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Measurement of energy decay in superconducting qubits from nonequilibrium quasiparticles
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Quasiparticles are an important decoherence mechanism in superconducting qubits, and can be described
with a complex admittance that is a generalization of the Mattis-Bardeen theory. By injecting nonequilibrium
quasiparticles with a tunnel junction, we verify qualitatively the expected change of the decay rate and transition
frequency in a phase qubit. With their relative change in agreement to within 4 % of prediction, the theory can be
reliably used to infer quasiparticle density. We describe how settling of the decay rate may allow determination
of whether qubit energy relaxation is limited by nonequilibrium quasiparticles.
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Superconducting resonators and Josephson qubits are
remarkable systems for quantum information processing,1

with recent experiments demonstrating three-qubit
entanglement,2,3 Bell and Leggett-Garg inequalities,4,5

resonance fluorescence,6 photon jumps,7 and transducers,8

and entangled-photon NOON states.9 For maximum
coherence, devices are operated at temperatures T well
below the superconducting transition Tc to suppress thermal
excitations and quasiparticles. Nevertheless, experiments
using resonators and qubits can sense the presence of
quasiparticles, which arise from nonequilibrium sources such
as stray infrared radiation, cosmic rays, or energy relaxation in
materials.10,11 It is vitally important to completely understand
the theory of quasiparticle dissipation, determine whether it
limits qubit coherence, and identify generation mechanisms.

In this paper, we experimentally test the theory of
quasiparticle dissipation12 by measuring the response of a
superconducting phase qubit to the injection of nonequilib-
rium quasiparticles. The decay rate of the qubit is shown
qualitatively to depend on the injection and recombination
rate of quasiparticles. Because the density of quasiparticles
nqp is not known from injection, we compare the decay rate
and frequency shift of the qubit with changing nqp to test
quantitatively the correct dependence with theory. We also
show that the characteristic settling time to steady state is
consistent with theory, and may allow an additional measure
of quasiparticle density.

In superconductivity, nonequilibrium quasiparticles at
energy E can be described using an occupation proba-
bility f (E). Quasiparticle effects can be expressed in a
two-fluid manner by considering their total density nqp =
2D(Ef )

∫ ∞
�

ρ(E)f (E)dE, where D(Ef )/2 is the single-spin
density of states, � is the gap, and ρ(E) = E/

√
E2 − �2

is the normalized density of quasiparticle states. For low
dissipation appropriate for qubits, we need only consider small
occupations nqp � ncp, where we define ncp ≡ D(Ef )� as the
density of Cooper pairs. Using BCS theory, nonequilibrium
quasiparticles lower the superconducting gap as � = �0(1 −
nqp/ncp), where �0 is the gap without quasiparticles.13

We first describe the effect of nonequilibrium quasiparticles
on Josephson tunneling. For arbitrary occupation f (E), the

Josephson inductance LJ and admittance YJ from Cooper pair
tunneling has frequency dependence

YJ (ω) = 1

iωLJ

= 1

iω

2πI0 cos φ

�0
[1 − 2f (�)], (1)

where φ is the junction phase difference, �0 = h/2e is the
flux quantum, and I0 is the critical current.13 Nonequilibrium
quasiparticles effectively lower the critical current by a factor
1 − 2f (�) by blocking pair channels. Note that this reduction
is not a function of nqp, but depends on the occupation
probability at the gap f (�). For an exact calculation, the
occupation would be for Andreev bound states in the junction
at energies slightly below the gap;14 for small tunneling
probability, we assume this equals the occupation of free
quasiparticles at the gap f (�). Thermal quasiparticles have
an occupation fT (E) = 1/[1 + exp(E/kT )], which yields the
expected temperature dependence tanh(�/2kT ).

Defining a through the relation f (�) = a nqp/ncp, we
find a � √

�/2πkT for thermal quasiparticles at low
temperature.15 For the case of nonequilibrium quasiparticles
generated by an external pair-breaking source, we numerically
compute a � 0.12 (nqp/ncp)−0.173, giving a � 1.2 for typical
parameters.13

The total junction admittance Yj is also affected by
quasiparticle tunneling,12 and is given by

Yj (ω)

1/Rn

= �

h̄ω
(1 + cos φ)

[
1 + i√

2

√
�

h̄ω

nqp

ncp
− iπf (�)

]

− iπ
�

h̄ω
cos φ [1 − 2f (�)], (2)

where the last term, from Cooper pair tunneling, has the
critical current I0 = π�/2eRn re-expressed using the gap and
junction resistance Rn. The first term gives a different phase
dependence 1 + cos φ, and has contribution from the tunneling
of free quasiparticles [nq] and bound Andreev states [f (�)].

For a junction phase difference φ = 0 the factors from f (�)
cancel out, and the admittance is

Yj (ω)

1/Rn

= (1 + i)
√

2

(
�

h̄ω

)3/2
nqp

ncp
− iπ

�

h̄ω
. (3)
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This result is equivalent to the normalized conductivity
σ (ω)/σn given by the Mattis-Bardeen theory16 for thermal
quasiparticles17 in the limit kT � h̄ω � �. This shows that
resistance in a superconductor can be modeled as a series of
Josephson junctions.

Quasiparticle damping increases the energy relaxation
rate in Josephson qubits. For the phase qubit, where matrix
elements are well approximated by harmonic oscillator values,
the relaxation rate is given by18

	1 � Re{Yj (E10/h̄)}
C

= 1 + cos φ√
2RnC

(
�

E10

)3/2
nqp

ncp
, (4)

where C is the junction capacitance and E10 is the qubit energy.
This result is identical to that found from environmental P (E)
theory in the low impedance limit,11 and now includes a
cos φ term coming from the interference of electron- and
holelike tunneling events.19

Quasiparticles also change the imaginary part of Yj ,
which then shifts the qubit frequency by δE10/h̄ �
−Im{Yj (E10/h̄)}/2C using perturbation theory.18 For the
nqp/ncp term in quasiparticle tunneling, the real and imaginary
parts of Yj are equal, which yields a change in angular
frequency −	1/2. Quasiparticles reduce the admittance from
Cooper pair tunneling by the factor 1 − (1 + 2a)nqp/ncp due
to a change in � and the pair-blocking terms. Including the
final f (�) term from quasiparticle tunneling, the frequency
shift is

δE′
10

h	1
= − 1

4π

[
1 − 1

b

a − (1 + a) cos φ

1 + cos φ

]
, (5)

where b = √
�/2E10/π � 0.6 for typical parameters. Here,

the shift is normalized to the damping since both are propor-
tional to nqp.

The above calculation assumes constant φ, which is not
valid for a phase qubit where we impose the constraint of
constant current bias I . Assuming the standard Josephson
current-phase relationship, the critical current changes both
from the gap and quasiparticle excitations in the junction, giv-
ing δI0/I0 = −(1 + 2a) nqp/ncp. Because the qubit frequency
scales as E10 ∝ (I0 − I )1/4, a change in qubit critical current
changes the bias I0 − I and results in an additional shift in
frequency given by δE10/E10 = (1/4)δI0/(I0 − I ).

Since the equations for both dissipation and frequency shift
are proportional to nqp, their ratio can be related using qubit
parameters. Including both frequency shifts, we find13

δE10

h	1
= δE′

10

h	1
− 1

4

1 + 2a

1 + cos φ

(
I0

I0 − I

E10

�0

)1/2

. (6)

The latter term dominates because the current bias is typically
set close to the critical current I0 − I � I0.

As shown in Fig. 1(a), we experimentally test this theory by
using a phase qubit20 to measure the effect of nonequilibrium
quasiparticles injected via a separate tunnel junction in the
superconducting quantum interference device (SQUID). The
effect of quasiparticles are modeled by a parallel admittance
Yj that changes the qubit |1〉 to |0〉 state transition frequency

FIG. 1. (a) Schematic of phase qubit, with critical current
I0 � 2.0 μA and capacitance C � 1.0 pF, shunted by admittance
Yj coming from nonequilibrium quasiparticles. The measurement
SQUID, shunted by an off-chip resistor Rsq = 30 �, is on the same
chip as the qubit (Ref. 21) and generates quasiparticles when switched
into the voltage state. The separation between the qubit and SQUID
is about 1 mm. The SQUID I -V shows a typical resistively shunted
Josephson junction, from which the SQUID critical current and RSQ

can be measured. (b) Time sequence of experiment, showing initial
pulse for quasiparticle injection at the SQUID, settling time τset, flux
pulses applied to the qubit for frequency or decay time measurement,
and a final flux measurement by the SQUID.

and decay rate. Qubit measurement produces a state-dependent
change in the loop flux that is measured with a SQUID readout
circuit.20 The SQUID is also used to generate quasiparticles
when driven into the voltage state Vsq > 0. With the SQUID
shunted by a resistor Rsq = 30 �, the SQUID current Isq can
be adjusted to produce a voltage Vsq from ∼0.6 �/e to above
2�/e, greatly changing the generation rate of quasiparticles.

The experimental time sequence is illustrated in Fig. 1(b).
Quasiparticles are initially generated by applying SQUID
current to produce Vsq � 2�/e for a time τinj: quasiparticles
then diffuse to the qubit via the ground plane connection.
The injection is turned off for a settling time τset, after which
we apply a flux wave form to perform a measurement of the
qubit resonance frequency or decay rate.20 We then ramp
Isq to measure the flux state for qubit readout, but at a low
voltage Vsq � 0.6 �/e so that few quasiparticles are generated.
The experiment is typically repeated ∼1000 times to produce
probabilities.

We plot in Fig. 2(a) the decay rate and frequency shift of the
qubit versus injected SQUID current for a fixed settling time.
When the current Isq produces a SQUID voltage Vsq < 2�/e

(left of dashed vertical line), we observed almost no frequency
shift δE10/h or change in the decay rate 	1. However, when the
voltage exceeds the gap and greatly increases the quasiparticle
generation rate from pairbreaking, we observe a large increase
in qubit decay rate and decrease in frequency.

The recombination of quasiparticles is tested by keeping the
injection current and time constant, while varying the settling
time, as shown in Fig. 2(b). For short times corresponding to
the highest quasiparticle densities, we see more rapid decay of
the qubit. For settling times greater than ∼500 μs the decay
rate approaches that without injection of quasiparticles.
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FIG. 2. (Color online) Effect of quasiparticles on the phase qubit.
(a) Plot of qubit decay rate 	1 (circles) and frequency shift δE10/h

(triangles) as a function of SQUID injection current Iinj, for a fixed
time of injection τinj = 200 μs and settling τset = 300 μs. Dashed
vertical line indicates SQUID voltage Vsq = 2�/e, above which
quasiparticle generation increases rapidly. (b) Plot of decay rate
versus settling time (circles) for fixed injection current Iinj = 20 μA
and time τinj = 200 μs. Quasiparticles are observed to recombine on
a time scale ∼300 μs. Bottom blue line is theory of Eq. (9) with
electron-phonon coupling22 τ0 = 400 ns. Theories with additional
qubit decay (top red, τ0 = 200 ns) and nonequilibrium quasiparticles
of Eq. (8) (gray, τ0 = 400 ns) are also shown, each fit with τ0

and a parameter matching 	1 at 10 ms. Qubit number is 2, with
I0 = 2.03 μA and C = 1.063 pF.

Although these data show qualitative agreement with
expectations, direct quantitative analysis is difficult because
of uncertainties in predicting nqp from modeling the gen-
eration, recombination, and diffusion of the quasiparticles.
However, an accurate quantitative test of the theory can be
obtained by comparing the change in decay rate with the
change in qubit frequency, which are both expected to scale
as nqp.

This comparison is shown in Fig. 3 for the range of injection
currents plotted in Fig. 2. With both quantities proportional
to nqp, a linear relation is expected and observed in the
data. The slope δE10/h	1 is thus a quantitative test of the
theoretical prediction given in Eq. (6). We extracted the slope
from this type of plot for three devices and five experiments,
as summarized in Table I. We find that the experimentally
measured slope is on average only slightly larger (3.6%) than
predicted by theory and well within experimental uncertainty
(14%).

We have also compared the dissipation and frequency shift
in superconducting coplanar resonators made from aluminum,
where quasiparticles are generated by raising the temperature.
We find that the shift in resonance frequency and inverse
quality factor also scale together, with a slope that is 0.77

FIG. 3. Parametric plot of qubit frequency shift δE10/h and decay
rate 	1 for various injection currents. A linear relation is observed,
consistent with theoretical predictions that both should scale as nqp.
Gray line indicates fit to the data. Qubit number is 2 as shown in
Table I.

times the predicted value.13 The difference is probably due to
two-level states.23

With confidence that we can accurately extract nqp from our
experiment, we now analyze the time dependence of the data
plotted in Fig. 2(b). The decay of quasiparticles can readily be
calculated for the case of small density when they mostly have
energy near the gap.13 In this limit, the integral of Eq. (7) in
Ref. 11 gives a recombination rate 	r = (21.8/τ0)(nqp/ncp),
where τ0 � 400 ns is the characteristic electron-phonon cou-
pling for aluminum.22 If rqp is the injection rate, the differential
equation dnqp/dt = −2	rnqp + rqp can be solved to give

nqp

ncp
= τ0/43.6

t − t0
(case rqp = 0), (7)

nqp = (nqp)eq coth[ (	r )eq(t − t0) ], (8)

with equilibrium values (	r )eq = [(43.6/τ0)(rqp/ncp)]1/2 and
(nqp)eq/ncp = (τ0/43.6)(	r )eq, where t0 is the integration con-
stant. After quasiparticle injection, Eq. (8) describes a decay
that initially follows Eq. (9), but levels off to a steady-state
value (nqp)eq after time � 1/(	r )eq.

We plot in Fig. 2(b) the prediction for the case of no
equilibrium quasiparticles rqp = 0 [Eqs. (4) and (D9)], which
depends only on τ0. To account for the constant rate at times
� 1 ms, we consider two hypotheses. One is the qubit has
an additional dissipation mechanism, so that the net decay

TABLE I. Qubit parameters showing average cos φ, bias parame-
ter (I0 − I )/I0, operating frequency, slope extracted from experiment
data as plotted in Fig. 3, slope predicted by theory of Eq. (6), and their
ratio for three separate devices. We observe experimental agreement
within experimental uncertainty, as denoted in parentheses. Qubits 3,
4, and 5 are the same device tested at different times. Calculation
of cos φ and (I0 − I )/I0 accounts for the inductive shunt in the
flux-biased phase qubit.

cos φ
I0−I

I0

E10
h

(GHz) [ δE10
h	1

]expt [ δE10
h	1

]theor
expt
theor

1 0.12(3) 0.042(5) 6.523 −1.42(9) −1.34(19) 1.05(16)
2 0.17(4) 0.066(6) 6.743 −1.30(3) −1.03(13) 1.22(15)
3 0.19(4) 0.071(3) 6.413 −1.13(6) −1.03(09) 1.09(12)
4 0.33(5) 0.130(3) 7.375 −0.67(2) −0.80(14) 0.83(14)
5 0.19(4) 0.071(4) 6.413 −1.04(6) −1.04(10) 0.99(11)
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rate is the sum of the above prediction with a constant offset.
The second assumes constant injection of nonequilibrium
quasiparticles, as given by Eq. (8). We plot these two additional
predictions, which show somewhat different dependencies
with time.

For settling times �300 μs, we believe that the departure
from theory is due to diffusion effects that are not included
in this simple model.11 Numerical simulations13 show that
such deviations are reasonable given that the injection and
qubit junctions are well separated. Note the small dip in 	1

at time ∼1 ms is similar in magnitude to prior temperature
measurements.11 Although both hypotheses can roughly ex-
plain the data for times �300 μs, the scenario that fits a bit
better is when nonequilibrium quasiparticles are the dominant
decay mechanism.

Fluctuations in the quasiparticle density cause the qubit
frequency to jitter, producing dephasing.24 Using a Ramsey
fringe protocol, measurements were made of the decay time
T2 at different quasiparticle injection currents, where we
saw a decrease in T2 at high quasiparticle densities. After
correcting for the decrease in T2 from a change in T1 using
1/T2 = 1/2T1 + 1/Tφ , we found that Tφ was unchanged to
within experimental error. We conclude that other dephasing
mechanisms are dominant in the phase qubit.

In conclusion, we have used the theory of quasiparticle
admittance to predict the qubit frequency shift and energy
decay from nonequilibrium quasiparticles. When injecting
quasiparticles from a nearby junction, we find good qualitative
agreement with theory. Good quantitative agreement was
observed between the relative change of qubit decay and
frequency with changing quasiparticle density. Monitoring the
time dependence of qubit decay after injection should allow
future experiments to positively identify if nonequilibrium
quasiparticles are the limiting decay mechanism in supercon-
ducting qubits.
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APPENDIX A: NON-EQUILIBRIUM QUASIPARTICLES

We are interested in how nonequilibrium quasiparticles
affect the properties of a Josephson junction in qubit devices.
Since we are concerned with very-low-temperature operation,
we consider phonon temperatures sufficiently low that no
quasiparticles exist due to thermal generation. The nonequi-
librium quasiparticles are generated with an unknown mecha-
nism, and then relax their energy via the emission of phonons.
The quasiparticles typically have energy E close to the gap,
from which they eventually decay via recombination. From
electron-phonon physics, we know that the qusiaparticles relax
to energies very near the gap, as calculated in Ref. 11.

FIG. 4. Parametric plot of fractional frequency shift δf/f versus
dissipation 1/Q, for various quasiparticle occupations nqp changed
by varying the the sample temperature. The device is an aluminum
coplanar resonator fabricated on sapphire. The slope of the data is in
good agreement with predictions (gray line) at temperatures above
250 mK. Deviations at low temperature are believed to come from
the two-level states.

The factor of 2 in the definition of nqp comes from
integration only over positive energy, whereas excitations arise
from both electron states above and below the Fermi energy.
Note that this integral already contains the two possible spin
states in the definition of D(Ef ).

APPENDIX B: QUASIPARTICLES IN COPLANAR
RESONATORS

The relationship between quasiparticle damping and fre-
quency shift may also be tested in superconducting res-
onators. Here microwave transmission is measured to extract
the resonance frequency f and the quality factor Q, with
the quasiparticle density changed by simply increasing the
temperature.25 As shown in Fig. 4, we find that with increasing
quasiparticle density, dissipation increases and the resonance
frequency decreases, in a similar manner as for junctions.

To compare with theory, we use solutions to the Mattis-
Bardeen conductivity that is valid for the regime kT ∼
h̄ω � �.16,17 These results can be expressed in terms of an
admittance function discussed in the main paper, but with a
modification of the the 1 + i term,

Yj (ω)

1/Rn

= (dR + idI )
√

2

(
�

h̄ω

)3/2
nqp

ncp
− iπ

�

h̄ω
, (B1)

dR = 2
√

2x/π sinh(x)K0(x), (B2)

dI =
√

2πx exp(−x)I0(x), (B3)

where x = h̄ω/2kT . The theoretical prediction, indicated by
the gray line in Fig. 4, is in reasonable agreement with the data
at high temperatures. The experimental slope at temperatures
above 200 mK is 0.77 times that given by theory. The deviation
is largest below about 120 mK, and believed to arise from
two-level states that are not included in this model. The
response from nonequilibrium quasiparticles has recently be
calculated.26

APPENDIX C: NUMERICAL SOLUTION OF
QUASIPARTICLE RECOMBINATION

For numerical computations of nonequilibrium quasiparti-
cle density from relaxation and recombination,11 the integrals
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over energy have to be put into discrete form. For a binning
size given by dε in energy, we define the number of excitations
in bin i as

ni ≡ dερ(εi)f (εi). (C1)

Using this definition, the total quasiparticle density is

nqp

ncp
= 2

�

∑
i

ni . (C2)

The scattering and recombination rates of Eqs. (6) and (7)
of Ref. 11 can then be expressed in a discrete form,

	s
i→j =

∑
j

[
(εi − εj )2

τ0(kTc)3

(
1 − �2

εiεj

)
Np(εi − εj )dερ(εj )

]

(C3)

≡
∑

j

Gs
ij , (C4)

	r
i,j =

∑
j

[
(εi + εj )2

τ0(kTc)3

(
1 + �2

εiεj

)
Np(εi + εj )

]

× dερ(εj )f (εj ) (C5)

≡
∑

j

Gr
ij nj , (C6)

where the phonon occupation factor is Np(E) =
1/| exp(−E/kTp) − 1| and the bracketed terms are the
G factors. We have also assumed small occupation, so that in
Eq. (C3) we use 1 − f → 1.

The coupled differential equations for the change in the
excitation number are

d

dt
ni = Gs

jinj −
∑

j

Gs
ijni −

∑
j

(1 + δij )Gr
ijnjni, (C7)

where δij is the Kronecker δ and accounts for the annihilation
of two quasiparticles when in the same bin (i = j ). With the
physics expressed in matrix form, a solution can be readily
solved numerically.

APPENDIX D: QUASIPARTICLE DECAY

The physics of quasiparticle relaxation and recombination
was discussed in Ref. 11. Although the paper described solu-
tions for the nonequilibrium occupation f (E) using numerical
methods, quasiparticle decay physics can be understood in
the case of low density where they are mostly occupied at
the gap. The electron-electron recombination rate of a single
quasiparticle, starting from Eq. (7) of Ref. 11, can be well
approximated using

	r � 1

τ0

∫ ∞

�

dε′ (ε + ε′)2

(kTc)3

(
1 + �2

εε′

)
ρ(ε′)f (ε′) (D1)

� 1

τ0

(2�)2

(kTc)3

(
1 + �2

�2

) ∫ ∞

�

dε′ρ(ε′)f (ε′) (D2)

= 4

τ0
(1.76)3 nqp

D(EF )�
(D3)

= 21.8

τ0

nqp

ncp
, (D4)

where we have used the BCS result �/kTc = 1.76. Here,
D(Ef )/2 is the single-spin density of states, and we define the
Cooper pair density ncp ≡ D(EF )�.

The time dependence of the quasiparticle density can be
understood via the rate equation

d

dt
nqp = −2	rnqp + rqp, (D5)

d

dt

nqp

ncp
= −43.6

τ0

(
nqp

ncp

)2

+ rqp

ncp
, (D6)

where a recombination event removes two quasiparticles,
and rqp is the single-particle quasiparticle injection rate. The
second equation is for the normalized quasiparticle density,
and has a recombination rate that is proportional to n2

qp because
of the two-body electron-electron interaction.

The equilibrium quasiparticle density is given by setting
dnqp/dt = 0, yielding density and recombination rates

(nqp)eq

ncp
=

[
τ0

43.6

rqp

ncp

]1/2

= τ0

43.6
(	r )eq, (D7)

(	r )eq =
[

43.6

τ0

rqp

ncp

]1/2

= 43.6

τ0

(nqp)eq

ncp
. (D8)

The first equation is close to what was found numerically in
Ref. 11. The second is given by the geometric mean of the
normalized injection and the characteristic electron-electron
interaction rates.

We compared the results of this simple calculation with
numerical solutions for a range of injection rates and found
excellent agreement for nqp/ncp � 0.001. Even at large density
nqp/ncp = 0.1, Eq. (D7) is a reasonable approximation as
its prediction is only 40% larger than that obtained via
numerics.

For no injection of quasiparticles rqp = 0, the differential
equation can be integrated to give

nqp

ncp
= τ0/43.6

t − t0
, (D9)

where t is the time and t0 is an integration constant, which is
approximately the time at which the quasiparticles start to cool.
The solution to the differential equation for a finite injection
rate is

nqp = (nqp)eq coth[ (	r )eq(t − t0)], (D10)

where the coth term is replaced by tanh if the quasiparticle
density increases with time. At short times the term coth 	rt =
1/	r t , which then gives Eq. (9) and a time dependence that
scales only with the electron-phonon coupling time τ0. There is
a relatively sharp crossover to the long-time behavior where the
quasiparticle density n

eq
qp is constant with time. The crossover

time is given by 1/(	r )eq.
The inverse of the crossover time thus gives the equilibrium

recombination rate (	r )eq, which is related to the density using
Eq. (D7) and the parameter τ0. Comparing this density with
that found from the qubit decay rate allows one to determine
whether quasiparticles are the limiting decay mechanism for
the qubit.
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FIG. 5. (Color online) Plot of quasiparticle density versus settling
time for a superconducting disk of radius 5 mm with quasiparticle
injection at the center. Points are for the simulation at four radii, r = 0
(black), 0.5 mm (red), 1.25 mm (green), and 5 mm (blue). Large
changes are observed for small radii, which show a time dependence
close to that predicted by the full theory of Eq. (9) of main paper
(black line) and for the zero background of Eq. (8) (cyan line). At
large radii much greater than the characteristic diffusion length of
∼1 mm, no change in quasiparticle density is seen. The simulation
for radius 1.25 mm is in reasonable agreement with experimental
data.

APPENDIX E: QUASIPARTICLE DECAY WITH DIFFUSION

The analysis in the last section assumes a bulk (uniform)
model where there is no diffusion of quasiparticles. Here, we
describe a numerical solution for quasiparticle decay including
relaxation, recombination, and diffusion using the simple
geometry of a thin superconducting disk of radius 5 mm.
We use constant quasiparticle injection throughout the disk
and a large injection pulse into the center of the disk
at time t = −200 μs to t = 0. Because diffusion depends
on the quasiparticle energy, the calculation keeps track of
the occupation probability for both the radius and energy
variables.

In Fig. 5 we plot quasiparticle density versus settling time
in a manner similar to that in the main paper, but for four radii.
We find differing behavior depending on the ratio of the radius
with the diffusion length ∼1 mm, as computed for e-e diffusion
in Fig. 3 of Ref. 11. For small radii, we see a dependence on
time that matches closely with the bulk theory, as described
in the main paper. For a radius much larger than the diffusion
length, the quasiparticle density does not change. For the radius
close to the diffusion length, we observed behavior between
the two limits—a reduced peak density but a relaxation to the
steady-state value that has a similar time scale as for a small
radius.

We note that the actual qubit device has interruptions in
the ground plane due to the device geometry, so that this
computation will not exactly match the experimental data.
However, the model mimics the time dependence of the
data fairly well above 10 μs, so it is reasonable to compare

FIG. 6. Plot of a = f (�)/(nqp/ncp) versus nqp/ncp, found from
numerical simulation. Based on the values of nqp/ncp in Fig. 2(b) in
the paper, we find a � 1.2. For a wide range of injection rates, a can
be well approximated by the power law a � 0.12 (nqp/ncp)−0.173.

to the simple bulk analysis for the behavior at long times
�250 μs.

APPENDIX F: DEPENDENCE OF GAP ON
QUASIPARTICLES

The change in the superconducting gap � with quasiparti-
cles can be calculated starting from the BCS gap equation, but
assuming a small nonequilibrium populationf (E),

� = D(Ef )V
∫ θD

�

dE ρ
�

E
(1 − 2f ), (F1)

1 = D(Ef )V

(∫ θD

�

dE√
E2 − �2

−
∫ θD

�

dE ρ
1

E
2f

)
(F2)

� D(Ef )V

(
ln

2θD

�
− nqp

D(Ef )�

)
, (F3)

where V is the attraction potential and θD is the Debye energy.
Solving for the gap, one finds

� = 2θD exp

(
− 1

D(EF )V
− nqp

D(EF )�

)
(F4)

= �0 exp

(
− nqp

D(EF )�

)
(F5)

� �0

(
1 − nqp

ncp

)
, (F6)

where �0 is the normal expression for the BCS gap with no
quasiparticles.

APPENDIX G: NUMERICAL DETERMINATION OF
OCCUPATION PARAMETER

To determine the effect of nonequilibrium quasiparticles,
both the quasiparticle density nqp and the occupation proba-
bility at the gap f (�) must be calculated. We plot in Fig. 6
the quantity a = f (�)/(nqp/ncp) versus nqp/ncp obtained
from numerical computations for a wide range of injection
rates. We find that the results are well approximated by
a line on the log-log plot, implying that the dependence
can be well approximated by the power-law formula a �
0.12 (nqp/ncp)−0.173.
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APPENDIX H: CURRENT-PHASE RELATIONSHIP WITH
QUASIPARTICLES

The current-phase relationship from Josephson tunneling is
given by

I (φ) = I0 sin φ

[
1 − nqp

ncp

]
[1 − 2f (�)], (H1)

where I0 = π�0/2eRn and the dependence of � on quasi-
particles is now explicitly shown. To first order, the fractional
change in the critical current is

δI0

I0
= −(1 + 2a)

nqp

ncp
. (H2)

An interesting question is whether the quasiparticle tun-
neling terms should also be included in the current-phase
relation. For the junction current to only be a function of
phase, it must arise for a purely inductive component of
the junction admittance, which corresponds to terms with a
frequency dependence that scales as 1/iω. Tunneling of free
quasiparticles should not be included since it has an additional
frequency dependence (nqp/ncp)

√
�/h̄ω. The Andreev bound

states of the quasiparticles have an inductance, so the ac
Josephson relation can then be used to find the current

IABS(φ) = −�0

2π

∫ φ

0
Im{ωYABS(φ)} dφ (H3)

= I0[φ + sin φ]f (�). (H4)

Note that this term increases the critical current, and if one
replaces φ → sin φ it cancels out the decrease coming from
Josephson tunneling. Since many experiments have shown that
the temperature dependence of the current-phase relation is
given by only Josephson tunneling, we do not use this Andreev
bound state term in our calculations. In addition, our data are
not consistent with including this term since it has the effect
of reducing 2a in Eq. (H2) to a value below a.

APPENDIX I: RELATING DISSIPATION AND THE
FREQUENCY CHANGE

Since both dissipation and the fractional critical-current
change are proportional to nqp, the magnitude of these effects
are related. The fractional change in the qubit resonance
frequency E10/h can be calculated knowing that its dominant
scaling is E10/h ∝ (I0 − I )1/4, where I is the qubit bias
current, giving

δ(E10/h)

E10/h
= 1

4

δ(I0 − I )

I0 − I
(I1)

= 1

4

I0

I0 − I

δI0

I0
(I2)

= −1 + 2a

4

I0

I0 − I

nqp

ncp
. (I3)

Quasiparticle dissipation can be likewise written in terms
of the quasiparticle density, provided we first re-express the
capacitance C into qubit parameters. Using the Josephson

inductance LJ0 = �0/2πI0, the qubit resonance frequency
is given by

E10

h
� 1

2π

1√
LJ0C

[2(I0 − I )/I0]1/4. (I4)

We thus calculate the decay rate of the qubit,

	1 � 1 + cos φ√
2

2eI0

π�C

(
�

E10

)3/2
nqp

ncp
(I5)

= 1 + cos φ√
2

h

2π2�

1

LJ0C

(
�

E10

)3/2
nqp

ncp
(I6)

� 1 + cos φ√
2

h

2π2�

(2πE10/h)2

√
2(I0 − I )/I0

(
�

E10

)3/2
nqp

ncp
(I7)

= (1 + cos φ)
E10

h

(
I0

I0 − I

)1/2 (
�

E10

)1/2
nqp

ncp
. (I8)

By taking the ratio of Eqs. (I3) and (I8), the quasiparticle
densities cancel out, and we can relate the dissipation to the
frequency shift,

δ(E10/h)

	1
= −1

4

1 + 2a

1 + cos φ

(
I0

I0 − I

)1/2 (
E10

�

)1/2

. (I9)

APPENDIX J: JOSEPHSON EFFECT FOR ARBITRARY
QUASIPARTICLE OCCUPATION

Here we calculate the effect of a nonequilibrium population
of quasiparticle states on Josephson tunneling, as appropriate
for qubit devices. The current proportional to cos δ is also
evaluated for the case of gaps that are not equal. The
results are readily obtained using standard second-order
perturbation theory and simple integration of intermediate
formulas.

The work expands on Ref. 27, which calculated the
Josephson effect at zero temperature. In the paper, the section
on Josephson tunneling is the starting point of this calculation.

The Josephson effect is derived by calculating the second-
order change in energy to a superconducting state from a
tunnel junction. The tunneling Hamiltonian in second-order
perturbation theory is given by

H
(2)
T =

∑
i

HT

1

εi

HT , (J1)

where εi is the energy of the intermediate state i. Because the
terms in HT have both γ † and γ operators, the second-order
Hamiltonian has terms that transfer charge across the junction
but do not change the superconducting state, thus giving a
change in the energy of the state. This differs from first-order
tunneling theory, which produces current only through the real
creation of quasiparticles.

Because HT has terms that transfer charge in both direc-
tions, HT HT will produce terms that transfer two electrons
to the right, two to the left, and with no net transfer. With
no transfer, a calculation of the second-order energy gives a
constant value, which has no physical effect. We first calculate
terms for the transfer of two electrons to the right from
(
−→
H T + + −→

H T −)(
−→
H T + + −→

H T −). Nonzero expectation values
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are obtained for only two out of the four terms, as given by

−−→
H

(2)
T =

∑
i

−→
H T +

−→
H T − + −→

H T −
−→
H T +

εi

(J2)

=
∑

i

|t |2 (cLc
†
R)(c−Lc

†
−R) + (c−Lc

†
−R)(cLc

†
R)

εi

(J3)

=
∑

i

|t |2 (cLc−L)(c†Rc
†
−R) + (c−LcL)(c†−Rc

†
R)

εi

. (J4)

The pairs of electron creation and annihilation operators
can be computed, giving

ckc−k = (uγ0 + veiφγ
†
1 )(uγ1 − veiφγ

†
0 ) (J5)

→ uveiφ(−γ0γ
†
0 + γ

†
1 γ1), (J6)

c−kck → uveiφ(−γ
†
0 γ0 + γ1γ

†
1 ), (J7)

c
†
kc

†
−k = (uγ

†
0 + ve−iφγ1)(uγ

†
1 − ve−iφγ0) (J8)

→ uve−iφ(−γ
†
0 γ0 + γ1γ

†
1 ), (J9)

c
†
−kc

†
k → uve−iφ(−γ0γ

†
0 + γ

†
1 γ1), (J10)

where we have only included pairs of quasiparticle operators γ

that leave the superconducting state unchanged, as needed for
a calculation of the energy change from tunneling. Inserting
these operators into Eq. (J4) and defining the phase difference
δ = φL − φR , we find

−−→
H

(2)
T =

∑
i

|t |2eiδ(uLvL)(uRvR)
(−γL0γ

†
L0 + γ

†
L1γL1)(−γ

†
R0γR0 + γR1γ

†
R1) + (−γ

†
L0γL0 + γL1γ

†
L1)(−γR0γ

†
R0 + γ

†
R1γR1)

εi

(J11)

=
∑

i

|t |2eiδ(uLvL)(uRvR)

[
−γL0γ

†
L0γR1γ

†
R1 − γL1γ

†
L1γR0γ

†
R0

EL + ER

+ −γ
†
L1γL1γ

†
R0γR0 − γ

†
L0γL0γ

†
R1γR1

−EL − ER

+ γL0γ
†
L0γ

†
R0γR0 + γL1γ

†
L1γ

†
R1γR1

EL − ER

+ γ
†
L1γL1γR1γ

†
R1 + γ

†
L0γL0γR0γ

†
R0

−EL + ER

]
, (J12)

where we have computed the intermediate energy εi using
a positive (negative) energy E for the creation (annihilation)
of a quasiparticle. The quantity u v = �/2E describes the
amplitude for the virtual quasiparticle to be both electron- and
holelike, which allows a net transfer of charge by two electrons.

We now change the sum to an integral over electron states
according to∑

i

→ N0L

∫ ∞

−∞
dξL N0R

∫ ∞

−∞
dξR

= 2N0L

∫ ∞

�L

ρL dEL 2N0R

∫ ∞

�R

ρR dER, (J13)

where N0 is the normal density of states, and ρ =
E/

√
E2 − �2 is the (normalized) superconducting density of

states.
By describing the superconducting state with an occupation

probability of quasiparticles f = f (E), the quasiparticle
operators for the creation then destruction of a quasiparticle
is weighted by 1 − f , while the process of destruction then
creation is weighted by f . The tunneling Hamiltonian is then
given by

−−→
H

(2)
T = |t |2eiδN0LN0R 2

∫ ∞

�L

ρLdEL

× 2
∫ ∞

�R

ρRdER

�L

2EL

�R

2ER

2G, (J14)

G = − (1 − fL)(1 − fR)

EL + ER

− fLfR

−EL − ER

+ (1 − fL)fR

EL − ER + iε

+ fL(1 − fR)

−EL + ER + iε
(J15)

= −1 − fL − fR + fLfR

EL + ER

+ fLfR

EL + ER

+ fR − fLfR

EL − ER + iε

+ fL − fLfR

−EL + ER + iε
(J16)

= −1 − fL − fR

EL + ER

+ P
fR − fL

EL − ER

+ iπ (fL + fR − 2fLfR)δ(EL − ER) (J17)

= − 1

EL + ER

+ P
2fREL − 2fLER

E2
L − E2

R

+ iπ (fL + fR − 2fLfR)δ(EL − ER), (J18)

where G comes from quasiparticle operators [bracket terms in
Eq. (J12)] after removing a factor of 2 because of the pair of
states 0 and 1. We take ε → 0+, and the integration over the
zero of energy in the denominator is performed using 1/(x +
iε) = P(1/x) + iπδ(x), where P is the principle part and δ(x)
is the Dirac δ function.

The total second-order Hamiltonian for the tunneling of
two electrons in both directions is

H
(2)
T = −−→

H
(2)
T + ←−−

H
(2)
T (J19)

= −−→
H

(2)
T + H.c. (J20)

= 2Re
{−−→
H

(2)
T

}
, (J21)

where H.c. is the Hermitian conjugate.
This result can be expressed in more physical terms by

noting that the junction resistance can be written as

1

Rn

= 4πe2

h̄
|t |2N0RN0L. (J22)
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In addition, The Josephson tunneling current is given by

Ij = 2e

h̄

∂
〈
H

(2)
T

〉
∂δ

. (J23)

Combining all of these equations, the total Josephson current
is given by the integrals

Ij = 2

πeRn

{
sin δ P

∫ ∞

�L

ρLdEL

∫ ∞

�R

ρLdER

�L

EL

�R

ER

×
[

1

EL + ER

− 2
fREL − fLER

E2
L − E2

R

]
− π cos δ

×
∫ ∞

max(�L,�R )
ρLρRdE

�L�R

E2
(fL + fR − 2fLfR)

}
,

(J24)

We note that the sin δ term in Eq. (J24) corresponds to Eq. (22)
of the Ambegaokar-Baratoff calculation.28

We evaluate these integrals by first considering, without loss
of generality, that �L < �R . Using ρ�/E = �/

√
E2 − �2

and y = ER/�L > 1, we compute that the temperature-
independent term 1/(EL + ER) gives for integration over EL

I1L =
∫ ∞

�L

dEL

�L√
E2

L − �2
L

1

EL + ER

(J25)

=
∫ ∞

1
dx

1√
x2 − 1

1

x + y
(J26)

= arccosh y√
y2 − 1

. (J27)

The remaining integration over ER gives29

I1LR =
∫ ∞

�R

dER

�R√
E2

R − �2
R

�Larccosh(ER/�L)√
E2

R − �2
L

(J28)

= π
�L�R

�L + �R

EllipticK

∣∣∣∣�L − �R

�L + �R

∣∣∣∣ (J29)

= π2

4
� (for�L = �R = �), (J30)

where the last equation uses EllipticK(0) = π/2. From nu-
merical integration, we have found that Eq. (J29) is only
approximate for �L 
= �R .

For the next term in Eq. (J24) that has the principle
part of EL/(E2

L − E2
R), we first integrate over EL. With the

assumption �L < �R , the integral always passes across the
pole at ER giving

I2L = P
∫ ∞

�L

dEL

�L√
E2

L − �2
L

EL

E2
L − E2

R

(J31)

= P
∫ ∞

1
dx

1√
x2 − 1

x

x2 − y2
(J32)

= − 1√
y2 − 1

×
⎧⎨
⎩

arctanh
√

y2−1
x2−1 (x > y)

arctanh
√

x2−1
y2−1 (x < y)

∣∣∣∣∣∣
∞

1

(J33)

= 0. (J34)

We thus find no contribution for fR in the total integral.

We next compute the ER integral for the ER/(E2
L − E2

R)
term. We define w = EL/�R , and note that the integration
over ER depends on whether EL is greater or less than �R ,

I2R = P
∫ ∞

�R

dER

�R√
E2

R − �2
R

ER

E2
L − E2

R

(J35)

= P
∫ ∞

1
dz

1√
z2 − 1

z

z2 − w2
(J36)

= − 1√
1 − w2

×
⎧⎨
⎩

0 (w > 1)

arctan
√

x2−1
1−w2 (w < 1)

∣∣∣∣∣∣
∞

1

(J37)

= −π

2

1√
1 − w2

θ (�R − EL). (J38)

This result implies that when integrating over EL, no contri-
bution comes from �R to infinity, so the full integral is

I2RL =
∫ �R

�L

dEL

�L√
E2

L − �2
L

2fLI2R (J39)

= −π

∫ �R

�L

fL dEL

�L√
E2

L − �2
L

�R√
�2

R − E2
L

. (J40)

In the limit where �L is close to �R such that fL is constant
over the region of integration, the integral can be evaluated as

I2RL = −πfL(�L) �LEllipticK[1 − (�L/�R)2] (J41)

� −π2

4
� 2fL(�), (J42)

where in the last equation we have taken the limit �L → �R =
�.

For the case of equal gaps �, the first two integrals give a
Josephson current with a sin δ dependence,

Ijs = 2

πeRn

(I1LR + I2RL) sin δ (J43)

= π

2

�

eRn

[1 − 2fL(�)] sin δ (J44)

= π

2

�

eRn

tanh[�/2kT ] sin δ (thermal). (J45)

The last equation assumes a thermal population of quasipar-
ticles given by f (E) = 1/[1 + exp(E/kT )], which yields the
Ambegaokar-Baratoff formula28 for the Josephson current.

The Josephson current can also be calculated for an
arbitrary quasiparticle occupation under the assumption that
the difference of the gaps �R − �L is much larger than the
typical width of the quasiparticle distribution. The contribution
from the principle part for the fR term is zero, as discussed
before. The contribution from fL (the lower gap side of the
junction) is given by Eq. (J40). Noting that fL is peaked at
EL = �L, we find that the current change from quasiparticles
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is given by

Ij2 � −2 sin δ

eRn

�R√
�2

R − �2
L

∫ �R

�L

fL dEL

�L√
E2

L − �2
L

(J46)

� − sin δ

eRn

�R�L√
�2

R − �2
L

nqpL

N0L�L

, (J47)

Note that these equations have a contribution from quasi-
particle occupation only from the left electrode, which has
lower gap. This makes sense since a more exact theory of
Andreev bound states has suppression of the critical current
from occupied states in the gap, which has to have energy
below that of the lowest gap.

For the cos δ term, we first note that the current diverges
logarithmically for �L → �R . Assuming the quaisparticle

density is constant with f = fl + fR − fLfR , numerical
integration gives the approximate formula

Ijc � −2 cos δ

eRn

[
−0.1 + �L

�R

− 0.5 ln

(
1 − �L

�R

)]
f. (J48)

For the case where the gaps greatly differ, and in the limit
discussed in the previous paragraph, the current is

Ijc � −2 cos δ

eRn

ρL(�R)
�L�R

�2
R

∫ ∞

�R

ρR dE fR (J49)

= −cos δ

eRn

�2
L√

�2
R − �2

L

nqpR

N0R�R

, (J50)

which has a form and magnitude similar to the thermal current.
Note that for the cos δ current, quasiparticles contribute

from the higher gap side of the junction. This contrasts the
behavior of the sin δ current, which has a contribution from
the superconducting electrode with lower gap.
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