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We study spin imbalance effects on the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state relevant for
superconductors under a strong magnetic field and spin polarized ultracold Fermi gas. We obtain the exact
solution for the condensates with arbitrary spin imbalance and the fermion spectrum perturbatively in the
presence of small spin imbalance. We also obtain fermion zero mode exactly without perturbation theory.
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I. INTRODUCTION

The exotic superconducting state called Larkin-
Ovchinnikov-Fulde-Ferrel (LOFF) state has been proposed to
arise in superconductors under a strong magnetic field.1,2 The
LOFF state has a spatially varying order parameter associated
with Cooper pairs with finite center-of-mass momentum. If a
strong magnetic field induces spin polarization, such Cooper
pairs are considered to form between electrons with different
Fermi momenta. The LOFF state is also relevant for the physics
of color superconductivity where quarks with different masses
form pairs.3 This state was not observed for over 40 years since
its proposal, in spite of tremendous efforts. In the last couple
of years, there have been several claims of its observation
in heavy fermion materials4 and organic superconductors,5

but direct confirmation is yet to be given (see Ref. 6 for a
review).

Recent developments of research in cold atomic Fermi
gases have renewed interest in the LOFF state (see Ref. 7 for
a review). In two-component Fermi gases consisting of atoms
in two different hyperfine states, (pseudo)spin polarization
can be controlled by changing the populations of the two
components.7 Furthermore, atomic interaction can be tuned
in this system by using the Feshbach resonance which allows
one to explore the interesting BCS-BEC crossover physics.
Thus, a spin polarized Fermi gas is an ideal system for
realizing and exploring the LOFF state. In Fermi gases in a
toroidal trap, it has been shown that a new state called angular
LOFF state is possible in which the rotational symmetry is
spontaneously broken,8 instead of the translational symmetry
for the usual LOFF state. Recently, observation of spin
polarized superfluid state was reported9 and it is expected that
the LOFF state has been achieved in this experiment. However,
direct observation of its oscillating order parameter is still
lacking.

The Bogoliubov–de Gennes (BdG) equation has been
widely employed to study the LOFF state. Machida and
Nakanishi10 derived the self-consistent LOFF state solution
of the one-dimensional (1D) BdG equation making use of the
analytical solutions of the 1D Peierls problem.11–15 However,
they assume that electrons with up and down spins have
the same Fermi velocities (vF↑ = vF↓), so that their LOFF

solutions are valid only when spin polarization is small.
This assumption is appropriate to superconducting states,
because in ordinary superconductors the splitting of the Fermi
surfaces is of an order of the pair potential at the Pauli
limit, which is much smaller than the radius of the Fermi
surfaces.10 On the other hand, the Fermi surface mismatch is
in general not small for cold atomic Fermi gases7 and therefore
we have to take into account large spin polarization. The
spin imbalance effect was previously studied in the Peierls
problem.16

Recently a new approach for solving the BdG equation
has been proposed by Başar and Dunne.17 They derived
the nonlinear Schrödinger equation (NLSE) for the order
parameter � with a suitable ansatz for Gor’kov Green’s
function. Since the derived NLSE is a closed equation for
the order parameter �(x), this enables one to avoid the
self-consistent calculation of the coupled equations of the
BdG equation and the gap equation. Using this approach,
they found a self-consistent solution for a complex kink
crystal, which includes all previously known solutions as
special cases, such as the solutions of the LOFF state (real
kink crystal)10 and Shei’s complex (twisted) kink.18 This new
approach and the complex kink crystal solution have been
further developed17 for the massless Gross-Neveu model19

and the Nambu-Jona-Lasinio model in 1 + 1 dimension.20

However, this approach has not been extended to spin polarized
system.

In this paper, we investigate the self-consistent solutions
of the BdG equation for spin imbalanced Fermi condensates.
We extend the approach developed by Başar and Dunne to
obtain the analytic solutions for the LOFF state in which
the order parameter exhibits spatial oscillations. In contrast
to the solutions of Machida and Nakanishi, we take into
account the difference in the Fermi velocities (vF↑ �= vF↓)
and derive the exact solutions for the condensate �(x)
which are valid for any spin polarizations. We show how
the effect of large spin polarization changes the form of
the nonlinear Schrödinger equation for the order parameter.
We also develop the perturbation theory for the BdG equa-
tion in the presence of small spin polarization, and obtain
the fermion zero mode which is exact for arbitrary spin
polarization.
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II. NONLINEAR SCHRÖDINGER EQUATION FOR
ORDER PARAMETER

In this section, we derive the nonlinear Schrödinger
equation for the order parameter � in the presence of spin
polarization.

A. The Bogolibov–de Gennes equation

We consider a gas of fermions with spin up and down
in quasi-one-dimension under a magnetic field. If fermions
with different spins interact attractively, the system undergoes
a superconducting (superfluid) transition at low temperature.
Although the mean field approximation is not valid in strict one
dimension, since we assume a quasi-one-dimensional system
relevant for experiments, the system can be described by the
mean-field BdG equation21 (we set h̄ = 1)[

H↑(x) �0(x)

�∗
0(x) −H↓(x)

] [
u0(x)

v0(x)

]
= E

[
u0(x)

v0(x)

]
, (1)

Hσ (x) = − 1

2M

∂2

∂x2
− μσ , (2)

where σ (= ↑,↓) stands for the spin and M is the mass of the
fermion. The energy difference due to the Zeeman splitting
is included in the chemical potential for each spin state μσ

(σ = ↑,↓). This model is indeed applicable to an imbalanced
cold Fermi gas.7 Throughout this paper, we restrict ourselves
at T = 0. In this case, the order parameter �0(x) satisfies the
gap equation

�0(x) = −2g2
∑
En<0

un(x)vn(x)∗, (3)

where g is the attractive interaction between fermions with
different spins and n is the index for eigenstates.

If the attractive interaction is small compared with the
Fermi energy εFσ = μσ , fermions near the Fermi surfaces form
Cooper pairs. If we assume u0(x) = eikF↑xu(x) and v0(x) =
e−ikF↓xv(x) (kFσ is the Fermi momentum kFσ = √

2MεFσ ),
u(x) and v(x) vary much slower than 1/kFσ . Neglecting
the second derivative term of u(x) and v(x) (the Andreev
approximation22), the BdG equation reduces to[

−ivF↑ ∂
∂x

�(x)

�∗(x) ivF↓ ∂
∂x

] [
u(x)

v(x)

]
= E

[
u(x)

v(x)

]
, (4)

where vFσ = kFσ /m is the Fermi velocity and � =
e−i(kF↑+kF↓)x�0. When vF↑ = vF↓, the LOFF state solution of
Eq. (4) has been derived in Refs. 10,17.

B. The Başar-Dunne formalism

In Ref. 17, the so-called nonlinear Schrödinger equation
(NLSE) for �(x) has been derived for the case of vF↑ = vF↓,
through the analysis of Gor’kov Green’s function. This is a
convenient way to solve the BdG equation. Since the derived
NLSE is a closed equation for �(x), this enables one to avoid
the self-consistent calculation of the coupled equations of the
BdG equation and the gap equation. We extend this analysis
to the case of vF↑ �= vF↓.

First, we derive the Gor’kov Green’s function that satisfies

(H − E)G(x,y; E) = δ(x − y), (5)

where

H =
[
−ivF↑ ∂

∂x
�(x)

�∗(x) ivF↓ ∂
∂x

]
. (6)

The Gor’kov Green’s function can be constructed from two
independent solutions ψ(x) and φ(x) of Eq. (4) as23

G(x,y; E) =
(

0 v−1
F↑

v−1
F↓ 0

)
F ∗(x,y; E), (7)

F (x,y; E) = 1

iW (x)
[θ (y − x)ψ(x)φT (y)

+ θ (x − y)φ(x)ψT (y)], (8)

where W ≡ iψT σ2φ is a Wronskian. It is easy to show that
the Eq. (7) satisfies (5).

On the other hand, the diagonal resolvent is defined by

R(x; E) = 〈x| 1

H − E
|x〉. (9)

Indeed, Eq. (9) includes all spectral information for fermions
in the presence of �(x), such as the single-particle spectral
function

ρ(E) = 1

π
Im

∫
dxTrR(x; E + iδ). (10)

From Eq. (7), R(x; E) can be obtained as the coincident
limit of Gor’kov Green’s function:

R(x; E) = lim
δ→0+

1
2 [G(x,x + δ; E) + G(x + δ,x; E)]. (11)

We can show that R(x) satisfies the following conditions:

TrR̃(x; E)σ3 = 0, (12)

det R̃(x; E) = − 1
4 , (13)

where

R̃(x; E) ≡
(

vF↑ 0

0 vF↓

)
R(x; E). (14)

In addition to the above conditions, from the definition Eq. (9),
the resolvent must satisfy the Hermiticity condition:

R†(x; E) = R(x; E). (15)

By a straightforward calculation, we obtain

∂xR̃(x; E)σ3

= i

[(
v−1

F↓ 0

0 v−1
F↑

) (
E −�(x)

�∗(x) −E

)
, R̃(x; E)σ3

]
. (16)

Equation (16) is known as the Dikii-Eilenberger equation.23

Note that we have derived the above equation from the
BdG equation only with the Andreev approximation. On the
other hand, it is well known that the Eilenberger equation can
be derived from the BdG equation or equivalently Gor’kov
equation using the quasiclassical approximation in addition
to the Andreev approximation in 3D.24 In the present case,
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since we assume the system is (quasi)1D where the Andreev
approximation and the quasiclassical approximation are equiv-
alent, the Dikii-Eilenberger equation can be derived without
explicitly using the quasiclassical approximation. Therefore,
the solutions of Eq. (16) are the exact self-consistent solutions
of the BdG equation.

Next step is to make an ansatz for the form of the Gor’kov
Green’s function. From the gap equation, �(x) must satisfy

�(x) ∝ δ

δ�(x)∗

∫
dEρ(E) ln(1 + e−β(E−μ)). (17)

From Eq. (10), the simplest ansatz for R(x; E) to satisfy
Eq. (17) is that the diagonal entries are set to be proportional
to |�(x)|2. The gap equation can be derived by the functional
derivative

�(x) ∝ TrD,E [σ1(1 + σ3)R(x,E)] . (18)

The simplest solution for Eq. (18) is for off-diagonal entries
of the R(x; E) to be proportional to �(x) [or �∗(x)]. However,
the consistency between (16) and (18) requires that the
derivative term �′(x) [or �∗′(x)] should be in the off-diagonal
entries. The last condition comes from Eq. (12). If we assume
the following form for the resolvent:

R(x; E) = N
(

vF↓(a + |�(x)|2) b�(x) − ic�′(x)

b�∗(x) + ic�∗′(x) vF↑(a + |�(x)|2)

)
,

(19)

by substituting Eq. (19) into the right hand side of Eq. (16),
we obtain

∂xR̃(x; E)σ3 = N (E)

(
A B

−B∗ −A

)
, (20)

where

A = c(|�|2)′, (21)

B = ivF↓
(
v−1

F↑ + v−1
F↓

)
E[b(E)�∗ + ic�∗′]

−2ivF↓�∗[a(E) + |�|2]. (22)

Then, we find

c = vF↑vF↓, (23)

from the diagonal part, and

�̃′′ + i[b̃ − 2Ẽ]�̃′ − 2[ã − Ẽb̃]�̃ − 2�̃|�̃|2 = 0, (24)

from the off-diagonal part. Here, we have defined

ã = α−2a, b̃ = α−2b, Ẽ = α−2E, �̃ = α−1�, (25)

where α is the imbalance parameter, that is

α ≡ 2
√

vF↑vF↓
vF↑ + vF↓

=
√

vF↑vF↓
vF

. (26)

0 � α � 1. We introduce the mean Fermi velocity by vF =
(vF↑ + vF↓)/2, and set vF = 1. In the balanced case (vF↑ =
vF↓), it has been shown that this equation reproduce the well-
known solutions, e.g., homogeneous condensate (BCS theory),
single kink condensate,14 and real kink crystal.17

To confirm the consistency condition Eq. (13), we calculate
the determinant of the resolvent:

det R̃ = α8N 2[|�̃|4 − |�̃′|2 + (2ã − b̃2)|�̃|2
+ ib̃(�̃′�̃∗ − �̃�̃∗′) + ã2]. (27)

The NLSE implies that the right hand side of the above
equation is constant as follows:

d

dx

(
det R̃

α8N 2

)
= (2|�̃|2 + 2ã − b̃2)(|�̃|2)′ − (�̃′′�̃∗′ + �̃′�̃∗′′)

+ ib̃(�̃′′�̃∗ − �̃∗′′�̃) = 0. (28)

It is remarkable that by the scalings in Eq. (25), the NLSE
(24) for finite spin polarization takes exactly the same form as
the one for zero spin polarization. This means that there exist
solutions of Eq. (24) which correspond to each of the solutions
of the NLSE for the balanced case. Thus, the exact solutions
of Eq. (24) can be easily derived by scaling the solutions of the
NLSE for the balanced case. The solution corresponding to a
complex kink crystal is the most general one which includes
other solutions in some limits. We derive the solutions of
Eq. (24) in Sec. IV including that of the LOFF state.

III. IMBALANCE EFFECT ON SINGLE-PARTICLE STATES

In this section, we examine the effect of spin imbalance
on single-particle states. For simplicity, we consider the case
when the order parameter is real.

A. Imbalance effect on fermionic zero mode

First, we consider the fermionic zero mode, i.e., the solution
of Eq. (4) with E = 0. The zero mode plays crucial roles for the
LOFF state. The wave function of the zero mode is localized
around the nodes of the order parameter and accommodate the
excess spin component. For the zero mode solution, we can
exactly solve the BdG equation. When E = 0, by the scaling
transformations

ũ ≡ (1 + ε/2)−
1
2 u, ṽ ≡ (1 − ε/2)−

1
2 v, (29)

x̃ ≡ (1 − ε2/4)x = α2x, (30)

Eq. (4) can be rewritten as[
−i ∂

∂x̃
�̃

�̃ i ∂
∂x̃

] [
ũ

ṽ

]
= 0, (31)

where ε ≡ vF↑ − vF↓. It is clear that the above equation has
the same form as the one for vF↑ = vF↓. This indicates that
if the BdG equation has a zero mode solution for balanced
case, there exists a corresponding zero mode solution for
imbalanced case, and the two solutions are related by the
scaling transformations (29) and (30).

Furthermore, the zero mode solution can be explicitly con-
structed as follows. If one applies the unitary transformation[

f̃+
f̃−

]
= 1√

2

[
1 −i

i −1

] [
ũ

ṽ

]
, (32)

Eq. (31) yields

[∂x̃ ∓ �̃]f̃± = 0. (33)
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Hence, the solution of Eq. (33) can be formally written as

f̃±(x) ∝ exp

[
±

∫ x

0
dy α2�̃(y)

]
. (34)

Equation (34) is valid if f̃± is normalizable. That is
∫ ∞
−∞ dxf̃ 2

±
is finite. The solution (34) is exactly the same as the one for the
balanced case up to the scaling factor for the order parameter.

B. Perturbation theory for massive modes

We develop a perturbation theory for massive modes (E >

0). We calculate spin imbalance correction for the solutions
of Eq. (4) perturbatively taking ε as a small parameter. We
expand the solution of Eq. (4) by ε as[

u(x)

v(x)

]
=

[
u(0)(x)

v(0)(x)

]
+ ε

[
u(1)(x)

v(1)(x)

]
+ O(ε2), (35)

E = E(0) + εE(1) + O(ε2). (36)

In the zeroth order, we indeed obtain the equation for the
balanced case[

−i ∂
∂x

�̃(x)

�̃(x) i ∂
∂x

] [
u(0)(x)

v(0)(x)

]
= E(0)

[
u(0)(x)

v(0)(x)

]
. (37)

Here, we used � = α�̃ =
√

1 − ε2/4�̃ ≈ (1 − ε2/8)�̃.
Making use of the unitary transformation[

f+
f−

]
= 1√

2

[
1 −i

i −1

][
u

v

]
, (38)

Eq. (37) becomes(−∂2
x ∓ �̃′ + �̃2 − E(0)) f

(0)
± (x) = 0. (39)

Once �̃ is obtained by solving Eq. (24), the Shrödinger type
equation (39) yields a set of unperturbed eigenstates.

From the first order terms, we obtain(−∂2
x ∓ �̃′ + �̃2 − E(0)

)
f

(1)
± (x) + i

2
�̃f

(0)
∓ (x)

+ iE(0)∂xf
(0)
± (x) − 2E(0)E(1)f

(0)
± (x) = 0. (40)

Thus, the first order correction for the energy can be calculated
from the nonperturbative eigenvalues E(0)

n and eigenstates
f

(0)
±,n as

E(1)
n = − i

2

∫
dx

[
f

(0)∗
+,n (x) f

(0)∗
−,n (x)

]
∂x

[
f

(0)
+,n(x)

f
(0)
−,n(x)

]
. (41)

IV. SPIN IMBALANCE CORRECTION FOR
VARIOUS CONDENSATES

A. Homogeneous condensate

Here we consider the homogeneous condensate

�̃(x) = m. (42)

We can always take m to be real due to the chiral symmetry of
the model. The substitution Eq. (42) into Eq. (24) yields25

ã = 2Ẽ2 − m2, b̃ = 2Ẽ. (43)

Next, we calculate the energy spectrum for the quasiparti-
cles. In this case, the order parameter is constant and thus the
zero mode (34) is not allowed, i.e., it is not normalizable. Then
we calculate the massive modes. From Eq. (37), we obtain[

−i ∂
∂x

m

m i ∂
∂x

] [
u(0)(x)

v(0)(x)

]
= E(0)

[
u(0)(x)

v(0)(x)

]
. (44)

Then we obtain

E
(0)
± (k) = ±

√
k2 + m2, (45)

and the eigenspinor is[
u

±(0)
k (x)

v
±(0)
k (x)

]
= eikx

[
u±

k

v±
k

]
, (46)

where uk and vk is independent of x. Substituting Eq. (46) into
Eq. (41) yields

E
(1)
± (k) = 1

2k. (47)

Then we obtain the energy dispersion

E±(k) = ±
√

k2 + m2 + ε

2
k + O(ε2). (48)

In this case, the spectrum of the BdG equation (4) can also
be calculated exactly. By substituting Eqs. (25) and (42) into
Eq. (4), we obtain

E±(k) = ±
√

k2 + α2m2 + ε

2
k. (49)

This dispersion relation is plotted in Fig. 1. When ε � 1,
E±(k) � ε

2k ± √
k2 + m2, which is consistent with the result

(48) obtained by the perturbation theory.

−4 −2 2 4

−4

−2

2

4

E

k

FIG. 1. (Color online) Fermionic spectrum in the case of homo-
geneous condensate � = 2 with ε = 0.2. The slope of the asymptotes
changes by ε/2 as a consequence of the spin imbalance. The dashed
line shows the asymptotes for the spectrum when ε = 0.
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When |k| � α2m2, E±(k) � ±|k| + εk/2. This indicates
that the energy dispersion asymptotically becomes that of the
free fermion (E = vF↑k, − vF↓k).

Note that the energy gap contracts by a factor α2 compared
to the balanced case, namely the edges of the positive and
negative energy bands become ±mα2 as plotted in Fig. 1.

B. Single real kink condensate

Next solution we consider is the single real kink (antikink)
condensate

�̃(x) = ±m tanh(mx). (50)

This solution can be obtained by setting

ã = 2Ẽ2 − m2, b̃ = 2Ẽ. (51)

Now we analyze the spectrum of the associated BdG equation.
The energy spectrum for single kink condensate is obtained in
the limit of infinite periodicity of the real kink crystal, which
will be discussed in the following section. The only exception
is that the normalizable zero mode exists in this case. For the
real kink case (antikink case), the eigenstate f̃+(x) [f̃−(x)] in
Eq. (34) is normalizable and f̃ (x) [= f̃+(x) for kink, = f̃−(x)
for antikink] becomes

f̃ (x) = N [sech(mx)]α
2
, (52)

where N is the normalization constant.

C. LOFF state

As shown in Ref. 17, the NLSE for balanced case has the
LOFF solution (real kink crystal). Then, we can immediately
conclude that Eq. (24) has the corresponding solution

�̃(x) = √
ν

2m

1 + √
ν

sn

(
2m

1 + √
ν
x; ν

)
, (53)

where sn is the Jacobi elliptic function with real elliptic
parameter 0 � ν � 1. Then we can conclude that the spin
imbalance results in the dilatation with a factor α2 of the
condensate. The substitution Eq. (53) into Eq. (24) yields

ã(Ẽ) = 2Ẽ2 − 2m2 1 + ν

(1 + √
ν)2

, (54)

b̃(Ẽ) = 2Ẽ. (55)

The eigenstates of the quasiparticles for the real kink crystal
order parameter (53) are given as follows10:

f
(0)
+,n(x) =

[
℘ (x + ω3) − e

2L (℘̄ − e)

] 1
2

× exp

[
iC(E)

∫ x

0

dx ′

℘(x ′ + ω3) − e

]
, (56)

where L is the size of the system and ℘ is the Weierstrass
function which obeys �̃2(x) − �̃′(x) = e1 + 2℘(x + ω3) with

e1 = 2m2

3(1 + √
ν)2

(1 + ν), (57)

e2 = − m2

3(1 + √
ν)2

(1 − 6
√

ν + ν), (58)

E

0

E3

E2

-E2

-E3

E*+εE*(1)
E*

FIG. 2. Schematic illustration of the first order correction to the
fermionic energy levels with respect to the balanced case for the real
kink crystal condensate.

e3 = − m2

3(1 + √
ν)2

(1 + 6
√

ν + ν), (59)

e = e1 − E2. (60)

The amplitude of f+,n has the half periodicity of

ω = K(ν)/m, (61)

where K(ν) is the complete elliptic integral of the first kind.
We define ℘̄ as the average of ℘

℘̄ = 1

ω

∫ ω

0
℘(x + ω3)dx. (62)

The coefficient C(E) in Eq. (56) is defined by

C(E) = ±E

√(
E2 − E2

2

)(
E2 − E2

3

)
, (63)

E2
i = e1 − ei (i = 2,3). (64)

Substituting Eq. (56) into Eq. (41), we obtain

E(1) = − C(E)

2 (℘̄ − e)
. (65)

This result implies, in particular, that the two gaps shrink as a
consequence of nonzero imbalance, as illustrated in Fig. 2.

In the limit of ν → 1, the periodicity becomes infinite and
then the LOFF state (the real kink crystal condensate) reduces
to the single kink condensate.

V. CONCLUSIONS

We conclude this paper with few remarks. In this paper,
we have investigated the spin imbalance correction for the
BdG equation. We have expanded the method in Ref. 17,
which is valid for the balanced case, and have obtained
the nonlinear Schrödinger equation for the order parameter
with spin imbalance. We have shown that the imbalance
correction for the order parameter is only included in the
reparametrization, however this result is nontrivial without
using this method. We have obtained the fermionic zero mode
exactly for arbitrary spin imbalance by a scale transformation
of the one in the balanced case, which implies the stability of
the fermionic zero mode against the spin imbalance. We also
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have analyzed the massive fermionic spectrum of the BdG
equation with small spin imbalance by perturbation theory.
We have applied the method for homogeneous condensate, the
single kink condensate and the LOFF state (the real kink crystal
condensate). For the homogeneous condensate, we show the
consistency between the perturbation theory and the exact
solution for fermionic spectrum in first order. For the real kink
crystal condensate, we have obtained the imbalance correction
for the order parameter and the fermionic spectrum. This result
completely generalizes those of Ref. 10.

Finally, we make few remarks, (i) we have analyzed the
fermionic problem by the perturbation at the first order in the
spin imbalance parameter ε, however the higher expansion
is straightforward. (ii) As in the case of homogeneous
condensate, we may obtain the exact solution. (iii) We have
dealt with the real condensate in this paper, however the

method used here can be generalized to the complex case,
such as the twisted kink18 and the twisted kink crystal.17
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17G. Başar and G. V. Dunne, Phys. Rev. Lett. 100, 200404 (2008);
Phys. Rev. D 78, 065022 (2008).

18S. S. Shei, Phys. Rev. D 14, 535 (1976).
19D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
20Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
21P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin,

New York, 1966).
22J. Bar-Sagi and C. G. Kuper, Phys. Rev. Lett. 28, 1556

(1972).
23I. Kosztin, S. Kos, M. Stone, and A. J. Leggett, Phys. Rev. B 58,

9365 (1998).
24M. Ichioka, N. Hayashi, and K. Machida, Phys. Rev. B 55, 6565

(1997).
25In order to obtain Eq. (43), we put m to be me−εx and then we take

the limit of ε → 0.

024503-6

http://dx.doi.org/10.1103/PhysRev.135.A550
http://dx.doi.org/10.1103/RevModPhys.76.263
http://dx.doi.org/10.1038/nature01842
http://dx.doi.org/10.1143/JPSJ.76.051005
http://dx.doi.org/10.1143/JPSJ.78.114715
http://dx.doi.org/10.1103/PhysRevLett.100.117002
http://dx.doi.org/10.1103/PhysRevB.82.172504
http://arXiv.org/abs/arXiv:0903.4018
http://arXiv.org/abs/arXiv:0709.2296
http://dx.doi.org/10.1088/0034-4885/73/7/076501
http://dx.doi.org/10.1088/0034-4885/73/7/076501
http://arXiv.org/abs/arXiv:1102.4903
http://dx.doi.org/10.1103/PhysRevB.80.220510
http://dx.doi.org/10.1038/nature09393
http://dx.doi.org/10.1103/PhysRevB.30.122
http://dx.doi.org/10.1103/PhysRevLett.46.742
http://dx.doi.org/10.1002/pssb.2221030242
http://dx.doi.org/10.1002/pssb.2221030242
http://dx.doi.org/10.1103/PhysRevB.21.2388
http://dx.doi.org/10.1103/PhysRevB.21.2388
http://dx.doi.org/10.1103/PhysRevLett.100.200404
http://dx.doi.org/10.1103/PhysRevD.78.065022
http://dx.doi.org/10.1103/PhysRevD.14.535
http://dx.doi.org/10.1103/PhysRevD.10.3235
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRevLett.28.1556
http://dx.doi.org/10.1103/PhysRevLett.28.1556
http://dx.doi.org/10.1103/PhysRevB.58.9365
http://dx.doi.org/10.1103/PhysRevB.58.9365
http://dx.doi.org/10.1103/PhysRevB.55.6565
http://dx.doi.org/10.1103/PhysRevB.55.6565

