.1)

where the kinetic energy denominators are given by

�T = h̄2

m
(p2 − p′2). (2.2)

The spin variable σ =↑ , ↓ and the nk,σ are the noninteracting
distribution functions, equal to 1 for k < kσ and 0 for k >

kσ . The potential function V (p) is the Fourier transform of
some local two-body interaction V (r) as defined by the box
normalized form:

V (p) = 1

L2

∫
drV (r)eip·r. (2.3)

As pointed out by Abrikosov and Khalatnikov14 (AK),
when the numerators of the two last terms in Eq. (2.1) are
symmetric with respect to interchange of p and p′ then the
quartic contributions in np,σ must vanish. This is the case here
and so in what follows we can neglect the quartic terms. Thus,
the energy can be written

E = E(2) + E(3), (2.4)

where the quadratic and cubic components are
defined by

E(2) = 1

2

∑
p,q,σ

[V (0) − V (2p)]
(
np+ q

2 ,σ n−p+ q
2 ,σ

)

+ 1

2

∑
p,q

V (0)
(
np+ q

2 ,↑ n−p+ q
2 ,↓ + np+ q

2 ,↓ n−p+ q
2 ,↑

)

+ 1

2

∑
p,p′,q,σ

|V (p − p′)|2 − V (p − p′)V (−p − p′)
�T

× (
np+ q

2 ,σ n−p+ q
2 ,σ

) +
∑

p,p′,q

|V (p − p′)|2
�T

× (
np+ q

2 ,↑ n−p+ q
2 ,↓

)
, (2.5)

and

E(3) = −1

2

∑
p,p′,q,σ

|V (p − p′)|2 − V (p − p′)V (−p − p′)
�T

× [
np+ q

2 ,σ n−p+ q
2 ,σ

(
np′+ q

2 ,σ + n−p′+ q
2 ,σ

)]
− 1

2

∑
p,p′,q

|V (p − p′)|2
�T

[
np+ q

2 ,↑ n−p+ q
2 ,↓

(
np′+ q

2 ,↑

+ n−p′+ q
2 ,↓

)]
. (2.6)

The low-density expansion of the energy can now be carried
out. Using the notation of Randeria, Duan, and Shieh,16 the
momentum interaction of Eq. (2.3) can be written

V (k − m) = 〈k |V | m〉 ≡ 1

L2

∫
dreik·rV (r)e−im·r. (2.7)

The plane waves can be expanded using

eixcosθ =
∞∑

�=−∞
i�ei�θJ�(x), (2.8)

where the J�’s are integer order Bessel functions. Substituting
into (2.7) and carrying out the angular integration yields

〈k |V | m〉 =
∞∑

�=0

α� cos(�θkm)V (�)
km , (2.9)

where we have defined

V
(�)
km = 2π

L2

∫ ∞

0
drrJ�(kr)V (r)J�(mr), (2.10a)

θkm = θk − θm, (2.10b)
and

α� =
{

1 if � = 0,

2 if � � 1.
(2.10c)

The terms T�(cos θ ) ≡ cos (�θ ) are Chebyshev polynomials
of the first kind and will be discussed in more detail in Sec. III.

The low-density theory is obtained by truncating the series
Eq. (2.9) after the � = 1 term and then taking the low-density
limits kr 	 1 in the Bessel functions:

V (k − m) ≈ V0 + 2 cos(θkm)kmV1, (2.11)

where the s- and p-wave low-density potential parameters are
defined by

lim
k,m→0

V
(0)
km ≡ V0 = 2π

L2

∫ ∞

0
drrV (r), (2.12a)

lim
k,m→0

V
(1)
km ≡ kmV1 = km

4

2π

L2

∫ ∞

0
drr3V (r). (2.12b)
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Thus, we find

V (±p − p′) = V0 ± 2 cos(θpp′)pp′V1. (2.13)

If one substitutes Eq. (2.13) into E(2) one immediately finds
divergences in the quadratic terms. This was first noticed by
AK in three dimensions and was discussed in detail by ERZ for
two dimensions. The divergences can be removed by replacing
the bare interaction by an effective interaction, the two-particle
T matrix.

B. Removing the divergence

The Lippman-Schwinger equation for the T matrix is

Tpp′(E) = Vpp′ +
∑

k

VpkG0(E)Tkp′(E), (2.14)

where Tpp′(E) = 〈p,σ |T (E)|p′,σ ′〉 with the spin indices
suppressed, G0(E) is the single-particle propagator

G0(E) =
(

1

E − 2ε0
k + iη

)
, (2.15)

and ε0
k ≡ h̄2k2/2m. Introducing an angular decomposition of

the T matrix equivalent to Eq. (2.9) yields

T
(�)
pp′ = V

(�)
pp′ + L2

∫ ∞

0

dk

2π
kV

(�)
pk

(
1

E − 2ε0
k + iη

)
T

(�)
kp′ .

(2.16)

Inverting the low-density � = 0,1 equations and then truncat-
ing to second-order in the T -matrix components yields

V0 = τ0(1 − P0τ0), (2.17a)
V1 = τ1(1 − P1τ1), (2.17b)

where, basically following the notation of ERZ, we have
defined the low-energy limits of the T matrices,

lim
E→0

T
(0)
pp′ = τ0, (2.18a)

lim
E→0

T
(1)
pp′ = pp′τ1, (2.18b)

and the integrals over the propagators are the formally infinite
quantities

P0 = L2

2π

∫ ∞

0
dk

k

E − 2ε0
k + iη

, (2.19a)

P1 = L2

2π

∫ ∞

0
dk

k3

E − 2ε0
k + iη

. (2.19b)

Substituting Eqs. (2.17) into E(2) yields

E(2) = 1

2

∑
p,q,σ

[
4p2τ1 + 4p2τ 2

1

(∑
p′

(p′)2

�T
− P1

)]

× (
np+ q

2 ,σ n−p+ q
2 ,σ

) +
∑
p,q

[
(τ0 + 2p2τ1)

+ τ 2
0

(∑
p′

1

�T
− P0

)
+ 2p2τ 2

1

(∑
p′

(p′)2

�T
− P1

)]

× (
np+ q

2 ,↑ n−p+ q
2 ,↓

)
. (2.20)

The real parts of P0 and P1 are defined as Cauchy principal
values. The contribution of E(2) to the Landau parameters is

δf
(2)σσ ′
kk′ = δ2E(2)

δnk,σ δnk′,σ ′
, (2.21)

where in the following we shall treat as associated pairs of
variables (k,σ ) and (k′,σ ′). The δ functions generated by the
functional derivatives fix p = 1

2 (k − k′) and q = k + k′. Using
(2.2), the denominators can be written: �Tσ,σ ′ = 1

2ε0
k−k′ −

2ε0
p′ , where we have defined ε0

k = h̄2k2/2m. By inspection
of Eq. (2.20), choosing state-dependent energy parameters

Eσ,σ ′ = 1

2
ε0

k−k′ = 1

2

(
ε0

kσ + ε0
k′σ ′

) − h̄2

2m
k · k′, (2.22)

causes the divergent terms to cancel exactly. In the unpolarized
limit, we have E = ε0

F(1 − cos θkk′). In the fully polarized
limit, we have E = 1

2ε0
F↑. We note that the former is different

from the choice of energy parameter made by ERZ. However,
we point out that for the s-state the divergence is removed
for any nonzero value of E; however, for a choice other
than that above there remains a residual contribution to the
Landau parameters that is logarithmic in E. For the p state
this flexibility disappears because of the coefficients of the log
terms generated by the divergent integrals and the only choice
that one has to remove the divergence is the above Eσ,σ ′ . We
note that the divergence of concern is at the upper limit of
the integrals. The pole along the axis of integration has zero
principal value.

This leaves

E(2) =
∑
p,q,σ

2p2τ1
(
np+ q

2 ,σ n−p+ q
2 ,σ

) + 1

2

∑
p,q

(τ0 + 2p2τ1)

× (
np+ q

2 ,↑ n−p+ q
2 ,↓ + np+ q

2 ,↓ n−p+ q
2 ,↑

)
. (2.23)

The contributions to the Landau parameters from quadratic
order are therefore

δf
(2)↑↑
kk′ = 4 sin2(θk,k′/2)k2

↑τ1,

δf
(2)↓↓
kk′ = 4 sin2(θk,k′/2)k2

↓τ1, (2.24)

δf
(2)↑↓
kk′ = τ0 + 1

2 (k − k′)2τ1.

C. Landau parameters

The Landau parameters f σσ ′
kk′ are generated from Eq. (2.4):

f σσ ′
kk′ = δ2E

δnk,σ δnk′,σ ′
. (2.25)
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Taking the functional derivatives and using symmetry arguments to simplify the expressions, we find

f
↑↑
kk′ = 4 sin2(θk,k′/2)k2

↑τ1 − 16
m

h̄2

∑
p,p′,q

[pp′ cos (θpp′)]2τ 2
1

p2 − p′2
[
δp+ q

2 ,k′δ−p+ q
2 ,knp′+ q

2 ,↑ + 2δp+ q
2 ,k′δp′+ q

2 ,kn−p+ q
2 ,↑

]

− 2m

h̄2

∑
p,p′,q

[
τ 2

0 + 4pp′ cos(θpp′)τ0τ1 + 4(pp′ cos(θpp′)
]2

τ 2
1

p2 − p′2
[
δp+ q

2 ,k′δp′+ q
2 ,kn−p+ q

2 ,↓
]
. (2.26)

The Landau parameter f
↓↓
kk′ is obtained from Eq. (2.26) by reversing all the spins. We note again that in the following, as a matter

of convention, we consider the spin-down Fermi sea as the minority Fermi sea when the polarization is nonzero. Finally, we have

f
↑↓
kk′ = τ0 + 1

2
(k − k′)2τ1 − m

h̄2

∑
p,p′,q

τ 2
0 + 4pp′ cos(θpp′)τ0τ1 + 4[pp′ cos(θpp′)]2τ 2

1

p2 − p′2

× [
δp′+ q

2 ,kδ−p+ q
2 ,k′np+ q

2 ,↑ + δp+ q
2 ,kδ−p+ q

2 ,k′np′+ q
2 ,↑ + δp+ q

2 ,kδ−p′+ q
2 ,k′n−p+ q

2 ,↓ + δp+ q
2 ,kδ−p+ q

2 ,k′n−p′+ q
2 ,↓

]
.

(2.27)

The integrations needed to evaluate Eqs. (2.26) and (2.27) are rather involved and so have been moved to Appendices A–D .
It is usual to use dimensionless forms for the parameters by multiplying the f σσ ′

kk′ ’s by a density of states.1 In the following
we denote these dimensionless parameters by F̃ , that is, F̃ σσ ′

kk′ = Ñ0f
σσ ′
kk′ , where Ñ0 = mL2/2πh̄2 is the bare single-spin-state

density of states. We introduce this tilde notation because it is usual to use an actual density of states in this definition. Our
dimensionless Landau parameters thus differ from those introduced in Ref. 13 by the use of the bare mass instead of the effective
mass and also by a factor of two. This choice is simply a matter of notational convenience and no physics depends on it. We also
use the Ñ0’s to redefine the T -matrix parameters τ0 and τ1:

g0 = Ñ0τ0, (2.28a)
g1 = Ñ0τ1. (2.28b)

We note that with this definition, g0 is dimensionless, whereas g1 has the dimensions of length squared.
The final results for the Landau parameters are

F̃
↑↑
kk′ = 4k2

↑ sin2

(
θkk′

2

)
g1 +

[
1 −

√√√√1 − k2
↓

k2
↑ sin2

(
θkk′
2

)�(
k2
↑ sin2

(
θkk′

2

)
� k2

↓

)]
g2

0 +
[((

1 − 16

3
sin2

(
θkk′

2

))
k2
↑ + k2

↓

)

−
√√√√1 − k2

↓
k2
↑ sin2

(
θkk′
2

) ((
1 − 20

3
sin2

(
θkk′

2

))
k2
↑ − 1

3
k2
↓

)
�

(
k2
↑ sin2

(
θkk′

2

)
� k2

↓

)]
g0g1

+
[(

25 − 108 sin2

(
θkk′

2

)
+ 2240

15
sin4

(
θkk′

2

))
k4
↑
4

+ k4
↓
4

+
(

1 − 3 sin2

(
θkk′

2

))
k2
↑k2

↓

−
√√√√1 − k2

↓
k2
↑ sin2

(
θkk′
2

)[(
1 − 12 sin2

(
θkk′

2

)
+ 448

15
sin4

(
θkk′

2

))
k4
↑
4

+ k4
↓

20
+

(
1

2
− 19

15
sin2

(
θkk′

2

))
k2
↑k2

↓

]

×�

(
k2
↑ sin2

(
θkk′

2

)
� k2

↓

)
+ k4

↑ tan2

(
θkk′

2

){
(1 + 2 cos θkk′) −

[
cos θkk′ + sin2 θkk′ ln

(
tan

(
θkk′

2

))]}]
g2

1 .

(2.29)

The quantities �(x) are generalized step functions and are introduced in Appendix A. They are defined such that �(x) =
1 if x is true and 0 if x is not true. In the limit of zero polarization, we simply have F̃

↓↓
kk′ = F̃

↑↑
kk′ and F̃

↓↓
kk′ is obtained from (2.29)

by reversing all the spins. In the following, we assume finite polarization and k↓ < k↑:

F̃
↓↓
kk′ = 4k2

↓ sin2

(
θkk′

2

)
g1 + g2

0 +
[(

1 − 16

3
sin2

(
θkk′

2

))
k2
↓ + k2

↑

]
g0g1 +

[(
25 − 108 sin2

(
θkk′

2

)
+ 2240

15
sin4

(
θkk′

2

))
k4
↓
4

+ k4
↑
4

+
(

1 − 3 sin2

(
θkk′

2

))
k2
↓k2

↑ + k4
↓ tan2

(
θkk′

2

){
(1 + 2 cos θkk′) −

[
cos θkk′ + sin2 θkk′ ln

(
tan

(
θkk′

2

))]}]
g2

1 .

(2.30)
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F̃
↑↓
kk′ = g0 + 1

2
|−→k − −→

k
′|2g1 +

[(
k2
↑ − k↑k↓ cos θkk′

|k − k′|2
)

+
(

k2
↓ − k↓k↑ cos θkk′

|k − k′|2
)

− ln

(
2p

q

)]
g2

0

+
[
−
(

2p

q

)
cos θpq(k2

↑ − k2
↓) + (k2

↑ − k↑k↓ cos θkk′)

[
1 − 8

3

(k2
↑ − k↑k↓ cos θkk′)2

|−→k − −→
k

′|4

]

+ (k2
↓ − k↓k↑ cos θkk′)

|−→k − −→
k

′|2

(
k2
↓ + (k2

↑ − 2k↑k↓ cos θkk′) − 8

3

(k2
↓ − k↓k↑ cos θkk′)2

|−→k − −→
k

′|2

)]
g0g1

+
[

(k2
↑ − k↑k↓ cos θkk′)

|−→k − −→
k

′|2
k2
↑
2

[
(k2

↓ − 2k↑k↓ cos θkk′) − k2
↑

|−→k − −→
k

′|2
(k2

↑ − 2k↑k↓ cos θkk′ + k2
↓ cos 2θkk′) − k2

↑
2

]

+ (k2
↓ − k↑k↓ cos θkk′)

|−→k − −→
k

′|2
k2
↓
2

[
(k2

↑ − 2k↑k↓ cos θkk′) − k2
↓

|−→k − −→
k

′|2
(k2

↓ − 2k↑k↓ cos θkk′ + k2
↑ cos 2θkk′) − k2

↓
2

]

+
1
4 [(k2

↑ − k↑k↓ cos θkk′)(k2
↓ − 2k↑k↓ cos θkk′)2] + 1

4 [(k2
↓ − k↑k↓ cos θkk′)(k2

↑ − 2k↑k↓ cos θkk′)2]

|−→k − −→
k

′|2

+
[

(k2
↑ − k↑k↓ cos θkk′)3

[
−4

3
(k2

↓ − 2k↑k↓ cos θkk′) + k2
↑

|−→k − −→
k

′|2
(

k2
↑ − 2k↑k↓ cos θkk′ + k2

↓

(
cos 2θkk′ + 2

3
sin2 θkk′

))]

+ (k2
↓ − k↑k↓ cos θkk′)3

[
−4

3
(k2

↑ − 2k↑k↓ cos θkk′) + k2
↓

|−→k − −→
k

′|2
(

k2
↓ − 2k↑k↓ cos θkk′ + k2

↑

(
cos 2θkk′ + 2

3
sin2 θkk′

))]]

× 1

|−→k − −→
k

′|4
+ 4

5

(k2
↑ − k↑k↓ cos θkk′)5 + (k2

↓ − k↑k↓ cos θkk′)5

|−→k − −→
k

′|6

−
(

4p2

q2

)
cos(2θp,q )

(
1

4
(k4

↑ + k4
↓) +

(
−p2 + q2

4

)
1

2
(k2

↑ + k2
↓)

)

+
[

4p2 cos2 (θpq)
1

2
(k2

↑ + k2
↓) +

(
−p2 + q2

4

)
p2

2

(
1 + 4p2

q2

)
cos(2θpq) − (2p4) ln

(
2p

q

)]]
g2

1, (2.31)

where |−→k − −→
k

′|2 = (k2
↑ + k2

↓ − 2k↑k↓ cos θkk′), 2−→p = −→
k − −→

k
′
, and −→q = −→

k + −→
k

′
.

D. Unpolarized and fully polarized limits

We can now specialize these results to the unpolarized limit F̃ σσ ′
kk′ (0) with the magnetization M/N = (N↑ − N↓)/N = 0, and

the fully polarized limit F̃ σσ ′
kk′ (1) with M/N = 1. For the unpolarized limit, we set k = k′ = kF:

F̃
↑↑
kk′ (M/N = 0) = F̃

↓↓
kk′ (M/N = 0) = 4 sin2

(
θkk′

2

)
k2
F g1 + g2

0 + 2
(

1 − 8

3
sin2

(
θkk′

2

))
k2

Fg0g1 +
[(

30 − 120 sin2

(
θkk′

2

)

+ 448

3
sin4

(
θkk′

2

))
+ 4 tan2

(
θkk′

2

)[
(1 + 2 cos θkk′) −

(
cos θkk′ + sin2 θkk′ ln

(
tan

(
θkk′

2

)))]]
k4

F

4
g2

1,

(2.32)

F̃
↑↓
kk′ (M/N = 0) = g0 + 2 sin2

(
θkk′

2

)
k2
F g1 +

(
1 − ln

(
2p

q

))
g2

0 + 4

3
sin2

(
θkk′

2

)
k2

Fg0g1 +
[

8
(

2

5
− ln

(
2p

q

))
sin4

(
θkk′

2

)

+ 2 tan2

(
θkk′

2

)
(1 + 2 cos θkk′) − 2 cos θkk′ sin2

(
θkk′

2

)(
1 + tan2

(
θkk′

2

))]
k4

F

4
g2

1 . (2.33)

For the fully polarized limit, we set k↑ = kF,k↓ = 0:

F̃
↑↑
kk′ (M/N = 1) = 4 sin2

(
θkk′

2

)
k2

Fg1 + 4

3
sin2

(
θkk′

2

)
k2

Fg0g1 +
[(

6 − 24 sin2

(
θkk′

2

)
+ 448

15
sin4

(
θkk′

2

))

+ tan2

(
θkk′

2

)
(1 + 2 cos θkk′) − tan2

(
θkk′

2

)(
cos θkk′ + sin2 θkk′ ln

(
tan

(
θkk′

2

)))]
k4

Fg
2
1, (2.34)
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F̃
↓↓
kk′ (M/N = 1) = g2

0 + k2
Fg0g1 + 1

4
k4

Fg
2
1, (2.35)

F̃
↑↓
kk′ (M/N = 1) = g0 + 1

2
k2
F g1 + g2

0 − 8

3
k2

Fg0g1 + 26

20
k4

Fg
2
1 .

(2.36)

III. THERMODYNAMICS AND COLLECTIVE
EXCITATIONS

In this section, we derive those relations for the two-
dimensional arbitrarily polarized Fermi system that connect
the angular moments of the Landau parameters to measur-
able thermodynamic properties and collective excitations. As
shown by Landau2 and Nozières and Luttinger17 the Landau
parameter F̃ σσ ′

pp′ is determined by the singular behavior of the
scattering function with the momenta p and p′ fixed at the
Fermi momentum. Thus, the only degree of freedom is the
angle between the momenta. In two dimensions the angular
decomposition can be written

F̃ σσ ′
pp′ =

∞∑
�=0

α�F̃
σσ ′
� T�(cos θpp′), (3.1)

where α� is the parameter defined in Eq. (2.10c), and
T�(cos θpp′) = cos(�θpp′) are Chebyshev polynomials of the
first kind.18 They play the same role in two dimensions that
Legendre polynomials play in three dimensions. This form for
the angular decomposition requires that F̃ (θ ) is periodic in θ

with period 2π , that F̃ (θ ) is real, and that F̃ (θ ) is even in θ .
Inverting the decomposition,

F̃ σσ ′
m = 1

π

∫ +1

−1
dxw(x)F̃ σσ ′

pp′ Tm(x), (3.2)

where w(x) = 1/
√

1 − x2 is the integration weight. In obtain-
ing Eq. (3.2) we have used the general result for the inner
product of two Chebyshev polynomials [Eq. (3.3a)]. This
integral over Chebyshev polynomials and others that are used
in this section have been gathered together in the following:

(Tm,T�) ≡
∫ +1

−1
dxw(x)Tm(x)T�(x) = π

αm

δm,�, (3.3a)∫ 2π

0
dθ ′Tm(cos (θ − θ ′))Tn(cos θ ′) = Tm(cos θ )

2π

αm

δm,n,

(3.3b)

(Tm cos θ,T�) ≡
∫ +1

−1
dxw(x)Tm(x)xT�(x)

=

⎧⎪⎨
⎪⎩

π
2 if � = 0, m = 1 or � = 1,m = 0,
π
4 if � = m ± 1 
= 0,

0 otherwise.

(3.3c)

In general, when an integrand consists of powers
of cos (θ ) times Chebyshev polynomials then integrals
over θ from 0 to 2π can be changed to integrals over
cos (θ ) from − 1 to + 1 multiplied by a factor of 2.

A. Effective mass and heat capacity

State-dependent effective masses have been discussed
within the Landau Fermi-liquid picture many times in the
literature (see, for example, Refs. 5, 19, and 20). In the absence
of a preferred frame of reference the effective mass can be
derived by arguments based on the Galilean invariance of
the quasiparticle excitation energy as observed from a fixed
laboratory frame of reference and a frame moving with velocity
u with respect to the laboratory frame. The derivation proceeds
in two dimensions exactly the same as in three dimensions and
can be found in Baym and Pethick.3 One finds that the effective
mass obeys the expression(
m

m∗
σ

− 1

)
pσ · u = −

∑
p′,σ ′

f σσ ′
pp′ δ(εp′,σ ′ − εFσ ′)

p′

m∗
σ ′

m u cos θup′ ,

(3.4)

where εp,σ = p2/2m∗
σ is the quasiparticle energy. Using the

angular decomposition (3.1) one immediately finds

m∗
σ

m
= 1

1 − (
F̃ σσ

1 + kF−σ

kFσ
F̃ σ−σ

1

) . (3.5)

In this expression the notation −σ simply denotes the opposite
of σ ; thus, if σ = ↑ then −σ = ↓.

We can now obtain the effective masses in the unpolarized
and fully polarized limits. For zero polarization, in agreement
with ERZ, we obtain

m∗

m
= 1

1 − 2F̃ s
1

= 1 + 2F s
1 , (3.6)

where F s
1 = (m∗/m)F̃ s

1 ≡ N0f
s
1 is a dimensionless Landau

parameter written in terms of a single-spin-state density of
states that itself contains the effective mass. [Here and hence-
forth, N0 will be used to denote the single-spin-state density
of states in the zero polarization case.] The symmetric and
antisymmetric Landau parameters used in the zero polarization
limit are defined as usual by

F̃ σσ ′
� = F̃ s

� + σσ ′F̃ a
� , (3.7)

where for this definition we associate σ (↑) = +1 and σ (↓) =
−1. In the fully polarized limit (k↑ = kF, k↓ = 0),

m∗
↑

m
= 1

1 − F̃
↑↑
1

, (3.8a)

m∗
↓

m
= 1

1 − k↑limk↓→0
( F̃

↑↓
1
k↓

) . (3.8b)

These results are similar to those in three
dimensions where they were discussed by
Bedell.20 Bedell argued from scattering theory that
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limk↓→0 F̃
↑↓
� → 0 and limk↓→0 F̃

↓↓
� → 0 for � � 1. He

also noted that Eq. (3.8b) does not vanish. This is simply
the effective mass for a single down-spin impurity in an
up-spin Fermi liquid environment. Thus, he concludes that
limk↓→0 F̃

↑↓
� = O(k↓). We note in passing that, in agreement

with Bedell’s argument, our Eqs. (2.35) and (2.36) have only
� = 0 terms.

The low-temperature heat capacity is simply proportional
to the number of available states. Thus, in a derivation that
follows that in three-dimensions,3 we find

C = π2

3
Ñ0

(
m∗

↑
m

+ m∗
↓

m

)
k2

BT = πk2
BL2

6h̄2 (m∗
↑ + m∗

↓)T .

(3.9)

B. Compressibility and spin susceptibility

The compressibility and spin-susceptibility for a three-
dimensional Fermi liquid with arbitrary polarization was
obtained by Sanchez-Castro, Bedell, and Wiegers.7 In this
section, we obtain equivalent results for two dimensions by
treating the Fermi liquid as a thermodynamic mixture. The
Gibbs free energy for the system can be written

G = μ↑N↑ + μ↓N↓ = 1
2N (μ↑ + μ↓) + 1

2M(μ↑ − μ↓),

(3.10)

where N = N↑ + N↓ and M = N↑ − N↓. The species chem-
ical potentials are given by μσ = (∂G/∂Nσ )N−σ

. From
Eq. (3.10) we can associate a field h ≡ 1

2 (μ↑ − μ↓) with
the difference in the species chemical potentials, and also
the chemical potential is μ = 1

2 (μ↑ + μ↓). Using (3.10), the
Gibbs-Duhem relation at fixed temperature can be written

dP = n↑dμ↑ + n↓dμ↓, (3.11)

where nσ ≡ Nσ/A are areal densities, and P is the spreading
pressure. The inverse isothermal compressibility is defined by

κ−1
T = −A

(
∂P

∂A

)
T ,N↑,N↓

. (3.12)

Then using (3.11) we find the well-known result:

κ−1
T = n2

↑
∂μ↑
∂n↑

+ n↑n↓

(
∂μ↑
∂n↓

+ ∂μ↓
∂n↑

)
+ n2

↓
∂μ↓
∂n↓

.

(3.13)

The isothermal spin susceptibility is defined by

χ = 1

A

(
∂M

∂h

)
T ,N

. (3.14)

Thus, both the compressibility and the spin susceptibility
depend on the same sort of partial derivatives of the species
chemical potentials with respect to the species densities. These
quantities are simple to obtain from the usual Fermi liquid
methods.

The fundamental starting place is the relation between the
quasiparticle energy fluctuations and the species distributions
fluctuations:

δεk,σ =
∑
k′,σ ′

f σσ ′
kk′ δnk′σ ′ . (3.15)

We now use the angular decomposition (3.1) for the Landau
parameter and the argument that for an isotropic system we
expect that the response to a small fluctuation as measured by
the compressibility or spin susceptibility should be isotropic
and therefore only the � = 0 term can survive:

δεk,σ = f
σ↑
0 δnk↑ + f

σ↓
0 δnk↓, (3.16)

where we used α0 = 1 and T0(x) = 1. From the Fermi func-
tion form for the distribution function, we can also write

δnσ = − L2

(2π )2

∫
dkδ(εk,σ − μσ )(δεk,σ − δμσ ).

(3.17)

If we substitute (3.16) into (3.17) we obtain the basic relations(
1

N
↑
0

+ f
↑↑
0

)
δn↑ + f

↑↓
0 δn↓ = δμ↑, (3.18a)

(
1

N
↓
0

+ f
↓↓
0

)
δn↓ + f

↓↑
0 δn↑ = δμ↓, (3.18b)

where Nσ
0 = m∗

σL2/2πh̄2 is the density of states at the Fermi
surface for the σ spin state. The partial derivatives needed for
κ−1

T (3.13) can be obtained by inspection and we find

κ−1
T = 2πh̄2

m

[(
m

m∗
↑
n2

↑ + m

m∗
↓
n2

↓

)
+ F̃

↑↑
0 n2

↑

+ 2F̃
↑↓
0 n↑n↓ + F̃

↓↓
0 n2

↓

]
. (3.19)

The compressibility is related to the first sound speed c1

by mc2
1 = κ−1/n. As pointed out by Landau, first sound

does not propagate in fermion systems at absolute zero. The
propagating mode, zero sound, is discussed in the next section.

For the spin susceptibility we subtract (3.18b) from (3.18a):

δμ↑ − δμ↓ =
(

1

N
↑
0

+ f
↑↑
0 − f

↑↓
0

)
δn↑

−
(

1

N
↓
0

+ f
↓↓
0 − f

↑↓
0

)
δn↓. (3.20)

We now use δh = 1
2 (δμ↑ − δμ↓), δn↑ = 1

2 (δn + δm), and
δn↓ = 1

2 (δn − δm), where n ≡ N/A,m ≡ M/A:

δh =
[(

1

N
↑
0

+ f
↑↑
0

)
+
(

1

N
↓
0

+ f
↓↓
0

)
− 2f

↑↓
0

]
A

4
δm

+
[(

1

N
↑
0

+ f
↑↑
0

)
−
(

1

N
↓
0

+ f
↓↓
0

)]
A

4
δn. (3.21)

The spin susceptibility is therefore

χ−1 = πh̄2

2m

[(
m

m∗
↑

+ m

m∗
↓

)
+ F̃

↑↑
0 − 2F̃

↑↓
0 + F̃

↓↓
0

]
.

(3.22)

Equation (3.19) and (3.22) are in agreement with the equivalent
results in three-dimensions.7 For alternative derivations of the
spin susceptibility, see Ref. 21.

024504-7



R. H. ANDERSON AND M. D. MILLER PHYSICAL REVIEW B 84, 024504 (2011)

In the limit of zero polarization n↑ = n↓ = n/2, we find

κ−1
T (0) = πh̄2

m∗ n2

[
1 + 2

m∗

m
F̃ s

0

]
= πh̄2

m∗ n2[1 + 2F s
0

]
,

(3.23a)

χ−1(0) = πh̄2

m∗

[
1 + 2

m∗

m
F̃ a

0

]
= πh̄2

m∗
[
1 + 2Fa

0

]
,

(3.23b)

and in the limit of full polarization, n↑ = n,n↓ = 0:

κ−1
T (1) = 2πh̄2

m∗
↑

n2

[
1 + m∗

↑
m

F̃
↑↑
0

]
, (3.24a)

χ−1(1) = πh̄2

2m

[(
m

m∗
↑

+ m

m∗
↓

)
+ F̃

↑↑
0 − 2F̃

↑↓
0 + F̃

↓↓
0

]
.

(3.24b)

C. Zero sound

The derivation of the zero-sound dispersion relations pro-
ceeds exactly as in three dimensions, beginning with Landau’s
linearized kinetic equation:3

(q · vk − ω)δnk,σ − (q · vk)
∂n0

kσ

∂εkσ

∑
k′σ ′

f σσ ′
kk′ δnk′,σ ′ = 0.

(3.25)

Introducing a Fermi-surface displacement function,

δnk,σ = δ(εkσ − μσ )ukσ (θ ), (3.26)

where we note that in two dimensions u = ukσ (θ ) is not an
approximation, we find

(sσ − cos θ )ukσ (θ )

− cos θ
∑
σ ′

m∗
σ ′L2

4π2h̄2

∫ 2π

0
dθ ′f σσ ′

kk′ uk′σ ′(θ ′) = 0, (3.27)

where θ is the angle between k and q, θ ′ is the angle
between k′ and q, and sσ ≡ ω/qvFσ is the usual dimensionless
frequency. Introducing angular decompositions for the Landau
parameters (3.1) and the displacement function ukσ (θ ) =∑∞

�=0 α�u�σ T�(cos θ ):

(sσ − cos θ )
∞∑

�=0

α�u�σ T�(cos θ )

− cos θ
∑
σ ′

1

2π
Nσ ′

0

∞∑
m,n=0

αmαnf
σσ ′
m unσ ′

∫ 2π

0
dθ ′Tm

× [cos(θ − θ ′)]Tn(cos θ ′) = 0. (3.28)

The convolution integral is given in Eq. (3.3b), and this yields

(sσ − cos θ )
∞∑

�=0

α�u�σ T�(cos θ )

− cos θ
∑
σ ′

Nσ ′
0

∞∑
�=0

α�f
σσ ′
� u�σ ′T�(cos θ ) = 0. (3.29)

We now multiply by Tm(cos θ ) and integrate over θ for the
first three coefficients um with m = 0,1,2. This procedure was
introduced in Ref. 7 for the three-dimensional polarized Fermi
system. The matrix elements (Tm cos θ,T�) are given in Eq.
(3.3c). We find

m = 0, sσ u0σ = u1σ +
∑
σ ′

Nσ ′
0 f σσ ′

1 u1σ ′ , (3.30a)

m = 1, sσ u1σ = 1

2
(u0σ + u2σ ) +

∑
σ ′

Nσ ′
0

× 1

2

(
f σσ ′

0 u0σ ′ + f σσ ′
2 u2σ ′

)
, (3.30b)

m = 2, sσ u2σ = 1

2

(
u1σ +

∑
σ ′

Nσ ′
0 f σσ ′

1 u1σ ′

)
= 1

2
sσ u0σ .

(3.30c)

The second equality in Eq. (3.30c) is by inspection. We
can use this to eliminate u2σ in Eq. (3.30b) and solve for
u1σ in terms of u0σ . We then substitute that into Eq. (3.30a)
and obtain a quadratic equation for u0σ . The roots of this
equation are the zero-sound and spin-zero-sound frequencies.

Before proceeding, there is an important detail that needs
to be discussed concerning this approach. For the following
discussion we can restrict ourselves to the unpolarized limit
with no loss of generality. We note that in the weak coupling
limit (lim F s

0 → 0) we expect that c0 → vF. This limit is
evidently not obeyed by this approach. By inspection of Eqs.
(3.30) one finds instead that c0 ≈ √

3/4vF. It is simple to locate
the problem. If we solve the kinetic equation (3.29) in the limit
f σσ ′

� = 0 then we find the recurrence relation

u1σ = sσ u0σ , (3.31a)
um+1σ = 2sσ umσ − um−1σ for m � 1. (3.31b)

Thus, setting sσ = 1, the noninteracting limit, we find umσ =
u0σ for m � 1. From Eq. (3.30c) we see that the truncation
instead yields u2σ = (1/2)u0σ .

We still wish to use Eqs. (3.30) since they allow us to
include both � = 1 contributions at arbitrary polarization and
solve for the two lowest zero-sound modes in a very elegant
way. Thus, instead of Eq. (3.30c) we instead use the truncation
u2σ = u0σ . We show below that this change gives the correct
weak coupling limit. Using the convenient notation of Ref. 7,
we find

c2
0± = 1

2

(
A↑↑v2

F↑ + A↓↓v2
F↓
) ± 1

2

√[
A↑↑v2

F↑ + A↓↓v2
F↓
]2 − 4(A↑↑A↓↓ − A↑↓A↓↑)v2

F↑v2
F↓. (3.32)

The parameters are defined by

A↑↑ =
(

1 + 1

2

m∗
↑

m
F̃

↑↑
0

)(
1 + m∗

↑
m

F̃
↑↑
1

)
+ 1

2

m∗
↑m∗

↓
m2

F̃
↑↓
1 F̃

↓↑
0

vF↓
vF↑

, (3.33a)
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A↓↓ =
(

1 + 1

2

m∗
↓

m
F̃

↓↓
0

)(
1 + m∗

↓
m

F̃
↓↓
1

)
+ 1

2

m∗
↓m∗

↑
m2

F̃
↓↑
1 F̃

↑↓
0

vF↑
vF↓

, (3.33b)

A↑↓ =
(

1 + 1

2

m∗
↓

m
F̃

↓↓
0

)
m∗

↓
m

F̃
↑↓
1 + 1

2

m∗
↓

m
F̃

↑↓
0

(
1 + m∗

↑
m

F̃
↑↑
1

)
vF↑
vF↓

, (3.33c)

A↓↑ =
(

1 + 1

2

m∗
↑

m
F̃

↑↑
0

)
m∗

↑
m

F̃
↓↑
1 + 1

2

m∗
↑

m
F̃

↓↑
0

(
1 + m∗

↓
m

F̃
↓↓
1

)
vF↓
vF↑

. (3.33d)

In the weak coupling limit Aσσ ′ = 1 and thus c0σ = vFσ . The
altered truncation of Eq. (3.30c) gives us the correct weak
coupling limit at all polarizations.

In the zero-polarization limit (A↑↑ = A↓↓,A↑↓ =
A↓↑,vF = vF↑ = vF↓), and c2

0± = (A↑↑ ± |A↑↓|)v2
F. In terms

of the Landau parameters,

c2
0s,a

v2
F

= (
1 + 2F

s,a
1

) + 1

2

(
2F

s,a
0 + 4F

s,a
0 F

s,a
1

)
, (3.34)

where we changed + and − to symmetric and antisymmetric,
respectively. The symmetric mode corresponds to zero sound
and the antisymmetric mode corresponds to spin zero sound.
The coefficients of 2 that appear before the Landau parameters
are present because we are using the single-state density of
states instead of the usual two-state density of states to write the
dimensionless parameters. In the “simplest approximation”22

we set F
s,a
1 = 0 and find

c2
0s,a ≈ (

1 + F
s,a
0

)
v2

F. (3.35)

Thus, in the zero-polarization, strong-coupling limit we
find limF

s,a
0 →∞ c0s,a ≈ √

F
s,a
0 vF. In the limit of full polar-

ization (vF = vF↑ and vF↓ = 0), we immediately find c2
0+ =

A↑↑v2
F and c2

0− = 0. Thus, in terms of the Landau parameters

c2
0+ =

(
1 + 1

2

m∗
↑

m
F̃

↑↑
0

)(
1 + m∗

↑
m

F̃
↑↑
1

)
v2

F. (3.36)

Finally, we need to show that Eqs. (3.32) and (3.33)
give the correct strong-coupling limit. We shall proceed by
calculating the zero-sound speed in a slightly different way
that does not suffer from truncation induced problems. We
follow Khalatnikov and Abrikosov23 (see also Refs. 1 and 3)
and rewrite the kinetic equation:

umσ −
∑
σ ′

Nσ ′
0

∞∑
�=0

α�f
σσ ′
� u�σ ′�m,� = 0, (3.37)

where the angular integrals are defined by

�m,� = 1

π

∫ +1

−1
dxw(x)Tm(x)

(
x

sσ − x

)
T�(x). (3.38)

In the “simplest approximation” we ignore all terms except
m = 0. Then the zero-sound velocity, in the zero-polarization
limit for simplicity, is determined by the solution of 1 −
2F s

0 �0,0 = 0, where

�0,0 = s√
s2 − 1

− 1. (3.39)

Solving for the zero-sound velocity,

c2
0s

v2
F

=
(
1 + 2F s

0

)2

1 + 4F s
0

. (3.40)

The Khalatnikov/Abrikosov approach has the correct weak
coupling limit. We note in particular that the strong-coupling
limit c2

s /v
2
F ∼ F s

0 does agree with our previous approach
Eq. (3.35). Unfortunately, the Khalatnikov/Abrikosov ap-
proach leads to equations that are much more complicated than
Eqs. (3.32) and (3.33) when including � = 1 terms and
allowing arbitrary polarization. Thus, in this paper we present
results using the simpler truncation approach and leave the
Khalatnikov/Abrikosov approach for a subsequent publica-
tion. We note that in the important range of values of F s

0 ≈ 1,
the zero-sound speeds calculated with Eq. (3.35) tend to be
slightly higher than those calculated with Eq. (3.40).

The polarization dependence of zero sound for a two-
dimensional Fermi liquid was considered by Béal-Monod,
Valls, and Daniel,24 who derived an expression for c0s/vF to
� = 0 order in the Landau parameters and to quadratic order
in the applied field. In the limit of zero field their results agree
with Eq. (3.40).

D. Forward-scattering sum rule

The forward-scattering sum rule is a constraint placed on
the triplet scattering function due to the Pauli principle. The
sum rule is important because the scattering function can be
written in terms of the Landau parameters and thus the sum
rule is, in fact, a constraint that must be obeyed by the Landau
parameters. This result was first proved by Landau2 in 1958.
Landau showed that the so-called k limit of the scattering
function (basically the forward-scattering amplitude, aσσ ′

pp′ ) and
the ω limit of the scattering function (basically the Landau
parameter) are related by the following integral equation:3

aσσ ′
pp′ = f σσ ′

pp′ +
∑
p′′,σ ′′

f σσ ′′
pp′′

∂n0
p′′σ ′′

∂εp′′σ ′′
aσ ′′σ ′

p′′p′ . (3.41)

We now use

∂n0
p′′σ ′′

∂εp′′σ ′′
= −δ(εp′′ − μσ ′′ ), (3.42)

aσσ ′
pp′ =

∞∑
�=0

α�a
σσ ′
� T�(cos θ ), (3.43)
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and also the angular decomposition for the Landau parameter
(3.1) to find

aσσ ′
� = f σσ ′

� −
∑
σ ′′

Nσ ′′
0 f σσ ′′

� aσ ′′σ ′
� . (3.44)

The convolution integral Eq. (3.3b) was used to obtain this
result. We now use (3.44) to find the aσσ ′

� in terms of the f σσ ′
� .

We first write a
↑↑
� and a

↑↓
� explicitly:

a
↑↑
� = f

↑↑
� − N

↑
0 f

↑↑
� a

↑↑
� − N

↓
0 f

↑↓
� a

↓↑
� , (3.45)

a
↓↑
� = f

↓↑
� − N

↑
0 f

↓↑
� a

↑↑
� − N

↓
0 f

↓↓
� a

↓↑
� . (3.46)

Solving these simultaneously yields

a
↑↑
� = f

↑↑
� (1 + N

↓
0 f

↓↓
� ) − N

↓
0 (f ↑↓

� )2

(1 + N
↑
0 f

↑↑
� )(1 + N

↓
0 f

↓↓
� ) − N

↑
0 N

↓
0 (f ↑↓

� )2
,

(3.47a)

a
↑↓
� = f

↑↓
�

(1 + N
↑
0 f

↑↑
� )(1 + N

↓
0 f

↓↓
� ) − N

↑
0 N

↓
0 (f ↑↓

� )2
,

(3.47b)

a
↓↓
� = f

↓↓
� (1 + N

↑
0 f

↑↑
� ) − N

↑
0 (f ↓↑

� )2

(1 + N
↑
0 f

↑↑
� )(1 + N

↓
0 f

↓↓
� ) − N

↑
0 N

↓
0 (f ↑↓

� )2
,

(3.47c)

where a
↓↓
� was obtained by flipping the spins in a

↑↑
� , and a

↓↑
� =

a
↑↓
� . The analogous results for a three-dimensional fermion

system were first obtained by Bedell.20 For a polarized Fermi
liquid, Landau’s argument leads to two sum rules:

∞∑
�=0

α�a
σσ
� = 0, for σ =↑ , ↓ . (3.48)

In the zero-polarization limit, we define Aσσ ′
� = N0a

σσ ′
� and

find immediately
∞∑

�=0

α�A
↑↑
� =

∞∑
�=0

α�

[
F s

�

1 + 2F s
�

+ Fa
�

1 + 2Fa
�

]
= 0 (3.49)

and

A
↑↓
� = F s

�

1 + 2F s
�

− Fa
�

1 + 2Fa
�

. (3.50)

In the limit of full polarization, remembering Bedell’s
argument that limk↓→0 f̃

↑↓
� ,f̃

↓↓
� → 0 for � � 1, we find

f
↑↑
0 (1 + N

↓
0 f

↓↓
0 ) − N

↓
0 (f ↑↓

0 )2

(1 + N
↑
0 f

↑↑
0 )(1 + N

↓
0 f

↓↓
0 ) − N

↑
0 N

↓
0 (f ↑↓

0 )2

+ 2
∞∑

�=1

f
↑↑
�

(1 + N
↑
0 f

↑↑
� )

= 0, (3.51a)

f
↓↓
0 − N

↑
0 (f ↓↑

0 )2

(1 + N
↑
0 f

↑↑
0 )

= 0. (3.51b)

The second relation is in exactly the same form as the three-
dimensional results. The first equation is more complicated
than the analogous three-dimensional result because in two
dimensions the density of states N

↓
0 is a constant and so

does not vanish in the limit k↓ → 0 as is the case in three
dimensions.

IV. RESULTS: APPLICATION TO 3He THIN FILMS

In this section, we try to obtain estimates of the values of
the interaction parameters g0 and g1 introduced in Sec. II and
then calculate predictions for the polarization dependence of
thermodynamic quantities and collective excitations for 3He
in thin films using the expressions derived in Sec. III.

A. Interaction parameters: Experiment and scattering theory

Quasi-two-dimensional 3He has been studied for many
years in the form of adsorbed films on various solid surfaces.25

By quasi-two-dimensional we mean that the film is studied
at temperatures small relative to the characteristic transverse
excitation energy. Thus, in this sense, the third dimension is
“frozen out.” There have been a number of high-precision
measurements of the thermodynamic properties of these films.
All of these measurements are on an unpolarized system.
We point especially to heat capacity measurements26–28 that
enabled accurate estimates of the heat-capacity effective mass
and also measurements of the spin susceptibility.29

The spin susceptibility can be obtained from Fig. 1 of
Ref. 29. The authors write the spin susceptibility in the form

χ

χ0
= m∗/m

1 + 2(m∗/m)F̃ a
0

, (4.1a)

where m∗/m = 1

1 − 2F̃ s
1

. (4.1b)

We have used the single-state density of states from Eq. (3.23b)
and χ0 = 2Ñ0 = N/εF. Then we estimate χ/χ0 ≈ 5 at n ≈
0.026 Å−2.

The effective mass will be obtained from the data shown
in Fig. 12 of Ref. 27. At n = 0.026 Å−2 we estimate that
m∗/m ≈ 1.8. At this density, these results are slightly larger
than those of Ref. 26. This discrepancy is accounted for by
Greywall as due to a higher minimum temperature at which
the data of Van Sciver and Vilches were taken.

We can now use the two experimental numbers in
Eqs. (4.1) to obtain approximate values of the interaction
parameters at n = 0.026 Å−2. We note that, like the situation
for bulk 3He, we also seem to have at our disposal the constraint
of the forward-scattering sum rule. The possible application of
the forward-scattering sum rule to a low-density expansion is
discussed in the Conclusion, Sec. V. We find that the following
values of g0 and g1 fit the experimental data:

g0 = 0.76, (4.2a)
g1 = 1.89 Å2. (4.2b)

In order to compare approximately the magnitudes of the
s-wave and p-wave interaction components, we can, for
example, multiply g1 by k2

F to create a dimensionless quantity;
then g1k

2
F ≈ 0.31. In this sense, the p-wave component is

roughly 40% of the size of the s-wave interaction component.
These interaction parameters are related to the effective

two-body interaction in the low-density limit by scattering
theory. For quantum systems in two dimensions the relevant
scattering theory has been derived by Adhikari.30 The theory
was applied to this problem by Randeria, Duan, and Shieh
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(RDS) in Ref. 16. The approach begins with an angular
decomposition of the T matrix as in Eq. (2.16):

Tkk′ =
∞∑

�=0

α�T
(�)
kk′ T�(cos θkk′),

(4.3)

T
(�)
kk′ = 4h̄2

m
(− cot δ� + i)−1 ,

where δ� is the �-wave scattering phase shift. For a finite range
interaction Veff(r), say, where Veff(r) = 0 for r � R, the phase
shifts are obtained in the usual way by requiring continuity of
the logarithmic derivative of the wave function at r = R. The
general result for two dimensions can be found in Appendix A
Ref. 16. For s waves in the low-density limit, one can show
that π cot δ0 = ln (E/Ea) + O[(kr)2], where Ea is a parameter
with the dimensions of energy. The real part of the low-density
T matrix element can therefore be written

τ0 = 4πh̄2

m
[ln (Ea/E)]−1 , (4.4)

and from Eq. (2.28) we have

g0 = 2 [ln (Ea/E)]−1 . (4.5)

At this point we note that RDS make the important observation
that from Eq. (4.4) there is a low-density pole in the T matrix
located at E = −Ea. Then, using the analytic properties of the
T matrix,30 RDS are able to identify Ea as a two-body bound
state. A simple expression for the bound-state energy in two
dimensions can be found in Landau and Lifshitz:31

Ea =
(

h̄2

2mR2

)
exp

[
2πh̄2

m

1

V R

]
, (4.6a)

where V R = 2π

∫ R

0
drrVeff(r). (4.6b)

We note that this expression is derived under the assumptions
that Veff(r) is external, and that Ea 	 h̄2/2mR2. For the energy
parameter, we choose E = h̄2k2/2m = ε0

F = h̄2πn/m (where
n = N/A). This choice is consistent with the � = 0 part of
the energy parameter discussed in Eq. (2.22). Thus, following
RDS, we have a scattering theory result for the low-density
s-wave interaction component:

g0 = 2

[
ln

(
1

2πnR2
exp

[
2πh̄2

m

1

V R

])]−1

. (4.7)

There exist a number of alternative formulations of an
effective interaction for 3He (Refs. 32–34). These are all local,
static two-body interactions. For our purposes, we utilize the
so-called correlated RPA as described in Ref. 33. In Ref. 35,
this potential was used to generate the coverage dependence of
effective masses of 3He in thin 3He films. The good agreement
that was found with existing experimental results suggests that
this potential would be an excellent choice for our analysis.
The effective interaction in the correlated RPA approximation
is given by

V eff(k) = h̄2k2

4m

(
1

S2(k)
− 1

S2
F(k)

)
, (4.8)

FIG. 1. The particle-hole effective interaction for 3He in two
dimensions at a density of n = 0.026 Å−2. The vertical arrows show
the positions of the range parameter R for which Eq. (4.7) agrees
with the s-wave t-matrix component g0 = 0.76. There are multiple
positions because of the oscillations of the effective interaction.

where S(k) is the 3He static structure function36 and SF(k) is
the static structure function for a two-dimensional ideal Fermi
gas. V eff(k) is the Fourier transform of Veff(r):

Veff(r) = 1

2πn

∫ ∞

0
dkkJ0(kr)V eff(k), (4.9)

and J0(kr) is a Bessel function. Then, using Eq. (4.9) in Eq.
(4.6b) we can compute V R as a function of the range R and
then Eq. (4.7) yields g0 as a function of the range. We note that
the functions V eff(k) and S(k) that we use below have been
supplied to us by the authors of Ref. 35.

In Fig. 1, we show the results of this analysis. The vertical
arrows are drawn at the values of R that correspond to the
value of g0 in Eq. (4.2a). The strongly oscillatory nature of the
effective potential also causes the integral V R to oscillate. This
behavior yields multiple solutions as indicated by the three
vertical arrows. Although the leading arrow in particular is
located at a position that one might reasonably associate as an
approximate “range” of this potential, in fact these solutions
correspond to the domain in which Ea � h̄2/2mR2. Thus,
we must conclude that this simple analytic approach is not
applicable to a strongly correlated system like 3He.

B. Effective mass, thermodynamics, and collective excitations

With values for the s-wave and p-wave interaction compo-
nents as obtained in Sec. IV A, we can follow the analysis in
Sec. II and compute the Landau parameters, {F̃ ↑↑,F̃ ↑↓,F̃ ↓↓},
for a 3He thin film at a density of n = 0.026 Å−2. We
then compute the � = 0 and � = 1 components of an angular
momentum decomposition of the Landau parameters which
from Sec. III yield various measurable quantities.

Figures 2 and 3 show the � = 0,1 components of the
Landau parameters, respectively, as a function of polarization.
The Landau parameter F̃

↑↑
0 shows a monotonic increase as

a function of polarization. We note that 100% polarization
corresponds to a completely filled up-spin Fermi sea. At
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FIG. 2. (Color online) The � = 0 Landau parameters
{F̃ ↑↑

0 ,F̃
↑↓
0 ,F̃

↓↓
0 } for 3He in two dimensions at a density of

n = 0.026 Å−2 as a function of polarization.

zero polarization, F̃
↑↓
0 is larger than the parallel-spin Landau

parameters. However, it decreases monotonically with increas-
ing polarization and eventually crosses F̃

↓↓
0 at around 70%

polarization. This behavior has an important consequence, as
is discussed below.

Figure 3 shows that the � = 1 parameters are monotoni-
cally decreasing functions of polarization for this particular
problem. At zero polarization the F̃

↑↓
1 parameter dominates,

whereas at complete polarization the F̃
↑↑
1 has the greatest mag-

nitude, as is to be expected. Further, at complete polarization
F̃

↑↓
1 = F̃

↓↓
1 = 0 which ensures that the spin-down effective

mass in that limit Eq. (3.8b) is well defined.

1. Effective mass and heat capacity

The effective mass as a function of polarization is given
in Eq. (3.5). Using the � = 1 Landau parameters shown in

FIG. 3. (Color online) The � = 1 Landau parameters
{F̃ ↑↑

1 , F̃
↑↓
1 , F̃

↓↓
1 } for 3He in two dimensions at a density of

n = 0.026 Å−2 as a function of polarization.

FIG. 4. (Color online) The spin-up and spin-down effective
masses for 3He in two dimensions at a density of n = 0.026 Å−2,
as a function of polarization from Eq. (3.5). The zero polarization
limit is from Ref. 27 as discussed in the text.

Fig. 3 we calculate the results shown in Fig. 4. Both the
spin-up and spin-down effective masses are a maximum at
zero polarization and decrease monotonically with increasing
polarization. At all polarizations, m∗

↓ � m∗
↑. This behavior is

in qualitative agreement with arguments presented by Bedell6

for the three-dimensional system. The zero-polarization value
for the effective masses is one of the experimental numbers
(from Ref. 27) used to determine the interaction components,
g0 and g1. Thus, the finite polarization values are the predic-
tions for this model. We find a dramatic decrease in both
the spin-up and spin-down effective masses as a function
of polarization. This behavior was also predicted for the
three-dimensional system.

The slope of the low-temperature heat capacity as a function
of polarization Eq. (3.9) is shown in Fig. 5. Since the number
of accessible states gets smaller with increasing polarization,
we expect that at a given temperature the heat capacity would
decrease monotonically as a function of polarization and this
is clearly shown in this figure.

2. Compressibility and first sound

In Fig. 6 we show the first sound speed mc2
1, which from

Eq. (3.19) is essentially the inverse compressibility, as a
function of polarization. On the right-hand ordinate we show c1

in units of m/s. As pointed out by Landau1 first sound cannot
propagate in a Fermi liquid at absolute zero. At any finite
temperature, however, hydrodynamic response will dominate
in the limit of small frequencies.37 The magnitude of the
first sound speed as a function of polarization is a prediction
of this model. In particular at zero polarization, c1 = 117
m/s. We first point out that this value is large compared
to what would be expected from an ideal Fermi gas. For
an ideal Fermi gas (with an effective mass) the first sound

speed is given by c0
1 =

√
m∗
2m

vF. The Fermi velocity at zero
polarization for our system is vF = 47 m/s. Thus, the ideal
gas first sound speed is c0

1 ≈ 45 m / s 	 c1. This certainly
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FIG. 5. The slope of the low-temperature heat capacity for 3He
in two dimensions at a density of n = 0.026 Å−2, as a function of
polarization from Eq. (3.9). The slope decreases monotonically with
polarization as expected.

emphasizes the importance of interactions even in this fairly
dilute system. We can use the small-k limit of the static
structure function S(k) discussed in Sec. IV A above to obtain
an independent estimate of the first sound speed. From the
f -sum rule and the compressibility sum rule Feenberg36 shows
that limk→0S(k) � � k

kF
, where � ≡ h̄kF

2mc1
. By inspection we

find the slope � ≈ 0.4. This returns a first sound speed
estimate of c1 ≈ 106 m/s which is in reasonable agreement
with the zero-polarization first sound speed prediction shown
in Fig. 6.

3. Spin susceptibility

The spin susceptibility Eq. (3.22) as a function of po-
larization is shown in Fig. 7. Unlike the situation in three
dimensions,7 the two-dimensional spin susceptibility is a

FIG. 6. The incompressibility mc2
1 from Eq. (3.19) for 3He in

two dimensions at a density of n = 0.026 Å−2 as a function of
polarization. The right-hand ordinate shows the first sound speed c1 in
units of m/s. The system becomes less compressible with increasing
polarization, as is to be expected.

FIG. 7. The spin susceptibility for 3He in two dimensions at a
density of n = 0.026 Å−2 as a function of polarization. We note that
as a special feature of two dimensions the susceptibility does not
vanish in the limit of complete polarization. The zero-polarization
limit is from Ref. 29, as discussed in the text.

monotonically decreasing function of the polarization (at least
at this density). Another important difference between two
and three dimensions is the behavior of the susceptibility in
the limit of complete polarization. Because the minority spin
density of states vanishes in the limit of complete polarization
in three dimensions, the spin susceptibility also vanishes in
that limit. However, in two dimensions the density of states is
a constant and so, as can be seen in Fig. 7, the susceptibility is
small but not zero in the complete polarization limit.

FIG. 8. (Color online) The zero-sound and spin-zero-sound
speeds for 3He in two dimensions at a density of n = 0.026 Å−2 as a
function of polarization. The solid lines are zero and spin zero sound,
and the dashed lines are the up- and down-spin Fermi velocities. Zero
sound is stable when the speed is much greater than vF↑ and spin
zero sound is stable when the speed is much greater than vF↓. Thus,
the results shown here imply that zero sound should be stable over
the whole range of polarizations, whereas spin zero sound may be
marginally stable at polarizations �0.5.
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FIG. 9. (Color online) The components of the forward-scattering
sum rule from � = 0 to 25 at zero polarization for 3He in two
dimensions at a density of n = 0.026 Å−2 [see Eq. (3.49)]. The circles
and triangles are F s

� and F a
� , respectively. The squares connected by a

line as a guide for the eye are the components of the forward-scattering
amplitudes A

↑↑
� multiplied by the parameter α�. The oscillation in

sign of the scattering amplitude is driven by the symmetric Landau
parameter. The asymptotic value of the sum of the α�A

↑↑
� components

is ≈−2.24. The magnitude of the final term shown in this figure is
0.026, two orders of magnitude smaller than the sum.

4. Zero sound

The allowed collective modes at absolute zero in fermion
systems correspond to oscillations of the Fermi seas and are
known as zero sound. In Sec. III C we derived the expressions
for the zero-sound and spin-zero-sound speeds as a function
of polarization Eq. (3.32). The results for our 3He system are
shown in Fig. 8. We pointed out in Sec. III C that we had to
be careful to not apply this method if the Landau parameters
F

s,a
0 were small relative to unity. In Table I we show the

calculated values of the (unpolarized limit) Landau parameters
F

s,a
0 and F

s,a
1 for our 3He film.

Figure 8 shows that zero sound is a stable collective
excitation for the entire polarization range. At zero polarization
the stability of the zero-sound mode is due to the fairly large
value of F s

0 . Likewise, the instability of the spin-zero-sound
mode is due to the small and negative value of Fa

0 . We note that
the increase in the speed of the zero-sound mode as a function
of polarization in the small polarization region is in agreement
with the results of Ref. 24.

TABLE I. The symmetric and antisymmetric Landau parameters
for � = 0,1 for 3He in two dimensions at a density of n = 0.026 Å−2 at
zero polarization. Note that these are defined with the single-spin-state
density of states, as discussed in the text.

Landau parameter Value

F s
0 2.89

F a
0 −0.32

F s
1 0.40

F a
1 −0.30

V. CONCLUSION

We have extended the theory of the low-density, two-
dimensional Fermi liquid to include the contributions of
p-wave interactions. We have calculated exact, analytic ex-
pressions for the Landau parameters, f σσ ′

pp′ , to quadratic order
in the s- and p-wave interaction parameters for arbitrary
polarization. A systematic procedure for performing the
integrations that relies on the analytic behavior of the angular
integral is discussed in the Appendixes. We have general-
ized to finite polarization the expressions for the effective
mass, thermodynamic response, collective excitations, and
the forward-scattering sum rule for a two-dimensional Fermi
liquid. We discussed the application of the theory to a 3He
film.

The density of the 3He film 0.026 Å−2 was chosen for
convenience. At this density, it is simple to ascertain the
experimental numbers that were used to fit the s-wave
and p-wave parameters, and in addition we had available
a microscopic particle-hole potential to obtain additional
information. This density translates into an average spacing
between particles of approximately 6.2 Å, which is large but
perhaps not large enough for this low-density theory. Equiv-
alently, this density corresponds to 40% of a conventional
3He monolayer. We determined that the interaction parameters
with values g0 = 0.76 and g1 = 1.89 Å2 provide a fit to the
effective mass and spin susceptibility experimental data in the
zero polarization limit. We then calculated the polarization
dependence of the state-dependent effective masses, heat
capacity, compressibility, spin susceptibility, zero sound, and
spin zero sound.

Our results predict a significant drop in the state-dependent
effective masses as a function of polarization. Our calculated
first sound speed in the zero polarization limit was consistent
with a small-k limit of a completely independent microscopic
structure factor. The results predict a significant stiffening of
the equation of state with increasing polarization. We show ex-
plicitly that, unlike in three-dimensions, the spin-susceptibility
decreases monotonically with increasing polarization and does
not vanish at full polarization. Finally, our results indicate that
zero sound will propagate at all polarizations. As discussed
in the text, the method we employed to compute the zero
sound speeds is not accurate enough to definitively rule out
the possibility that spin zero sound may also propagate at
higher polarizations and further work will continue on this
issue. These results are all essentially predictions. Testing
these predictions will be difficult since polarizing the 3He
system means ordering a nuclear moment. There are additional
issues for future investigation especially concerning collective
excitations in the polarized system. The question of attenuation
as a function of polarization needs to be addressed. In addition,
there is the interesting question of whether there is a Mermin’s
theorem38 in a Fermi liquid with a finite polarization.

In Fig. 9 we show the components of the forward-scattering
sum rule for our 3He system. This is at zero polarization where
the interaction components have been fit, and also where
the two sum rules collapse into one. It is straightforward
to calculate Landau parameters for any value of �. In the
figure, we show the symmetric and antisymmetric Landau
parameters (circles and triangles, respectively) and also the
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scattering amplitudes A� for � = 0 to 25. For � � 3 the
contribution to the scattering amplitude is dominated by the
symmetric term. It is the symmetric term that oscillates in
sign not the antisymmetric term. The sum does not vanish:
The approximate asymptotic value is −2.24. This nonzero
result cannot be due to truncating the angular decomposition.
The remaining possibilities are that this result is signaling a
problem with our s-wave and p-wave interaction parameters or
that we need to include d-wave and higher components in order
to satisfy the sum rule. However, the interaction parameters
are continuous functionals of the effective interaction [see, for
example, Eq. (4.7)]. The sum rule clearly cannot be satisfied
for arbitrary values of g0 and g1. The implication is that we
need the higher angular momentum interaction parameters in
order to satisfy the sum rules at arbitrary polarization even in
the low-energy limit. This issue of the relationship between the
low-density perturbation expansion and the forward-scattering
sum rule is one to be addressed in future work.

There has been recent work by Akimoto, Cummings, and
Hallock39 measuring the Fermi liquid properties of a related
system, 3He–4He thin-film mixtures. Mixture films are not
isotropic. The 3He rides on “top” of the 4He film with the
4He film playing the role of a dynamic, external adsorption
potential. The fact that the 3He floats on the 4He component
is clear from the measured40 zero 3He-concentration effective
mass ≈1.38, which is in basic agreement with the classical
result for a ball floating on a liquid surface. Most of the results
in Sec. III are immediately applicable to this system if the 3He
component is treated as a two-dimensional Fermi liquid with a
set of discrete single-particle states that model the effects of the
adsorption potential.21 We note that the presence of the discrete
single-particle states for the 3He induce important changes
in the thermodynamic response.41 Finally, if we assume that
the 3He effective interaction is local in character as in BBP
theory,42 then even the expression for the effective masses Eq.
(3.5) can be utilized for this system.

Finally, we note that the ultracold Fermi gases form very-
low-density systems that may be amenable to the analysis
in this paper.43 These systems can be prepared in quasi-two-
dimensions as an incoherent mixture of hyperfine species that
plays the role of a polarization. The ability to manipulate the
strength of the interaction may allow the Landau parameters
to be tuned to study the various zero-sound modes.
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APPENDIX A: ANGULAR INTEGRATION

The integrations necessary to obtain the analytic results
shown in Eqs. (2.29), (2.30), and (2.31) can be generated
in three basic steps from the intermediate results shown in
Eqs. (2.26) and (2.27). We note that all of these expressions
have the same structure: one two-dimensional momentum

integration, with each integrand containing a product of two δ

functions and a ground-state Fermi function. We first change
integration variable to that of the Fermi function momen-
tum so that this function directly cuts off the momentum
integration. Next we perform the principal value integration
over the angular variable which introduces an important
inequality. Finally, the remaining integrals are of known
form.

The key result that needs to be demonstrated is that the
angular integral

I =
∫ 2π

0

dx

a − b cos x
(A1)

is nonzero if and only if |a| > |b|. Here a and b are real and
nonzero but not necessarily positive. For the case |a| � |b| the
angular integral in (A1) has poles located at θ1 = cos−1(a/b)
and θ2 = 2π − cos−1(a/b). It is straightforward to show that
the Cauchy principal value vanishes. Assume that a < b and
define the three integration regions by

I = lim
ε→0

∫ θ1−ε

0
(I) +

∫ θ2−ε

θ1+ε

(II) +
∫ 2π

θ2+ε

(III)
dx

a − b cos x
.

(A2)

The integrals in the three regions are given by∫
dx

a − b cos x

=
{

−2 tanh−1
[
ζ tan

(
x
2

)]
/
√

b2 − a2 Regions I and III,

−2 coth−1
[
ζ tan

(
x
2

)]
/
√

b2 − a2 Region II,

(A3)

where we have defined ζ = (a + b)/
√

b2 − a2. By inspection,
we note that at the end points x = 0,2π the integrals
vanish. At the pole θ1, we need to consider the following
limit:

lim
ε→0

{
tanh−1

[
ζ tan

(
θ1 − ε

2

)]
− coth−1

[
ζ tan

(
θ1 + ε

2

)]}
.

(A4)

Using an identity, we find

= lim
ε→0

{
coth−1

[
ζ
[
tan

(
θ1+ε

2

) − tan
(

θ1−ε
2

)]
ζ 2 tan

(
θ1+ε

2

)
tan

(
θ1−ε

2

) − 1

]}
,

= lim
ε→0

{
coth−1

[
ζ sin ε

ζ 2 sin
(

θ1+ε
2

)
sin

(
θ1−ε

2

)− cos
(

θ1+ε
2

)
cos

(
θ1−ε

2

)]}.

(A5)

In the lim ε → 0 the denominator goes to 1
2 (1 − ζ 2)(ε2/2).

Thus, the limit can be taken

= lim
ε→0

coth−1

[
O

(
1

ε

)]
→ 0, (A6)

and the Cauchy principal value at pole θ1 is zero. This result
also follows for the pole at θ2. We conclude that the integral
Eq. (A1) vanishes in the case |a| < |b| when defined as a
Cauchy principal value.
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Thus, the integral is nonzero only if |a| > |b|. In the
following, we list the angular integrals that will be needed
below:∫ 2π

0

dx

a − b cos x
= 2π√

a2 − b2
sgn(a)�(|a| > |b|), (A7a)∫ 2π

0

cos x

a − b cos x
dx

= −2π

b
+ 2π

a

b

1√
a2 − b2

sgn(a)�(|a| > |b|), (A7b)∫ 2π

0

cos2 x

a − b cos x
dx

= −2π
a

b2
+2π

a2

b2

1√
a2 − b2

sgn(a)�(|a| > |b|), (A7c)

where sgn is the sign (signum) function. For convenience
in denoting the parametric constraints, we have introduced
a generalized step function �(x) defined such that

�(x) =
{

1 if x is true,

0 otherwise.
(A8)

Finally, we note that from Eq. (A7a) the angular integral is
independent of the sign of b. This can also be seen by changing
integration variables in Eq. (A1):

I =
∫ π

0
dx

[
1

a − b cos x
+ 1

a + b cos x

]
. (A9)

APPENDIX B: f ↑↑
kk′

We begin with the first integral in Eq. (2.26):

f
↑↑
kk′ (I ) = −16

m

h̄2

∑
p,p′,q

(pp′ cos(θpp′)2τ 2
1

p2 − p′2

× δp+ q
2 ,k′δ−p+ q

2 ,knp′+ q
2 ,↑. (B1)

Using the δ functions to integrate over p and q yields p =
1
2 (k′ − k) and q = (k′ + k). We introduce a new integration
variable

p′′ = p′ + q
2

= p′ + 1

2

(
k′ + k

)
. (B2)

In terms of these variables the denominator becomes

p2 − p′2 = −(p′′2+k2
↑ cos θkk′)

+
(

2k↑ cos

(
θkk′

2

)
p′′
)

cos(θ ′′),

≡ −a + b cos(θ ′′), (B3)

where θ ′′ = θp′′q. Similarly, the numerator can be written

[pp′ cos(θpp′)]2 = k2
↑ sin2

(
θkk′

2

)
(p′′)2 sin2(θ ′′). (B4)

Thus, the integral becomes

f
↑↑
kk′ (I) = −16

m

h̄2

L2

(2π )2
τ 2

1 k2
↑ sin2

(
θkk′

2

)∫ k↑

0
dp′′(p′′)3

×
∫ 2π

0
dθ ′′ 1 − cos2(θ ′′)

−a + b cos(θ ′′)
. (B5)

Performing the angular integrations yields

f
↑↑
kk′ (I) = −16

m

h̄2

L2

(2π )
τ 2

1 k2
↑ sin2

(
θkk′

2

)∫ k↑

0
dp′′(p′′)3

× 1

b2
(
√

a2 − b2sgn(a)�(|a| > |b|) − a). (B6)

The constraint in the first term of (B6), |(p′′)2 + k2
↑ cos θkk′ | >

|2k↑ cos ( θkk′
2 )p′′|, restricts the allowed values of p′′. It is easily

shown that 0 � p′′ � k↑
√

1 − sin θkk′ . The p′′ integrations are
elementary and we find

f
↑↑
kk′ (I) =

(
mL2

2πh̄2

)
τ 2

1 k4
↑ tan2

(
θkk′

2

){
(1 + 2 cos θkk′)

−
[
cos θkk′ + sin2 (θkk′) ln

(
tan

(
θkk′

2

))]}
. (B7)

The second integral is

f
↑↑
kk′ (II)

= −32
m

h̄2

∑
p,p′,q

[pp′ cos(θpp′)]2τ 2
1

p2 − p′2 δp+ q
2 ,k′δp′+ q

2 ,kn−p+ q
2 ,↑.

(B8)

The δ functions yield p = p′ + (k′ − k), q = −2p′ + 2k, and
the new integration variable becomes p′′ = −p + q

2 . The
denominator is

p2 − p′2 = −a + b cos(θ ′′), (B9)

where {
a = 2k2

↑ sin2
(

θkk′
2

)
,

b = 2k↑| sin
(

θkk′
2

)|p′′,
(B10)

and θ ′′ = θp′′,k−k′ . Now consider the numerator:

pp′ cos θpp′ = (p′′)2

4
− k↑

2

[
cos θ ′′| sin

(
θkk′

2

)
| + sin θ ′′ cos

(
θkk′

2

)]
p′′ + k2

↑
4

(2 cos θkk′ − 1) . (B11)

We square (B11) and neglect terms that are odd powers of sin θ ′′. This leaves

f
↑↑
kk′ (II) = −2m

h̄2

L2

(2π )2
τ 2

1

∫ k↑

0
dp′′p′′

∫ 2π

0
dθ ′′ α + β cos θ ′′ + γ cos2 θ ′′

−a + b cos θ ′′ , (B12)
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where

⎧⎪⎨
⎪⎩

α = (p′′)4 + 6k2
↑(p′′)2 cos θkk′ + k4

↑(2 cos θkk′ − 1)2,

β = −[
4k↑(p′′)3 + 4k3

↑p′′(2 cos θkk′ − 1)
]| sin

(
θkk′
2

)|,
γ = −4k2

↑(p′′)2 cos θkk′ .

(B13)

The angular integrals can be done using Eqs. (A7):

f
↑↑
kk′ (II) = −2

(
mL2

2πh̄2

)
τ 2

1

∫ k↑

0
dp′′p′′

{[
1

b
β + a

b2
γ

]
−
[
α + a

b
β + a2

b2
γ

]
�(k↑| sin

(
θkk′
2

)| > p′′)

2k↑| sin
(

θkk′
2

)|√k2
↑ sin2

(
θkk′
2

) − (p′′)2

}
. (B14)

The momentum integrations with the square root factor can be done by utilizing the following integrals:

∫ ξ

0
dx

1√
x0 − x

= 2x
1
2

0 − 2
√

x0 − ξ, (B15a)

∫ ξ

0
dx

x√
x0 − x

= 4

3
x

3
2

0 − 2

3

√
x0 − ξ (2x0 + ξ ) , (B15b)

∫ ξ

0
dx

x2

√
x0 − x

= 16

15
x

5
2

0 − 2

15

√
x0 − ξ

(
8x2

0 + 4x0ξ + 3ξ 2
)
. (B15c)

After some algebra, we obtain

f
↑↑
kk′ (II) =

(
mL2

2πh̄2

)
τ 2

1 2k4
↑

[
3 − 12 sin2

(
θkk′

2

)
+ 224

15
sin4

(
θkk′

2

)]
. (B16)

The third integral is

f
↑↑
kk′ (III) = −2m

h̄2

∑
p,p′,q

{
τ 2

0 + 4pp′ cos(θpp′ )τ0τ1 + 4[pp′ cos(θpp′)]2τ 2
1

}
p2 − p′2

[
δp+ q

2 ,k′δp′+ q
2 ,kn−p+ q

2 ,↓
]
. (B17)

The δ function constraints are the same as for f
↑↑
kk′ (II) [Eq. (B8)]. The momentum integration variable is also the same except

now the integration is over the down-spin Fermi sea. We can now square (B11) and neglect terms that are odd powers of sin θ ′′.
This leaves

f
↑↑
kk′ (III) = −2m

h̄2

L2

(2π )2

∫ k↓

0
dp′′p′′

∫ 2π

0
dθ ′′A + B cos θ ′′ + C cos2 θ ′′

−a + b cos θ ′′ , (B18)

where

⎧⎪⎪⎨
⎪⎪⎩
A = τ 2

0 + [(p′′)2 + k2
↑(2 cos θkk′ − 1)]τ0τ1 + 1

4ατ 2
1 ,

B = −[
2k↑| sin

(
θkk′
2

)|p′′]τ0τ1 + 1
4βτ 2

1 ,

C = 1
4γ τ 2

1 .

(B19)

The parameters a,b are defined in Eqs. (B10), and α,β,γ are defined in Eqs. (B13). The angular integrals can be done using
Eqs. (A7):

f
↑↑
kk′ (III) = −2m

h̄2

L2

(2π )

∫ k↓

0
dp′′p′′

{[
1

b
B + a

b2
C
]

−
[
A + a

b
B + a2

b2
C
]

�(k↑| sin
(

θkk′
2

)| > p′′)

2k↑| sin
(

θkk′
2

)|√k2
↑ sin2

(
θkk′
2

) − (p′′)2

}
. (B20)

Due to the constraint introduced by the angular integration in the second term of Eq. (B20), the upper limit of that p′′ integration
becomes p′′

max = min [k↓,k↑| sin ( θkk′
2 )|]. The momentum integrations are handled by Eqs. (B15), and we find the following after
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some algebra:

f
↑↑
kk′ (III) =

(
mL2

2πh̄2

){
τ 2

0 +
[(

1 − 16

3
sin2

(
θkk′

2

))
k2
↑ + k2

↓

]
τ0τ1 +

[(
1

4
− 3 sin2

(
θkk′

2

)
+ 112

15
sin4

(
θkk′

2

))
k4
↑

+
(

1 − 3 sin2

(
θkk′

2

))
k2
↑k2

↓ + 1

4
k4
↓

]
τ 2

1

}
−
(

mL2

2πh̄2

){(
1 − k2

↓

k2
↑ sin2

(
θkk′
2

)) 1
2

×
[
τ 2

0 +
[(

1 − 20

3
sin2

(
θkk′

2

))
k2
↑ − 1

3
k2
↓

]
τ0τ1 +

[(
1

4
− 3 sin2

(
θkk′

2

)
+ 112

15
sin4

(
θkk′

2

))
k4
↑

+
(

1

2
− 19

15
sin2

(
θkk′

2

))
k2
↑k2

↓ + 1

20
k4
↓

]
τ 2

1

]}
× �

(
k↑| sin

(
θkk′

2

)
| > k↓

)
. (B21)

APPENDIX C: f ↓↓
kk′

For f
↓↓
kk′ , we simply flip the arrows inf

↑↑
kk′ (I) [Eq. (B7)] and f

↑↑
kk′ (II)[Eq. (B16)]. For f

↓↓
kk′ (III), we note that because of our

convention that k↓ � k↑, the inequality k↓| sin ( θkk′
2 )| > k↑ can never be satisfied, and so for f

↓↓
kk′ (III) we flip the arrows in Eq.

(B21) and then ignore the terms multiplied by the generalized step function.

APPENDIX D: f ↑↓
kk′

From Eq. (2.27), the first integral is

f
↑↓
kk′ (I ) = − m

h̄2

∑
p,p′,q

τ 2
0 + 4(pp′ cos θpp′)τ0τ1 + 4

(
pp′ cos θpp′

)2
τ 2

1

p2 − p′2 δp′+ q
2 ,kδ−p+ q

2 ,k′np+ q
2 ,↑. (D1)

The δ functions yield −p + q
2 = k′ and p′ + q

2 = k, and we can integrate over p and p′. We introduce a new integration variable
p′′ = p + q

2 . In terms of these variables the denominator becomes

p2 − p′2 = −k2
↑ + k↑k↓ cos θkk′ + |k − k′|p′′ cos θ ′′,

≡ −a + b cos θ ′′, (D2)

where θ ′′ = θp′′,k−k′ . The basic term in the numerator can be written

pp′ cos θpp′ = A + B cos θ ′′ + C sin θ ′′, (D3)

where ⎧⎪⎨
⎪⎩

A = − 1
4 (p′′)2 + 1

4k2
↓ − 1

2k↑k↓ cos θkk′ ,

B = − 1
2k↑p′′(k↑ − k↓ cos θkk′)/|k − k′|,

C = 1
2k↑p′′(k↓ sin θkk′)/|k − k′|.

(D4)

Substituting (D2) and (D3) into (D1) the integral becomes

f
↑↓
kk′ (I) = − m

h̄2

L2

(2π )2

∫ k↑

0
dp′′(p′′)

∫ 2π

0
dθ ′′

[
α + β cos θ ′′ + γ cos2 θ ′′

−a + b cos θ ′′

]
, (D5)

where
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⎧⎪⎨
⎪⎩

α = τ 2
0 + 4Aτ0τ1 + 4(A2 + C2)τ 2

1 ,

β = 4Bτ0τ1 + 8ABτ 2
1 ,

γ = 4(B2 − C2)τ 2
1 .

(D6)

Terms linear in sin θ ′′ has been omitted. Performing the angular integration yields

f
↑↓
kk′ (I) = −

(
mL2

2πh̄2

)∫ k↑

0
dp′′p′′

{[
1

b
β + a

b2
γ

]
−
[
α + a

b
β + a2

b2
γ

]
�(k2

↑ − k↑k↓ cos θkk′ > |k − k′|p′′)√
k2
↑(|k − k′|2 − k2

↓ sin2 θkk′) − |k − k′|2(p′′)2

}
.

(D7)

The constraint in the second term states that p′′ must be less than the projection of k onto k − k′ which for nonzero k′ must be
less than k↑. For simplicity, we separate f

↑↓
kk′ (I) [Eq. (D7)] into two parts. Thus,

f
↑↓
kk′ (I) = f

↑↓
kk′ (I-1) + f

↑↓
kk′ (I-2), (D8)

where the first part corresponds to the first term in square brackets and the second term corresponds to the second term with the
constraint on the upper limit of integration. The term in square brackets in f

↑↓
kk′ (I-1) is a simple quadratic in (p′′)2 and so we

immediately obtain

f
↑↓
kk′ (I-1) =

(
mL2

2πh̄2

)
(k2

↑ − k↑k↓ cos θkk′)

|k − k′|2
{
k2
↑τ0τ1 +

[
k2
↓ − 2k↑k↓ cos θkk′ − k2

↑
|k − k′|2 (k2

↑ − 2k↑k↓ cos θkk′

+ k2
↓ cos 2θkk′) − k2

↑
2

]
k2
↑
2

τ 2
1

}
. (D9)

For the second integral, we first reorganize the integrand in powers of p′′. The momentum integrals are done by utilizing Eqs.
(B15) where the integration upper limit is given by p′′

max = k↑ cos θk,k−k′ = (k2
↑ − k↑k↓ cos θkk′)/|k − k′|. These yield

f
↑↓
kk′ (I-2) =

(
mL2

2πh̄2

)(
k2
↑ − k↑k↓ cos θkk′

|k − k′|2
){

τ 2
0 +

[
(k2

↓ − 2k↑k↓ cos θkk′) − 8

3

(k2
↑ − k↑k↓ cos θkk′)2

|k − k′|2
]
τ0τ1

+
{

1

4
(k2

↓ − 2k↑k↓ cos θkk′)2 +
(

(k2
↑ − k↑k↓ cos θkk′)2

|k − k′|2
)

×
[
−4

3
(k2

↓ − 2k↑k↓ cos θkk′) + k2
↑(k2

↑ − 2k↑k↓ cos θkk′ + k2
↓ cos 2θkk′)

|k − k′|2

+ 2

3

(k↑k↓ sin θkk′)2

|k − k′|2
]

+ 4

5

(
(k2

↑ − k↑k↓ cos θkk′)4

|k − k′|4
)}

τ 2
1

}
. (D10)

The next term to be considered in Eq. (2.27) is

f
↑↓
kk′ (II) = − m

h̄2

∑
p,p′,q

τ 2
0 + 4(pp′ cos θpp′ )τ0τ1 + 4(pp′ cos θpp′ )2τ 2

1

p2 − p′2 δp+ q
2 ,kδ−p′+ q

2 ,k′n−p+ q
2 ,↓. (D11)

We note that under the transformations p → −p and p′ → −p′ this integral becomes

f
↑↓
kk′ (II) = − m

h̄2

∑
p,p′,q

τ 2
0 + 4(pp′ cos θpp′ )τ0τ1 + 4(pp′ cos θpp′)2τ 2

1

p2 − p′2 δ−p+ q
2 ,kδp′+ q

2 ,k′np+ q
2 ,↓, (D12)

which is identical to (D1), except for the spin-down dependence of the Fermi function. We can obtain the integral of Eq. (D12)
just by reversing spins in Eqs. (D9) and (D10). Thus, we find

f
↑↓
kk′ (II-1) =

(
mL2

2πh̄2

)
(k2

↓ − k↑k↓ cos θkk′)

|k − k′|2
{
k2
↓τ0τ1 +

[
k2
↑ − 2k↑k↓ cos θkk′ − k2

↓
|k − k′|2

× (k2
↓ − 2k↑k↓ cos θkk′ + k2

↑ cos 2θkk′) − k2
↓
2

]
k2
↓
2

τ 2
1

}
, (D13)

and similarly

f
↑↓
kk′ (II-2) =

(
mL2

2πh̄2

)(
k2
↓ − k↓k↑ cos θkk′

|k − k′|2
){

τ 2
0 +

[ (
k2
↑ − 2k↓k↑ cos θkk′

) − 8

3

(k2
↓ − k↓k↑ cos θkk′)2

|k − k′|2
]
τ0τ1
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+
{

1

4
(k2

↑ − 2k↓k↑ cos θkk′)2 +
(

(k2
↓ − k↓k↑ cos θkk′)2

|k − k′|2
)

×
[

− 4

3
(k2

↑ − 2k↓k↑ cos θkk′) + k2
↓(k2

↓ − 2k↓k↑ cos θkk′ + k2
↑ cos 2θkk′)

|k − k′|2

+ 2

3

(k↓k↑ sin θkk′)2

|k − k′|2
]

+ 4

5

(
(k2

↓ − k↓k↑ cos θkk′)4

|k − k′|4
)}

τ 2
1

}
. (D14)

The third term in Eq. (2.27) is

f
↑↓
kk′ (III) = − m

h̄2

∑
p,p′,q

τ 2
0 + 4(pp′ cos θpp′ )τ0τ1 + 4(pp′ cos θpp′ )2τ 2

1

p2 − p′2 δp+ q
2 ,kδ−p+ q

2 ,k′np′+ q
2 ,↑. (D15)

The δ functions yield −p + q
2 = k′ and p + q

2 = k, and so
we can integrate over p and p′. We can solve these for the
parameters p and q that play an important role in this section:

p = 1
2 (k − k′), (D16a)

q = k + k′. (D16b)

We introduce a new integration variable p′′ = p′ + q
2 . In terms

of this variable the denominator becomes

p2 − p′2 = −((p′′)2 + k · k′) + |k + k′|p′′ cos θ ′′,
≡ −a + b cos θ ′′, (D17)

where θ ′′ = θp′′,k+k′ . Similarly, the numerator can be written in terms of these variables by using

pp′ cos θpp′ = − 1
4 (k2 − k′2) + 1

2p′′|k − k′| cos θp′′,k−k′ .

(D18)

Substituting (D17) and (D18) into (D15) the integral becomes

f
↑↓
kk′ (III) = − m

h̄2

L2

(2π )2

∫ k↑

0
dp′′(p′′)

∫ 2π

0
dθ ′′

[
α + β cos θ ′′ + γ cos2 θ ′′

−a + b cos θ ′′

]
, (D19)

where ⎧⎪⎨
⎪⎩

α = τ 2
0 − (k2 − k′2)τ0τ1 + [

1
4 (k2 − k′2) + (p′′)2|k − k′|2 sin2 θp,q

]
τ 2

1 ,

β = 2p′′|k − k′| cos θpqτ0τ1 − (k2 − k′2)|k − k′|p′′ cos θpqτ
2
1 ,

γ = (p′′)2|k − k′|2 cos(2θp,q)τ 2
1 .

(D20)

Terms linear in sin θ ′′ have been omitted. Performing the angular integration yields

f
↑↓
kk′ (III) = −

(
mL2

2πh̄2

)∫ k↑

0
dp′′p′′

{[
1

b
β + a

b2
γ

]

−
[
α + a

b
β + a2

b2
γ

]
sgn(a)�(|a| > |b|)√

a2 − b2

}
. (D21)

The first integrand in (D21) (the term without the constraint) is a simple quadratic in p′′ and so the result is immediately

f
↑↓
kk′ (III-1) = −

(
mL2

2πh̄2

){(
2p

q

)
k2
↑ cos θpqτ0τ1 +

[
−2qp cos2 θpq

+
(

2p

q

)
cos(2θp,q)

((
− p2 + q2

4

)
+ k2

↑
2

)](
2p

q

)
k2
↑
2

τ 2
1

}
. (D22)

For the second term in (D21) we must analyze the constraint. From Eq. (D17), the allowed integration range is determined
by |a| > |b| which implies |((p′′)2 + k · k′)| > |k + k′|p′′. It can be shown that for both k · k′ > 0 and k · k′ < 0 the constraint
fixes the upper limit of the momentum integration p′′

max, where p′′
max = 1

2q − p. Thus, after performing the angular integration
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the second integral can be written,

f
↑↓
kk′ (III-2) =

(
mL2

2πh̄2

)
sgn(cos θkk′)

∫ p′′
max

0
dp′′p′′

[
[A + B(p′′)2 + C(p′′)4]√

(p′′)4 + (2k · k′ − |k + k′|2)(p′′)2 + (k · k′)2

]
, (D23)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A = τ 2
0 + [ − (k2 − k′2) + 2

( 2p

q

)
k · k′ cos θpq

]
τ0τ1 +

[
(k2 − k′2)

(
1
4 (k2 − k′2) − ( 2p

q

)
(k · k′) cos θpq)

+( 2p

q

)2
(k · k′)2 cos(2θpq)

]
τ 2

1 ,

B = [
2( 2p

q
) cos θpq

]
τ0τ1 + [|k − k′|2 sin2 θpq − ( 2p

q
)(k2 − k′2) cos θpq + 2

( 2p

q

)2
(k · k′) cos(2θpq)

]
τ 2

1 ,

C =
[(

2p

q

)2
cos(2θpq)

]
τ 2

1 .

The momentum integrations with the particular square root factors in Eq. (D23) can be done by utilizing the following
integrals: ∫ ξ

0
dx

A√
x2 + Dx + E

= A ln

(
D + 2ξ

D + 2
√

E

)
, (D24a)

∫ ξ

0
dx

Bx√
x2 + Dx + E

= B

[
−

√
E − 1

2
D ln

(
D + 2ξ

D + 2
√

E

)]
, (D24b)

∫ ξ

0
dx

Cx2

√
x2 + Dx + E

= C

[
3

4
D

√
E + 1

8

(
3D2 − 4E

)
ln (

D + 2ξ

D + 2
√

E
)

]
, (D24c)

where we have used the fact that ξ is a root of the denominator of the integrand. After some algebra, we find

f
↑↓
kk′ (III-2) =

(
mL2

2πh̄2

)
1

2

{
− [

τ 2
0 + 2p4τ 2

1

]
ln

(
2p

q

)
+
(

q2

4
− p2

)[
− 4p

q
cos θpqτ0τ1 + 1

2
p2

(
1 + 4p2

q2

)
cos(2θpq)τ 2

1

]}
.

(D25)

The final integral from Eq. (2.27) to be considered is

f
↑↓
kk′ (IV) = − m

h̄2

∑
p,p′,q

τ 2
0 + 4pp′ cos θpp′τ0τ1 + 4(pp′ cos θpp′ )2τ 2

1

p2 − p′2 δp+ q
2 ,kδ−p+ q

2 ,k′n−p′+ q
2 ,↓. (D26)

If we let p′ → −p′ and reverse spins then Eq. (D26) becomes identical to (D15), except we must also let V (p − p′) → V (p + p′).
From Eq. (2.13) this is accomplished just by flipping the sign of the terms proportional to τ0τ1. Thus, from Eqs. (D22) and (D25),

f
↑↓
kk′ (IV) =

(
mL2

2πh̄2

){(
2p

q

)
k2
↓ cos θpqτ0τ1 +

[
2qp cos2 θpq −

(
2p

q

)
cos(2θpq)

((
−p2 + q2

4

)
+ k2

↓
2

)](
2p

q

)
k2
↓
2

τ 2
1

+ 1

2

{
− [

τ 2
0 + 2p4τ 2

1

]
ln

((
2p

q

))
+
(

q2

4
− p2

)[
4p

q
cos θpqτ0τ1 + 1

2
p2

(
1 + 4p2

q2

)
cos(2θpq)τ 2

1

]}}
. (D27)
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24M. T. Béal-Monod, O. T. Valls, and E. Daniel, Phys. Rev. B 49,
16042 (1994).

25J. G. Dash, Films on Solid Surfaces (Academic Press, New York,
1975).

26S. W. Van Sciver and O. E. Vilches, Phys. Rev. B 18, 285 (1978).
27D. S. Greywall, Phys. Rev. B 41, 1842 (1990).
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