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Z2 spin liquid and chiral antiferromagnetic phase in the Hubbard model on a honeycomb lattice

Yuan-Ming Lu and Ying Ran
Department of Physics, Boston College, Chestnut Hill, MA 02467, USA

(Received 5 December 2010; revised manuscript received 4 April 2011; published 15 July 2011)

In a Schwinger-fermion representation we classify all 128 possible spin liquids that preserves SU (2) spin-
rotational symmetry, honeycomb lattice group symmetry, and time-reversal symmetry. Among them we identify
a Z2 spin liquid called the sublattice-pairing state (SPS) as the spin liquid phase discovered in recent numerical
study on a honeycomb lattice [Meng et al., Nature (London) 464, 847 (2010)]. Our method provides a systematic
way to identify spin liquids close to Mott transition. We also show that the SPS is identical to the zero-flux
Z2 spin liquid in Schwinger-boson representation [Wang, Phys. Rev. B 82, 024419 (2010)]. through an explicit
duality transformation. SPS is connected to an unusual antiferromagnetic ordered phase, which we term the
chiral-antiferromagnetic (CAF) phase, by an O(4) critical point. The CAF phase breaks the SU (2) spin rotational
symmetry completely and has three Goldstone modes. Our results indicate that there is likely a hidden phase
transition between the CAF phase and the simple antiferromagnetic phase at large U/t . We also propose numerical
measurements to reveal the CAF phase and the hidden phase transition.
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I. INTRODUCTION

A novel state of matter, a quantum spin liquid (SL),
has been recently discovered in organic spin-1/2 triangular
lattice experimental systems.1–3 This class of organic Mott
insulators is in the vicinity of the Mott transition and can be
driven into a Fermi liquid by applying pressure. A quantum
SL is the ground state of a Mott insulator which does
not break physical symmetries, and cannot be adiabatically
connected to a band insulator. After Anderson’s proposal of
resonating-valence-bond (RVB) states,4 a lot of theoretical and
experimental efforts have been made to show the existence of
such novel phases of matter with fractionalized excitations.5

For example, various exact or quasi-exact solvable models6–9

hosting SL ground states have been constructed. The exciting
experimental progress on the triangular lattice organics raises
an interesting question: Can a SL be naturally realized in a
Mott insulator close to the Mott transition?10,11 If this is true,
it can serve as a guideline in searching SLs in experimental
systems. Physical intuition suggests this is likely to be the case
because, in the neighborhood of the Mott transition, quantum
fluctuations of spins are strong which can suppress the classical
spin ordering.

A recent remarkable numerical study12 for the nearest
neighbor Hubbard model on the honeycomb lattice,

H = −t
∑
〈ij〉σ

c
†
iσ cjσ + U

∑
i

c
†
i↑ci↑c

†
i↓ci↓, (1)

provides another price of evidence of this guideline, where
an insulating phase respecting all physical symmetry is found
in the neighborhood of the Mott transition. This phase has
attracted some theoretical attention13,14 because it cannot be
explained as a band insulator due to the honeycomb lattice
structure. It should be a SL with fractionalized excitations.
There are many different SLs on the honeycomb lattice,
characterized by different topological orders.15 Which SL is
realized in the simulated Hubbard model? And in a general
context, is there a systematic way to identify the SLs in the

neighborhood of a Mott transition? We provide our answers to
these questions in this paper.

In Ref. 12, it is shown that this SL phase has a full energy
gap and is likely to be smoothly connected (i.e., through a con-
tinuous phase transition) to both the semimetal phase for small
U/t and an antiferromagnetic (AF) phase for large U/t . These
three conditions strongly restrict the candidate SL phases.

There have been two popular approaches to describe SL
phases: Schwinger-fermion16–19 and Schwinger-boson,6,20 in
which the low-energy spin excitations are fermionic and
bosonic spinons, respectively. The fermionic approach is more
natural to be used in the vicinity of a continuous Mott
transition, whereas the bosonic model is more natural when
close to a magnetic transition. (This is because, close to a
Mott transition, physically the low energy spinons should
be the electrons which lose their charge coherence. Bosonic
spinon condensation can easily explain the transition into a
magnetic ordered phase.) The possible underlying relation
between the two seemingly very different approaches has been
a long-standing puzzle.

In Schwinger-fermion representation, we classify all pos-
sible 128 different Z2 SLs using a projective symmetry
group (PSG).15 In the vicinity of the Mott transition in the
simulated Hubbard model,12 we will show that there is only
one natural SL among them, a Z2 state coined the sublattice
pairing state (SPS) which has a full energy gap and can
be smoothly connected to the semimetal phase. Moreover,
the Schwinger-boson method has been used to describe the
magnetic phase transition2 in the same system. It was found
that only one SL phase, the zero-flux state, can be smoothly
connected to an AF ordered phase. The zero-flux state is also
a Z2 state with a full energy gap. However, it is not clear
whether this zero-flux state can be smoothly connected to
the semimetal phase. Can the SPS be related to the zero-flux
state? In this paper, we will demonstrate that, remarkably, the
SPS and zero-flux state are identical by an explicit duality
transformation in the low-energy effective theory. This is the
first identification of a state in both the Schwinger-fermion and
the Schwinger-boson methods.
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FIG. 1. Mean-field ansatz of (a) SPS phase and (b) CAF phase in
terms of the f -fermion. νij = 1 if i → j is along the arrow direction.
(c) The honeycomb lattice and its Bravais lattice vector �a1,2. �d1,2,3 are
the three vectors used in Eq. (21). Two, generators of the symmetry
group are also shown: 60◦ rotation of C6, the horizontal mirror σ .

We will also show that the magnetically ordered phase
connected to the SPS is rather unusual and not the simple Néel
phase, because it breaks the SU(2) spin-rotation symmetry
completely and has three Goldstone modes. We name this
phase the chiral-antiferromagnetic (CAF) phase. Aside from
the usual AF spin order parameter �N = (−1)is �Si , where
is = 0,1 for A and B sublattices, respectively, in the CAF
phase there is another vector-chirality spin order parame-
ter �n = ∑

〈〈ij〉〉 νij
�Si × �Sj , whose expectation value satisfies

〈�n〉 ⊥ 〈 �N〉. νij = +1(−1) if one goes from site i to j in a
clockwise (counterclockwise) manner, as shown by the arrows
in Fig. 1(b). Since the usual AF phase should exist in the large
U/t limit,21 our results suggest a hidden phase transition,
which might happen in the “Néel” phase of the previously
mentioned numerical study12 or at a larger U/t not studied
before. We therefore propose the schematic phase diagram as
shown in Fig. 2(a).

This paper is organized in the following way. In Sec. II
we give a brief exposition of the SU(2) Schwinger-fermion
approach to SL states and PSG classification of different
SLs. Following the mathematical classification of all Z2 spin
liquids using the PSG in Appendix B, we discuss the possible
gapped Z2 SLs continuously connected to a semimetal phase
in Sec. III. We find there is only one natural candidate, the SPS.
A mean-field study of the SPS in the J1-J2 Heisenberg model
is given in Appendix F. In Sec. IV we discuss the continuous
phase transition between the SPS and a magnetically ordered
phase and reveal a hidden order parameter of this CAF phase
aside from Néel order parameter. In Sec. V we identify our
SPS with the zero-flux state in Schwinger-boson mean-field
approach2 through an explicit duality transformation. Finally,
we summarize our results in Sec. VI.

FIG. 2. (a) Proposed schematic phase diagram of the Hubbard
model on the honeycomb lattice. (b) Schematic RG flow of the Mott
transition.

II. SCHWINGER-FERMION APPROACH
AND PROJECTIVE SYMMETRY GROUP

In the large-U limit at half-filling, the charge flucutation in
Hubbard model (1) is severely suppressed and the low-energy
spin fluctuations are described by the S = 1/2 Heisenberg
model:43

Hspin = −4t2

U

∑
〈ij〉

Si · Sj + O

(
t3

U 2

)
. (2)

In the Schwinger-fermion approach, a spin-1/2 operator at site
i is represented by

�Si = 1
2f

†
iα �σαβfiβ . (3)

A Heisenberg spin Hamiltonian H = ∑
〈ij〉 Jij

�Si · �Sj is repre-

sented as H = ∑
〈ij〉 − 1

2Jij (f †
iαfjαf

†
jβfjβ + 1

2f
†
iαfiαf

†
jβfjβ).

Because this representation enlarges the Hilbert space, states
need to be constrained in the physical Hilbert space, i.e., one
f -fermion per site:

f
†
iαfiα = 1, fiαfiβεαβ = 0. (4)

Introducing mean-field parameters ηij εαβ = −2〈fiαfjβ〉,
χij δαβ = 2〈f †

iαfjβ〉, where εαβ is a fully antisymmetric
tensor, after the Hubbard–Stratonovich transformation, the
Lagrangian of the spin system can be written as15

L =
∑

i

ψ
†
i ∂τψi+

∑
〈ij〉

3

8
Jij

[
1

2
Tr

(
U

†
ijUij

)−(ψ†
i Uijψj+h.c.)

]

+
∑

i

al
0(i)ψ†

i τ
lψi, (5)

where two-component fermion notation ψi = (fi,↑,f
†
i,↓)T is

introduced for reasons that will be explained shortly. Uij is a
matrix of mean-field amplitudes:

Uij =
(

χ
†
ij ηij

η
†
ij −χij

)
. (6)

al
0(i) are the local Lagrangian multipliers that enforce the

constraints of Eq. (4).
In terms of ψ , Schwinger-fermion representation has an ex-

plicit SU(2) gauge redundancy: A transformation ψi → Wiψi ,
Uij → WiUijW

†
j , Wi ∈ SU(2) leaves the action invariant. This

redundancy originates from the representation of Eq. (3):
This local SU(2) transformation leaves the spin operators
invariant18 and thus does not change physical Hilbert space.

One can try to solve Eq. (5) by a mean-field (or saddle-point)
approximation. At the mean-field level, Uij and al

0 are treated
as complex numbers, and al

0 must be chosen such that con-
straints (4) are satisfied at the mean field level: 〈ψ†

i τ
lψi〉 = 0.

The mean-field ansatz can be written as

HMF = −
∑
〈ij〉

ψ
†
i uijψj +

∑
i

ψ
†
i a

l
0τ

lψi, (7)

where uij = 3
8JijUij . A local SU(2) gauge transformation

modifies uij → WiuijW
†
j but does not change the physical spin

state described by the mean-field ansatz. By construction, the
mean-field amplitudes do not break spin-rotation symmetry,
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and the mean-field solutions describe SL states if translational
symmetry is preserved. Different {uij } ansätze may be in
different SL phases. The mathematical language to classify
different SL phases is the PSG.15

The PSG is the manifestation of topological order in
the Schwinger-fermion representation: SL states described
by different PSG’s are different phases. It is defined as the
collection of all combinations of symmetry group and SU(2)
gauge transformations that leave {uij } invariant (as al

0 are
determined self-consistently by {uij }, these transformations
also leave al

0 invariant). The invariance of a mean-field ansatz
{uij } under an element of PSG GUU can be written as

GUU ({uij }) = {uij },
U ({uij }) ≡ {ũij = uU−1(i),U−1(j )},

GU ({uij }) ≡ {ũij = GU (i)uijGU (j )†}, (8)

GU (i) ∈ SU(2).

Here U ∈ SG is an element of the symmetry group (SG) of
the SL state. The SG on a honeycomb lattice is generated by
time reversal T , reflection σ , π/3 rotation C6, and translations
T1,T2, as illustrated in Fig. 1 (see also Appendix A). GU is the
gauge transformation associated with U such that GUU leaves
{uij } invariant.

There is an important subgroup of PSG, the invariant
gauge group (IGG), which is composed of all the pure gauge
transformations in PSG: IGG ≡ {{Wi}|WiuijW

†
j = uij ,Wi ∈

SU(2)}. One can always choose a gauge in which the elements
in an IGG is site independent. In this gauge, IGG can be
global Z2 transformations {Wi = τ 0,Wi = −τ 0}; global U (1)
transformations {Wi = eiθτ 3

,θ ∈ [0,2π ]}; or global SU(2)
transformations {Wi = eiθn̂·�τ ,θ ∈ [0,2π ],n̂ ∈ S2}, and we dub
them Z2, U (1), and SU(2) states, respectively.

The importance of the IGG is that it controls the low-energy
gauge fluctuations. Beyond mean-field level, fluctuations of
Uij and al

0 need to be considered and the mean-field state
may or may not be stable. The low-energy effective theory
is described by a fermionic spinon band structure coupled
with a dynamical gauge field of an IGG. For example, the
Z2 state with gapped spinon dispersion can be a stable phase
because the low-energy Z2 dynamical gauge field can be in the
deconfined phase.36,37 But for a U (1) state with gapped spinon
dispersion, the U (1) gauge fluctuations would generally drive
the system into confinement due to monopole proliferation,38

and the mean-field state would be unstable. And an SU(2) state
with gapped spinon dispersion should also be in the confined
phase because there is no known IR stable fixed point of pure
SU(2) gauge theory in 2 + 1 dimensions. Because the purpose
of this paper is to search for SL liquid phases that have a
Schwinger-fermion mean-field description, we will focus on
Z2 states.

If GUU ∈ PSG and g ∈ IGG, by definition we have
gGUU ∈ PSG. This means that the mapping h : PSG → SG :
f (GUU ) = U is a many-to-one mapping. In fact it is easy to
show that mapping h induces group homomorphism15:

PSG/IGG = SG. (9)

Mathematically the PSG is an extension of the SG by the IGG.

Our definition of a PSG requires a mean-field ansatz {uij }.
With Eq. (9), one can define an algebraic PSG which does not
require ansatz {uij }. An algebraic PSG is simply defined as a
group satisfying Eq. (9). Obviously a PSG (realizable by an
ansatz) must be an algebraic PSG, but the reverse may not be
true, because sometimes an algebraic PSG cannot be realized
by any mean-field ansatz.

To classifying all possible Z2 Schwinger-fermion mean-
field states, we need to find all possible PSG extensions of the
SG with a Z2 IGG. Here SG is the direct product of the space
group of the honeycomb lattice and the time-reversal Z2 group.
In Appendix A we show the general constraints that must be
satisfied for such a group extension. In Appendix B, using
these constraints, we find there are in total 160 Z2 algebraic
PSGs on a honeycomb lattice. And, at most, 128 PSGs of them
can be realized by an ansatz {uij }. These 128 PSGs completely
classify all Schwinger-fermion mean-field ansätze of Z2 SLs
on a honeycomb lattice.

III. Z2 SPIN LIQUIDS ON A HONEYCOMB LATTICE
AND THE SPS PHASE

Among the 128 states, can one further identify the candidate
states for the SL discovered in the numerical study?12 The
answer is yes. Numerically the SL phase is found close to
the Mott transition, and it seems to be connected to the
semimetal phase by a continuous phase transition. What are
the Z2 Schwinger-fermion states in the neighborhood of the
semimetal phase?

Are there Schwinger-fermion mean-field states that can be
connected to the semimetal phase via a continuous phase tran-
sition? Physically a continuous Mott transition is associated
with the loss of charge coherence of the electronic quasiparti-
cles. The spinons in the Schwinger-fermion approach exactly
describe these quasiparticles whose charge coherence has been
lost.22,23 The natural resulting SL phase is nothing but the state
with a spinon band structure identical to the electronic one on
the metallic side. In the present case this SL is the uniform RVB
(u-RVB) state with a Dirac gapless spinon dispersion.23 The
nature of the Mott transtion between the semimetal phase and
the u-RVB SL [referred to as the algebraic spin liquid (ASL)
in Ref. 23] was studied by Hermele.23 However, numerically
it was shown that the SL phase is fully gapped. How to resolve
this discrepancy?

This discrepancy is related to the stability issue of the ASL.
The u-RVB (or ASL) ansatz can be simply expressed as a
graphene-like nearest neighbor hopping of f -fermions:

H uRVB
MF = χ

∑
〈ij〉 f

†
iαfjα, (10)

where χ is real. The low energy effective theory of ASL
is 2 + 1D SU(2) QCD with Nf = 2 flavors of fermions,23

i.e., QCD3. In the large-Nf limit QCD3 has a stable IR
fixed point with gapless excitations and can be a stable ASL
phase.39 However the Nf = 2 case remains unclear. When
Nf = 0 the pure gauge QCD3 is in a confined phase.40,41

This indicates a critical Nc, and, when Nf < Nc, confinement
occurs.39 Although no controlled estimate of Nc is available, a
self-consistent solution of the Schwinger–Dyson equations39
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suggests Nc ≈ 64
π2 , indicating that the Nf = 2 u-RVB (or ASL)

state may not be a stable phase.
We find that the above-mentioned discrepancy can be

resolved if we assume the ASL is not a stable phase but has
one or more relavant couplings λ in the renormalization group
sense. λ may be a four-fermion interaction. If λ is irrelevant
at the Mott transition point (λ is dangerously irrelevant in this
case), the Mott transition is still continuous and controlled by
the fixed point studied in Ref. 23. We present the schematic
RG flow in Fig. 2(b), and propose this scenario for the Mott
transition in the simulated Hubbard model.

If this scenario is correct, the mean-field ansatz of the Z2

SL should be connected to the u-RVB ansatz by a continuous
Higgs condensation driven by the λ flow, which breaks the
SU(2) IGG down to Z2. During this transition, the u-RVB
ansatz {uuRVB

ij } → {uuRVB
ij + δuij } and the δuij amplitudes play

the role of the Higgs boson. We define a Z2 state to be around
(or in the neighborhood of) the u-RVB when the Z2 state can
be obtained by an infinitesimal change {uuRVB

ij } → {uuRVB
ij +

δuij }. Therefore this scenario dictate the PSG of the Z2 state to
be a subgroup of the PSG of the ASL. We propose this group-
theoretical observation as a systematic way of identifying the
SLs close to a continuous Mott transition: The PSGs of these
SLs are subgroups of the PSG of the “parent” SL whose spinon
band structure is identical to the Fermi liquid.

In Appendix C we classify all these possible PSG subgroups
with the Z2 IGG, which allows us to construct all possible
Z2 states around the u-RVB state. This technique was first

TABLE I. A summary of all 24 different PSGs with IGG = {±τ 0}
around the u-RVB ansatz. They correspond to 24 different Z2 SLs
near the u-RVB state.

No. gT gσ gC6 g1 g2

1 τ 0 τ 0 τ 0 τ 0 τ 0

2 τ 0 τ 0 iτ 3 τ 0 τ 0

3 τ 0 τ 0 iτ 3 e i 2π/3τ1
e− i 2π/3τ1

4 τ 0 iτ 3 iτ 3 τ 0 τ 0

5 τ 0 iτ 3 iτ 3 τ 0 τ 0

6 τ 0 iτ 3 iτ 1 τ 0 τ 0

7 τ 0 iτ 3 e i π/6τ1
τ 0 τ 0

8 τ 0 iτ 3 e i π/3τ1
τ 0 τ 0

9 τ 0 iτ 3 iτ 1 e i 2π/3τ3
e− i 2π/3τ3

10 τ 0 iτ 3 e i 2π/3τ1
i
(

τ1√
3

−
√

2
3 τ 2

)
i
(

τ3√
2

− τ2√
6

− τ1√
3

)
11 iτ 3 τ 0 τ 0 τ 0 τ 0

12 iτ 3 τ 0 iτ 3 τ 0 τ 0

13 iτ 3 τ 0 iτ 1 τ 0 τ 0

14 iτ 3 τ 0 iτ 1 e i 2π/3τ3
e− i 2π/3τ3

15 iτ 3 iτ 3 τ 0 τ 0 τ 0

16 iτ 3 iτ 3 iτ 3 τ 0 τ 0

17 iτ 3 iτ 3 iτ 1 τ 0 τ 0

18 iτ 3 iτ 3 iτ 1 e i 2π/3τ3
e− i 2π/3τ3

19 iτ 3 iτ 1 iτ 1 τ 0 τ 0

20 iτ 3 iτ 1 iτ 2 τ 0 τ 0

21 iτ 3 iτ 1 τ 0 τ 0 τ 0

22 iτ 3 iτ 1 iτ 3 τ 0 τ 0

23 iτ 3 iτ 1 e i π/6τ3
τ 0 τ 0

24 iτ 3 iτ 1 e i π/3τ3
τ 0 τ 0

FIG. 3. (Color online) Honeycomb lattice and generators of
symmetry group. uα , uβ and uγ are representatives of first, second,
and third nearest-neighbor mean-field amplitudes.

developed by Wen.15 We find that, among the 128 Z2 states,
there are a total 24 gauge-inequivalent Z2 PSGs satisfying this
condition, as listed in Table I in Appendix C.

Can these 24 Z2 SL states have a full energy gap? We
find that not all of them can have a gapped spinon spectrum.
This can be understood starting from a Dirac dispersion of the
u-RVB state. To gap out the Dirac nodes, at least one mass
term in the low-energy effective theory of a given Z2 state
must be allowed by symmetry. In Appendix E we show that
only 4 of the 24 Z2 states allow a mass term in the low-energy
theory. Thus only these 4 states are fully gapped Z2 SLs around
the u-RVB state. The other 20 states have symmetry-protected
gapless spinon dispersions.

These four state are state numbers 16, 17, 19, and 22 in
Table I in Appendix C. We can generate their mean-field
ansätze by these PSGs. We find that up to the third neighbor
mean-field amplitudes u(α,β,γ ), as shown in Fig. 3, only one of
these four states can be realized, which is state 19. As shown
in Appendix H, mean-field ansätze up to the third neighbor
of the other three states actually have a U (1) IGG. Only
after introducing longer-range mean-field bonds can these
three states have a Z2 IGG. In particular, state 16 requires
a fifth neighbor, state 17 requires fourth neighbor, and state
22 requires ninth neighbor amplitudes, while state 19 requires
only second neighbor amplitudes. Because the t/U expansion
of the Hubbard model give a rather short-range spin interaction
for the SL phase found in numerics12 (t/U ∼ 1/4), the other
three states are unlikely to be realized in a Hubbard model on
a honeycomb lattice.

SPS is a fully gapped Z2 SL on the honeycomb lattice.
Its mean-field fermionic spinon band structure, after a proper
gauge is choosen, is given as follows [Fig. 1(a)]:

HMF
SPS = t1

∑
〈ij〉

f
†
iαfjα + t2

∑
〈〈ij〉〉

f
†
iαfjα

−μ
∑

i

f
†
iαfiα + �

∑
〈〈ij〉〉

εαβf
†
iαf

†
jβ + h.c. (11)

where t1,2 are real numbers. In the Schwinger-fermion ap-
proach, f -spinons are coupled to an SU(2) gauge field.15,18
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However due to nonzero t2 and �, the SU(2) gauge symmetry
is reduced to Z2 through the Higgs mechanism. Thus at
low energy f -spinons are coupled to a dynamical Z2 gauge
field and stay in the deconfined phase. A Schwinger-fermion
mean-field study of the J1-J2 Heisenberg model using the SPS
ansatz is presented in Appendix F.

IV. CONTINUOUS PHASE TRANSITION
FROM SPS TO CAF PHASE

We start from discussing the continuous phase transition
from the SPS to the CAF phase in the Schwinger-fermion
approach. How to describe an AF order in this approach?
In Ref. 24, it is shown that the easy-plane AF order on a
honeycomb lattice is described by a quantum spin Hall (QSH)
band structure of spinons (spin quantized along the z axis)
coupled with a dynamical U (1) gauge field. The QSH effect
binds the gauge fluctuation to the Sz spin density fluctuation,
and the Goldstone mode of the easy-plane Néel order is nothing
but photon of the U (1) gauge field. A monopole quantum
number24 of the U (1) gauge field shows the spin order is AF.

In the present spin-rotation symmetric system, we consider
the phase described by a fluctuating O(3) QSH order parameter
�n, coupled with a U (1) gauge field aμ. Its mean-field ansatz is
[Fig. 1(b)]

HMF
CAF = t1

∑
〈ij〉

f
†
iαfjα + t2

∑
〈〈ij〉〉

f
†
iαfjα

−μ
∑

i

f
†
iαfiα + �n ·

∑
〈〈ij〉〉

iνij f
†
iα �σαβfjβ. (12)

There are three gapless modes in this phase: two n̂ fluctuating
modes and one photon mode. The photon mode is the in-plane
spin wave of AF order �N ( �N ⊥ n̂),24 and the spin SU(2)
symmetry is completely broken. Because n̂ has the same
symmetry as the QSH order, Eq. (12) is the representation
of the CAF phase in the Schwinger-fermion method. The
operation C6 · T [T is time reversal, C6 is defined in Fig. 1(c)]
leaves both order parameters invariant, indicating that the
magnetic order in the CAF phase is still collinear.

Comparing Eq. (12) with Eq. (11), s-wave pairing � of
spinons in the SPS phase is replaced by the O(3) QSH order
�n in the CAF phase. If we group these orders together into
a five-component vector �V = (Re�,Im�,�n), as pointed out
in Ref. 25, fluctuations of �V have a Wess–Zumino–Witten
(WZW) Berry phase.26 Physically it means that a skyrmion
(antiskyrmion) of n̂ in two spatial dimensions actually carries
a fermion charge of 2 (−2). The hedgehog instanton of n̂

in 2 + 1 dimensions thus creates a charge-2 s-wave fermion
pair. Therefore a continuous phase transition between a QSH
insulator and an s-wave superconductor on the honeycomb
lattice becomes possible.25

To discuss the CAF-SPS phase transition, it is conve-
nient to introduce the CP 1 representation of the n̂ order
parameter: n̂ = w† �σw, where w = (w1,w2)T are two complex
numbers satisfying |w1|2 + |w2|2 = 1. This representation
has a U (1) gauge redundancy and thus w-bosons cou-
ple to a U (1) gauge field Aμ. After integrating out the

f -spinons (see Appendix G for details), we obtain the effective
Lagrangian:

L = |(∂μ − iAμ)w|2 + r|w|2 + s|w|4 + 1

2g2
a

f 2
μν

+ 1

2g2
A

F 2
μν + i

π
εμνλAμ∂νaλ, (13)

where fμν = ∂μaν − ∂νaμ and Fμν = ∂μAν − ∂νAμ are gauge
field strengths. [The constraint |w1|2 + |w2|2 = 1 can be
enforced by a Lagrangian multiplier λ. Equation (13) can be
obtained by the saddle point expansion of λ.] The last term, a
mutual Chern–Simons (CS) term, is nothing but the WZW term
in the gauge representation: It is well known that a skyrmion
of n̂ is a 2π Aμ gauge flux, which also carries two units of aμ

gauge charge due to the WZW term.
What are the phases described by the effective Lagrangian,

Eq. (13)? When r < 0, the w-boson condenses and n̂ is
ordered, corresponding to the CAF phase. Here the mutual CS
term does not qualitatively modify the low-energy dynamics
due to the Higgs mechanism of Aμ. When r > 0, w-bosons are
gapped and n̂ is disordered; remarkably, Eq. (13) describes the
Z2 SPS phase. The identification of a U (1) mutual CS theory
and a Z2 gauge theory has been studied before.27,28 Here, with
the WZW term, we are able to further identify the PSG of the
Z2 theory.

This identification is easily shown by studying the
monopoles of aμ and Aμ in Eq. (13). In n̂ disordered phase,
monopole events of both aμ and Aμ are allowed. We denote
their monopole creation operators as V

†
a and V

†
A, respectively.

The mutual CS term clearly dictates that an aμ monopole
creates two units of Aμ gauge charge, and vice versa. These
events mean that f †

αf
†
β and w†

αw
†
β pairing terms exist, which

break the U (1) gauge group down to Z2. The WZW term
indicates that the f -spinon pairing is s-wave, and thus the
system is in SPS phase.

The mutual CS term also dictates that the f -spinon and
w-boson satisfy mutual semion statistics. Namely they see
each other as a π flux and are dual degrees of freedom. We
can focus on either set of dual variables, f (V †

A) or w(V †
a ),

to write the effective theory. Because the phase transition
from the SPS to CAF phase is described by w-boson con-
densation in Eq. (13), we will use w(V †

a ) variables in the next
section.

V. DUALITY BETWEEN SCHWINGER-FERMION
AND SCHWINGER-BOSON REPRESENTATIONS

In this section we focus on the dual variables of f -spinons:
the w-bosons. The SPS phase is then a Z2 phase with w-bosons
as Z2 charges, but f -spinons as visons. In this formulation
SPS-CAF phase transition is naturally presented as a Higgs
condensation of w-bosons.

First we need to represent the order parameters of the
CAF phase in terms of w. The QSH order is n̂ = w† �σw, but
what is the Néel order parameter? Néel order in CAF phase
corresponds to the monopole of aμ, namely a pairing of w-
bosons. There are two spin-1 bosonic pairing order parameters
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satisfying this requirement, i.e., the real and imaginary parts
of (iσyw

∗)† �σw:

n̂1 + in̂2 = (iσyw
∗)†α �σαβwβ. (14)

It is easy to verify that n̂ = n̂1 × n̂2, so there are only two
independent vectorial order parameters. The issue is, which
one is the Néel order parameter �N : n̂1 or n̂2?

A U (1) gauge transformation w → eiθw generates a
rotation in the n̂1,n̂2 plane. By fixing a proper gauge, we
can always choose n̂1 as the Néel order. We will work within
this gauge �N = n̂1 throughout the phase transition. Such a
gauge fixing breaks the U (1) gauge redundancy down to Z2:
w → ±w.

The physical symmetries of the QSH (or vector spin
chirality) and the Néel order parameters completely determine
the transformation rules of the w-boson up to a Z2 gauge
redundancy:

T1,T2 : n̂ → n̂, �N → �N, w → w,

T : n̂ → n̂, �N → − �N, w → iw∗,
σ : n̂ → −n̂, �N → − �N, w → iσyw

∗,
C6 : n̂ → n̂, �N → − �N, w → iw,

(15)

where time-reversal transformation T is anti-unitary. The
reason why there is no further arbitrariness on the transfor-
mation rules of w can be easily understood by the following
construction. If we write w-boson as an SU(2) matrix,

U =
(

w1 w∗
2

w2 −w∗
1

)
, (16)

then the most general O(4) transformation leaving |w1|2 +
|w2|2 = 1 is U → VLUVR , where VL and VR are both SU(2)
rotations (VL is spin rotation) and O(4) ∼ SU(2)L × SU(2)R .
In this representation, the vectors n̂1,n̂2,n̂ are the first, second
and third columns of a 3 × 3 rotation matrix R:49

Rab = 1
2 Tr(U †σaUσb). (17)

Clearly, to leave R invariant, the transformations VL,R must
be ±1.

These symmetry transformation rules allow us to reveal the
connection between the SPS state here and the zero-flux state
in the Schwinger-boson representation obtained by Wang.13 In
Wang’s work, the Néel order is represented by the z-boson as
�N = z† �σz in the effective theory. From Eq. (17), we can easily

construct the duality transformation between the w-boson and
z-boson representations: Uw = UzVR , VR = ei π

4 σy , namely,

w = 1√
2
(z − iσ yz∗) or z = 1√

2
(w + iσ yw∗). (18)

Under duality transformation,

�N = Re[(iσyw
∗)† �σw] = z† �σz,

(19)
n̂ = w† �σw = −Re[(iσyz

∗)† �σz].

From Eq. (15) and (18), we can obtain transformation rules of
z-bosons:

T1,T2 : z → z,

T : z → σyz,

σ : z → iσyz
∗,

C6 : z → σyz
∗,

(20)

which are exactly the transformation rules found by Wang13

for the zero-flux state up to a Z2 gauge arbitrariness. This
explicitly confirms that the z-bosons constructed in Eq. (18)
are the same z-bosons discussed by Wang, and the SPS phase
here is identical to the zero-flux phase in Schwinger-boson
description.

Following the discussion in Ref. 2, we can write down
the general symmetry-allowed effective theory for the phase
transition in terms of the z-boson:

L = |∂τ z|2 + c2|∇z|2 + m2|z|2 + u(|z|2)2

+ λH (iσyz
∗)†

[∑
i

( �di · ∇)3

]
z + h.c. (21)

Here λH is the Higgs coupling which reduces the gauge degrees
of freedom in the z-boson formulation down to Z2. �d1 = −�a1,
�d2 = �a2, and �d3 = �a1 − �a2, as shown in Fig. 1. For instance,
the single time derivative term z†∂τ z is forbidden by σ , and
zT (−iσy)∂τ z is forbidden by C6. The Higgs coupling can also
be written as a pairing of w-bosons: λH (iσyw

∗)†[
∑

i( �di ·
∇)3]w + h.c. By naive power counting, λH is irrelevant;
therefore we have an O(4) critical point between the CAF
(z-condensed) phase and the SPS (z-gapped) phase. The
critical behavior of this transition is well-studied.29–31

VI. SUMMARY

In this paper, our main prediction is the CAF phase. Unlike,
the usual AF (Néel) phase, the CAF phase has two order
parameters: Néel order �N and QSH order n̂. As the CAF
phase is likely to be the magnetically ordered phase adjacent
to the SL phase found in the numeric study,12 in the following
we propose explicit numerical methods to detect the CAF
phase.

One can directly measure QSH order by 〈�n(x) · �n(0)〉
correlation function, or the spin vector-chirality correlation
〈(νi+x,j+x

�Si+x × �Sj+x) · (νij
�Si × �Sj )〉. Since the QSH order

is odd under σ · T while the Néel order is σ · T -even, one
does not expect a long-range correlation of QSH order in a
usual Néel phase. Therefore, the long range QSH correlation
is an intrinsic signature of the CAF phase. In addition, one
can check that the QSH vector is normal to the Néel vector.
For example, one can pin the Néel order by an infinitesimal
(in thermodynamic limit) staggered magnetic field along the
z axis, and the measured QSH order parameters should
only have x,y components. Experimentally such an exotic
SL may be realized in candidate systems such as expanded
graphene-like system in group IV elements32,33 and fermions
in optical lattices.34,35

ACKNOWLEDGMENTS

YR thanks Ashvin Vishwanath for helpful comments. YML
acknowledges support from DOE under Grant No. DE-FG02-
99ER45747. YR is supported by the startup fund at Boston
College.

024420-6



Z2 SPIN LIQUID AND CHIRAL . . . PHYSICAL REVIEW B 84, 024420 (2011)

APPENDIX A: GENERAL CONDITIONS ON PROJECTIVE
SYMMETRY GROUP OF SYMMETRIC SPIN LIQUIDS

ON A HONEYCOMB LATTICE

As mentioned in Section II, the SG on a honeycomb lattice
is generated by time-reversal transformation T , translations
along �a1,�a2: T1,T2, plaquette-centered 60◦ C6 rotation, and a
horizontal mirror reflection σ , as shown in Fig. 1. In the present
problem, the symmetry group SG can be represented as

SG = {
U = T νT · T

νT1
1 · T

νT2
2 · C

νC6
6 · σ νσ

}
,

where νT1 ,νT2 ∈ Z and νT ,νσ ∈ Z2, νC6 ∈ Z6, since the gen-
erators satisfy

T 2 = σ 2 = (C6)6 = 1. (A1)

Here 1 stands for the identity element of the SG. To completely
determine the multiplication rule of this group, we need to
identify the multiplication rule of two different generators in
an order different from T νT · T

νT1
1 · T

νT2
2 · C

νC6
6 · σ νσ :

UT = TU (U = T1,T2,C6,σ ), (A2)

T1T2 = T2T1, (A3)

C6T1 = T2C6, (A4)

C6T2 = T −1
1 T2C6, (A5)

σT1 = T1σ , (A6)

σT2 = T1T
−1

2 σ , (A7)

σC6 = C−1
6 σ , (A8)

The above relations can be written in an alternative way:

T 2 = σ 2 = (C6)6 = 1, (A9)

TUT−1U−1 = 1(U = T1,T2,C6,σ ), (A10)

T1T2T
−1

1 T −1
2 = 1, (A11)

T −1
2 C6T1C

−1
6 = 1, (A12)

T −1
1 C6T1T

−1
2 C−1

6 = 1, (A13)

T −1
1 σT1σ

−1 = 1, (A14)

T −1
2 σT1T

−1
2 σ−1 = 1, (A15)

σC6σC6 = 1, (A16)

which determine the inverses of all the group elements.
As introduced in Section II, the mean-field ansatz {uij } of

a SL is invariant under the action of any element GUU of a
projective symmetry group (PSG). The multiplication rule of
the SG would immediately enforce the following constraints
on a PSG by its definition: if U1U2 = U3 then

GU1U1GU2U2({uij }) = GU3U3({uij })
=⇒[

GU1 (U1U2(i))GU2 (U2(i))
]
uij

[
GU1 (U1U2(i))GU2 (U2(i))

]†
= [GU3(U3(i))]uij [GU3(U3(i))]†, ∀i,j. (A17)

On the other hand, we know that those pure gauge transfor-
mations, under which the mean-field ansatz {uij } is invariant,
constitute a subgroup of PSG, coined the invariant gauge group
(IGG):

IGG = {Wi |WiuijW
†
j = uij ,Wi ∈ SU(2)}. (A18)

Therefore from Eq. (A17) we have the following constraints
on the elements of a PSG[

GU1U2 (U1U2(i))
]†

GU1 (U1U2(i))GU2 (U2(i)) = G ∈ IGG.

The above condition holds for any two group elements U1,U2

of a SG. Similar with a SG, we can choose a set of generators
in any given a PSG: {GT1T1,GT2T2,GT T ,GC6C6,Gσ σ }. Any
given element in a PSG can be written in the standard form:

GUU = (GT T )νT · (
GT1T1

)νT1 · (
GT2T2

)νT2

· (GC6C6
)νC6 · (Gσ σ )νσ . (A19)

Since the multiplication rule of a SG on a honeycomb lattice
is completely determined by Eqs. (A1)–(A8), or equivalently
Eqs. (A9)–(A16), the only independent constraints on the PSG
generators are the following:

(GT T )2 ∈ IGG,(Gσ σ )2 ∈ IGG,(
GC6C6

)6 ∈ IGG,(
GT1T1

)−1(
GT2T2

)−1(
GT1T1

)(
GT2T2

) ∈ IGG,(
GT1T1

)−1
(GT T )−1

(
GT1T1

)
(GT T ) ∈ IGG,(

GT2T2
)−1

(GT T )−1
(
GT2T2

)
(GT T ) ∈ IGG,(

GT2T2
)−1(

GC6C6
)(

GT1T1
)(

GC6C6
)−1 ∈ IGG,(

GT1T1
)−1(

GC6C6
)(

GT1T1
)(

GT2T2
)−1(

GC6C6
)−1 ∈ IGG,

(GT T )−1
(
GC6C6

)−1
(GT T )

(
GC6C6

) ∈ IGG, (A20)(
GT1T1

)−1
(Gσ σ )

(
GT1T1

)
(Gσ σ )−1 ∈ IGG,(

GT2T2
)−1

(Gσ σ )
(
GT1T1

)(
GT2T2

)−1
(Gσ σ )−1 ∈ IGG,

(Gσ σ )
(
GC6C6

)
(Gσ σ )

(
GC6C6

) ∈ IGG,

(GT T )−1(Gσ σ )−1(GT T )(Gσ σ ) ∈ IGG,

or more specifically

[GT (i)]2 ∈ IGG,

Gσ (σ (i))Gσ (i) ∈ IGG,

GC6

(
C−1

6 (i)
)
GC6

(
C−2

6 (i)
)
GC6

(
C3

6 (i)
)

·GC6

(
C2

6 (i)
)
GC6 (C6(i))GC6 (i) ∈ IGG,

G−1
T1

(
T −1

2 T1(i)
)
G−1

T2
(T1(i))GT1 (T1(i))GT2 (i) ∈ IGG,

G−1
T1

(T1(i))G−1
T (T1(i))GT1 (T1(i))GT (i) ∈ IGG,

G−1
T2

(T2(i))G−1
T (T2(i))GT2 (T2(i))GT (i) ∈ IGG,

G−1
T2

(T2(i))GC6 (T2(i))GT1

(
T1C

−1
6 (i)

)
G−1

C6
(i) ∈ IGG,

G−1
T1

(T1(i))GC6 (T1(i))GT1

(
C−1

6 T1(i)
)

(A21)

·G−1
T2

(
C−1

6 (i)
)
G−1

C6
(i) ∈ IGG,

G−1
T

(
C−1

6 (i)
)
G−1

C6
(i)GT (i)GC6 (i) ∈ IGG,

G−1
T1

(T1(i))Gσ (T1(i))GT1 (T1σ
−1(i))G−1

σ (i) ∈ IGG,

G−1
T2

(T2(i))Gσ (T2(i))GT1 (σT2(i))G−1
T2

(σ (i))G−1
σ (i) ∈ IGG,

Gσ (i)GC6 (σ (i))Gσ (σC6(i))GC6 (C6(i)) ∈ IGG,

G−1
T (σ (i))G−1

σ (i)GT (i)Gσ (i) ∈ IGG.
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The preceding relations are all the general consistent condi-
tions to be satisfied by the generators of a PSG on a honeycomb
lattice.

We will use (x1,x2,s) to label a site i in a honeycomb
lattice, where x1,x2 are the coordinates of the unit cell in basis
�a1,�a2 and s = 0,1 for A and B sublattices respectively. For
convenience, we summarize the coordinate transformations of
all the generators in the SG group on a honeycomb lattice as
follows:

T : (x1,x2,s) → (x1,x2,s),

T1 : (x1,x2,s) → (x1 + 1,x2,s),

T2 : (x1,x2,s) → (x1,x2 + 1,s),

σ : (x1,x2,s) → (x1 + x2, − x2,1 − s), (A22)

C6 : (x1,x2,0) → (1 − x2,x1 + y1 − 1,1)

(x1,x2,1) → (−x2,x1 + y1,0).

APPENDIX B: CLASSIFICATION OF Z2 PROJECTIVE
SYMMETRY GROUPS ON A HONEYCOMB LATTICE

As discussed in Section II, the problem of classifying all
possible Z2 Schwinger-fermion mean-field states is mathemat-
ically reduced to finding all possible PSGs. Let us firstly find
all algebraic PSGs.

1. General discussion

In the case of Z2 spin liquids, the IGG of the corresponding
PSG is a Z2 group: IGG = {±τ 0}. The constraints listed in
Appendix A now become

[GT (i)]2 = ηT τ 0, (B1)

Gσ (σ (i))Gσ (i) = ησ τ 0, (B2)

GC6

(
C−1

6 (i)
)
GC6

(
C−2

6 (i)
)
GC6

(
C3

6 (i)
)

(B3)

·GC6

(
C2

6 (i)
)
GC6 (C6(i))GC6 (i) = ηC6τ

0, (B4)

G−1
T1

(
T −1

2 T1(i)
)
G−1

T2
(T1(i))

·GT1 (T1(i))GT2 (i) = η12τ
0, (B5)

G−1
T1

(T1(i))G−1
T (T1(i))GT1 (T1(i))GT (i) = η1T τ 0, (B6)

G−1
T2

(T2(i))G−1
T (T2(i))GT2 (T2(i))GT (i) = η2T τ 0, (B7)

G−1
T2

(T2(i))GC6 (T2(i))

·GT1

(
T1C

−1
6 (i)

)
G−1

C6
(i) = ηC61τ

0, (B8)

G−1
T1

(T1(i))GC6 (T1(i))GT1

(
C−1

6 T1(i)
)

·G−1
T2

(
C−1

6 (i)
)
G−1

C6
(i) = ηC62τ

0, (B9)

G−1
T

(
C−1

6 (i)
)
G−1

C6
(i)GT (i)GC6 (i) = ηC6T τ 0, (B10)

G−1
T1

(T1(i))Gσ (T1(i))

·GT1

(
T1σ

−1(i)
)
G−1

σ (i) = ησ1τ
0, (B11)

G−1
T2

(T2(i))Gσ (T2(i))GT1 (σT2(i))

·G−1
T2

(σ (i))G−1
σ (i) = ησ2τ

0, (B12)

Gσ (i)GC6 (σ (i))

·Gσ (σC6(i))GC6 (C6(i)) = ησC6τ
0, (B13)

G−1
T (σ (i))G−1

σ (i)GT (i)Gσ (i) = ησ T τ 0, (B14)

where all the η’s take values of ±1. Not all of these conditions
are gauge independent. Because we can rechoose the gauge
part of generators such as GT1 ,GT2 . . . by multiplying them by
−τ 0 (an element of the IGG), only those conditions in which
the same generator shows up twice are gauge independent. We
can use this gauge dependence to simplify these conditions.
Because GT1 (GT2 ) only shows up once in the equation of
ηC61(ηC62), we can always choose a gauge such that ηC61 =
ηC62 = 1. All other η’s are gauge independent.

In the following we will determine all the possible PSG’s
with different (gauge-inequivalent) elements {GU (i)}. These
different PSG’s characterize all the different type of Z2 SLs
on a honeycomb lattice, which might be constructed from a
mean-field ansatz {uij }.

First notice that under a local SU(2) gauge transformation
uij → WiuijW

†
j , the PSG elements transform as GU (i) →

WiGU (i)W †
U−1(i). Making use of such a degree of freedom, we

can always choose proper gauge so that

GT1 (x1,x2,s) = GT2 (0,x2,s) = τ 0,x1,x2 ∈ Z.

Now taking Eq. (B5) into account, we have GT2 ({x1 +
1,x2,s}) = η12GT2 ({x1,x2,s}) and therefore

GT1 (x1,x2,s) = τ 0, GT2 (x1,x2,s) = η
x1
12τ

0. (B15)

Meanwhile, from Eqs. (B1), (B6), and (B7) we can im-
mediately see that η1T = η2T = 1, and the gauge-inequivalent
choices of GT (i) are the following:

GT (x1,x2,s) = gT (s) =
{

ηs
t τ

0, ηT = 1

iτ 3, ηT = −1
, (B16)

where ηt = ±1.
As discussed earlier, we can always choose a proper gauge

so that ηC61 = ηC62 = 1. Then conditions (B8) and (B9) we
see that

GC6 (x1,x2,s) = η
x1x2+x1(x1−1)/2
12 gC6 (s); (B17)

similarly from conditions (B11) and (B12) we have

Gσ (x1,x2,s) = η
x1
σ1η

x2
σ2η

x2(x2−1)/2
12 gσ (s), (B18)

where gC6 (s),gσ (s) ∈ SU(2). Note that Eqs. (B2) and (B13)
give further constraints to expression (B18):

ησ1 = ησ2 = η12. (B19)

Now we see that the elements of the PSG can be expressed as

GT1 (x1,x2,s) = τ 0, (B20)

GT2 (x1,x2,s) = η
x1
12τ

0,

GT (x1,x2,s) = gT (s), (B21)

GC6 (x1,x2,s) = η
x1x2+x1(x1−1)/2
12 gC6 (s),

Gσ (x1,x2,s) = η
x1+x2(x2+1)/2
12 gσ (s).

Consistent conditions (B2), (B4), (B10), (B13), and (B14)
correspond to the following constraints on SU(2) matrices
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gC6 (s),gσ (s):

gσ (0)gσ (1) = ησ τ 0,

[gC6 (s)gC6 (1 − s)]3 = ηC6η12τ
0,

gT (s)gC6 (s) = gC6 (s)gT (1 − s)ηC6T , (B22)

gT (s)gσ (s) = gσ (s)gT (1 − s)ησ T ,

gσ (s)gC6 (1 − s) =
{

λs
C6

τ 0, ησC6 = 1

i n̂s · �τ , ησC6 = −1
,

where λC6 = ±1 and n̂s is a unit vector.

2. A summary of 160 different PSGs

Below we summarize the 160 possible PSGs obtained
through solving (B22). We use capital Roman numerals (I)
and (II) to label gT = ηs

t τ
0 and gT = iτ 3, respectively. Roman

numerals (i) and (ii) are used to label ηC6T = ±1, respectively.
(A) and (B) are used to label ησC6 = ±1, respectively. Finally,
(α) and (β) are used to label ησ T , respectively.

(I) gσT = ηs
t τ

0.
It is easy to see that ηC6T = ησ T = ηt from Eq. (B22), so

there is the only possibility among (i) and (ii).
(A) gσ (s) = λs

C6
g−1

C6
(1 − s).

We have λC6 = ησηC6η12 and

gC6 (0) = τ 0,

gC6 (1) = gσ (0) = ηC6η12τ
0, (B23)

gσ (1) = ησηC6η12τ
0.

This represents 24 = 16 different PSGs in class (I)(A) since
ηt ,ηC6 ,ησ ,η12 = ±1.

(B) gσ (s)gC6 (1 − s) = i n̂s · �τ .
Choosing a proper gauge [so that gC6 (0) = τ 0] we have

gC6 (0) = τ 0,

gC6 (1) = ηC6η12e
iψ3τ

3
,

(B24)
gσ (0) = iτ 1ηC6η12e

− iψ3τ
3
,

gσ (1) = − iησηC6η12e
iψ3τ

3
τ 1,

where ψ3 ≡ 0, ± 2π/3 stand for the multiples of 2π/3 mod
2π . There are 24 × 3 = 48 different PSGs in class (I)(B).

(II) gT (s) = iτ 3.
(i) ηC6T = 1.
(A) gσ (s) = λs

C6
g−1

C6
(1 − s).

In this case λC6 = ησηC6η12, so we have

gC6 (0) = τ 0,

gσ (0) = gC6 (1) = ηC6η12τ
0, (B25)

gσ (1) = ησηC6η12τ
0.

There are 23 = 8 different PSGs in class (II)(i)(A).
(B) gσ (s)gC6 (1 − s) = i n̂s · �τ .
(α) ησ T = 1, i.e., [gσ (s),τ 3] = 0.
Here we have

gC6 (0) = τ 0,

gC6 (1) = ηC6η12τ
0,

gσ (0) = − iησ τ 3, (B26)

gσ (1) = iτ 3.

There are 23 = 8 different PSGs in class (II)(i)(B)(α).
(β) ησ T = −1, i.e.{gσ (s),τ 3} = 0.
Here we have

gC6 (0) = τ 0,

gC6 (1) = ηC6η12e
iψ3τ

3
,

gσ (0) = − iησ τ 1, (B27)

gσ (1) = iτ 1.

There are 23 × 3 = 24 different PSGs in class (II)(i)(B)(β)
since ψ3 = 0, ± 2π/3.

(ii) ηC6T = −1.
(A) gσ (s) = λs

C6
g−1

C6
(1 − s).

Here we must have ησ T = −1, λC6 = ησηC6η12, and

gC6 (0) = iτ 1,

gC6 (1) = − iηC6η12τ
1,

(B28)
gσ (0) = iηC6η12τ

1,

gσ (1) = − iησηC6η12τ
1.

There are 23 = 8 different PSGs in class (II)(ii)(A).
(B) gσ (s)gC6 (1 − s) = i n̂s · �τ .
(α) ησ T = 1, i.e.[gσ (s),τ 3] = 0.
Here we have

gC6 (0) = iτ 1,

gC6 (1) = − iηC6η12τ
1e iψ3τ

3
, (B29)

gσ (0) = τ 0,

gσ (1) = ησ τ 0.

There are 23 × 3 = 24 different PSGs in class (II)(ii)(B)(α)
since ψ3 = 0, ± 2π/3.

(β) ησ T = −1, i.e.{gσ (s),τ 3} = 0.
Here we have

gC6 (0) = iτ 1,

gC6 (1) = − iηC6η12τ
1e iψ3τ

3
, (B30)

gσ (0) = iτ 1,

gσ (1) = − iησ τ 1.

There are 23 × 3 = 24 different PSGs in class (II)(ii)(B)(β)
since ψ3 = 0, ± 2π/3.

To summarize, above are the 160 different (algebraic) PSGs
with IGG = {±τ 0} on a honeycomb lattice. They represent
different Z2 SL states on a honeycomb lattice, which possess
all the symmetries of the honeycomb lattice generated by
{T ,T1,T2,σ ,C6}. We also want to emphasize that any solution
to the set of equations (B1)–(B14) may look different, but it
will be gauge equivalent to one of these 160 PSGs.

On the other hand, such a (algebraic) PSG really corre-
sponds to a SL if and only if it can be realized by a mean-field
ansatz {uij } on a honeycomb lattice.15 In fact, not all of
these algebraic PSGs can be realized by an ansatz. After the
time-reveral transformation, the mean field amplitude changes
sign:15 T (uij ) = −uij . Gauge transformation GT must change
the sign again:

−uij = GT (i)uijGT (j )†. (B31)
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If in an algebraic PSG, GT (i) = τ 0 independent of site, uij

must vanish.
Clearly at least 32 algebraic PSGs among the total 160

types cannot be realized by any mean-field ansatz {uij }. These
are the PSGs with GT (i) = gT (s) = τ 0 in the class (I)(I)(A)
and (B). Since under time reversion T we require −uij =
GT (i)uijG

†
T (j ) = uij , this leads to the vanishing of all bonds

{uij ≡ 0} in the mean-field ansatz. Therefore, there are at the
most 128 possible Z2 SLs that can be realized by a mean-field
ansatz on a honeycomb lattice.

APPENDIX C: CLASSIFICATION OF Z2 PROJECTIVE
SYMMETRY GROUPS AROUND U-RVB ANSATZ

In this appendix we focus on those Z2 SLs near the u-RVB
state, which is discussed in Section III. These Z2 SLs are
plausibly connected to a semimetal through a continuous phase
transition. The u-RVB state is realized by the following ansatz:

uij = (−1)si iχτ 0. (C1)

Its mean-field bond is nonzero only between nearest neighbors
〈ij 〉, which have different sublattice indices si = 1 − sj . By
definition, its PSG has the following form:

GT1 (x1,x2,s) = g1,

GT2 (x1,x2,s) = g2,

GT (x1,x2,s) = (−1)sgT , (C2)

GC6 (x1,x2,s) = (−1)sgC6,

Gσ (x1,x2,s) = (−1)sgσ ,

where g1,g2,gT ,gC6 ,gσ ∈ SU(2). To find those Z2 SLs around
such a u-RVB state, we need to trace those PSGs with IGG =
{±τ 0} that looks like Eq. (C2). Consistent conditions (B1)–
(B14) now correspond to constraints on the SU(2) matrices
{g1,g2,gT ,gC6 ,gσ }:

g−1
1 g−1

2 g1g2 = ξ12τ
0,g2

T = ξT τ 0,

g−1
1 g−1

T g1gT = ξ1T τ 0,g−1
2 g−1

T g2gT = ξ2T τ 0,

g−1
2 gC6g1g

−1
C6

= ξC61τ
0,g−1

1 gC6g1g
−1
2 g−1

C6
= ξC62τ

0,

g−1
T g−1

C6
gT gC6 = ξC6T τ 0,g6

C6
= ξC6τ

0, (C3)

g−1
1 gσg1g

−1
σ = ξσ1τ

0,g−1
2 gσg1g

−1
2 g−1

σ = ξσ2τ
0,

gσgC6gσgC6 = ξσC6τ
0,g−1

T g−1
σ gT gσ = ξσ T τ 0,

g2
σ = ξσ τ 0,

where all ξ ’s take values of ±1. Again, as discussed in
Appendix B, we can always make ξC61 = ξC62 = 1 by choosing
a proper gauge. After solving Eqs. (C3), we find that there are
24 gauge-inequivalent solutions in total, as summarized in
Table I. In other words, there are 24 different Z2 SLs around
the u-RVB state, suggesting that they are promising candidates
of the SL connected to a semimetal on a honeycomb lattice
through a continuous phase transition.

APPENDIX D: CONSISTENT CONDITIONS ON THE
MEAN-FIELD ANSATZ {ui j } ON A HONEYCOMB LATTICE

In this appendix we derive the consistent conditions on
an arbitrary mean-field bond uij , which realizes a SL with a
certain PSG on a honeycomb lattice. The basic idea is to find
all possible SG elements that transform the two lattice sites
{i,j} into themselves {i,j} or into each other {j,i}, so that the
corresponding PSG elements must transform mean-field bond
uij into itself uij or its Hermitian conjugate u

†
ij = uji .

As a special case, identity element 1 always transforms a
bond into itself: Correspondingly in a PSG the IGG elements
(e.g., τ 0 for a Z2 ansatz) always transform any bond uij into
itself. This is nothing but the definition of the IGG.

Now we need to look at nontrivial SG elements which
transform two lattice sites (connected by the bond) into
themselves or into each other. Without loss of generality, we
consider the following bond:

〈x1,x2,s〉 ≡ u(x1,x2,s)(0,0,0) (D1)

1. Regarding time reversal T

Any element of the SG can be written as

U = T νT · T
νT1

1 · T
νT2

2 · σ νσ · C
νC6
6 . (D2)

First we study the consistent conditions from time-reversal
transformation T and then turn to other group elements.

Notice that time reversal T does not change anything except
the sign of the bond,

GT (i)uij [GT (j )]† = −uij , (D3)

so this bond must satisfy the following constraint:

GT (x1,x2,s)〈x1,x2,s〉 = −〈x1,x2,s〉GT (0,0,0). (D4)

2. Conditions on a bond within the same sublattice: s = 0

First we study the s = 0 case, i.e., a bond within the same
sublattice. Since both mirror reflection σ and π/3 rotation
C6 will change the sublattice index s while the translations
T1,T2 do not, we must have an even number of reflections and
rotations, i.e., νσ + νC6 = 0 mod 2, to transform the bond to
itself (or its Hermitian conjugate).

From relations (A22) it is easy to check the five nontrivial
elements consisting of {σ ,C6}:

C2
6 (x1,x2,0) = (1 − x1 − x2,x1,0),

C−2
6 (x1,x2,0) = (x2,1 − x1 − x2,0),

σC6(x1,x2,0) = (x1,1 − x1 − y1,0), (D5)

σC3
6 (x1,x2,0) = (1 − x1 − x2,x2,0),

σC−1
6 (x1,x2,0) = (x2,x1,0).

For the bond to go back after some translations, it is straight-
forward to find all the consistent conditions on such a bond:

T −1
2 σC6 : 〈−2x,x,0〉 → 〈−2x,x,0〉,
T x−1

2 σC6 : 〈0,x,0〉 → 〈0,x,0〉†,
T −1

1 σC3
6 : 〈x, − 2x,0〉 → 〈x, − 2x,0〉,
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T x−1
1 σC3

6 : 〈x,0,0〉 → 〈x,0,0〉†, (D6)

σC−1
6 : 〈x,x,0〉 → 〈x,x,0〉,

T x
1 T −x

2 σC−1
6 : 〈x, − x,0〉 → 〈x,− x,0〉†,

for ∀x ∈ Z.

3. Conditions on a bond connecting different sublattices: s = 1

In the s = 1 case, such a bond connects different sublattices.
So only an even number of reflections and rotations, i.e., νσ +
νC6 = 0 mod 2, might transform the bond to itself, while an odd
number of reflections and rotations, i.e., νσ + νC6 = 1 mod 2,
can transform the bond 〈x1,x2,1〉 into its Hermitian conjugate
〈x1,x2,1〉†.

It is straightforward to obtain the following conditions on
the bond 〈x1,x2,1〉 ≡ u(x1,x2,1)(0,0,0):

σ : 〈−2x,x,1〉 → 〈−2x,x,1〉†,
σC−1

6 : 〈x + 1,x,1〉 → 〈x + 1,x,1〉,
T −2x−2

1 T x+1
2 σC−2

6 : 〈−2x − 1,x,1〉 → 〈−2x − 1,x,1〉†,
T

x1−1
1 T

x2
2 C3

6 : 〈x1,x2,1〉 → 〈x1,x2,1〉†, (D7)

T −1
1 σC3

6 : 〈x, − 2x,1〉 → 〈x, − 2x,1〉,
T x−1

1 T x−1
2 σC2

6 : 〈x + 1,x,1〉 → 〈x + 1,x,1〉†,
T −1

2 σC6 : 〈−2x − 1,x,1〉 → 〈−2x − 1,x,1〉,
for ∀x,x1,x2 ∈ Z.

4. An example: Mean-field ansatz {ui j } of Z2 spin liquids near
u-RVB state

To demonstrate the above consistent conditions, let’s take a
look at how they determine the mean-field ansatz {uij } of any
Z2 SL near the u-RVB state, with PSG generators (C2).

Considering time reversion T we immediately have

gT 〈x1,x2,s〉 = −(−1)s〈x1,x2,s〉gT . (D8)

In other words, the bond connecting two sites belonging to
the same (different) sublattice(s) anticommutes (commutes)
with gT .

For the nearest neighbor (n.n.) bond (see Fig. 3) uα ≡
〈0,0,1〉 we have x1 = x2 = 0,s = 1. Conditions (D7) and (D8)
immediately lead to

[uα,gT ] = 0,

gσuα = −u†
αgσ , (D9)

g−1
1 g3

C6
uα = −u†

αg−1
1 g3

C6
.

For the second n.n. bond uβ ≡ 〈0,1,0〉, we have x1 = 0 =
s,x2 = 1, and conditions (D6) and (D8) lead to

{uβ,gT } = 0, gσgC6uβ = u
†
βgσgC6 . (D10)

For the third n.n. bond uγ ≡ 〈1,0,1〉, we have x2 = 0,x1 =
s = 1. Conditions (D7) and (D8) lead to

[uγ ,gT ] = 0,

g3
C6

uγ = −u†
γ g3

C6
, (D11)

gσg−1
C6

uγ = uγ gσg−1
C6

.

Constraints on further neighbors, e.g., fourth n.n. 〈0,1,1〉,
fifth n.n. 〈1,1,0〉, and sixth n.n. 〈2,0,0〉 can be similarly
obtained.

APPENDIX E: A SEARCH OF GAPPED SPIN LIQUIDS
NEAR THE u-RVB STATE

In Appendix C we showed that there are at most 24 Z2

SLs around the u-RVB state, which are likely to connect with
a semimetal through a continuous phase transition. In this
appendix we search for those states with spectral gaps among
the 24 SL ansätze. In the end we find out that most of the 24
states are gapless. More specifically, they cannot open up a
mass gap through any perturbation around the u-RVB state,
which has two graphene-like Dirac cones in the first Brillouin
zone. It turns out that only 4 of them, i.e., numbers 16,17,19,
and 22 in Table I, are gapped SLs near the u-RVB state.

1. Symmetry-allowed masses in a graphene-like u-RVB state

We start from the low-energy effective Hamiltonian
of the u-RVB state, which is described by a massless
eight-component Dirac equation. These eight components
contain two spin indices (labeled by Pauli matrices {τ i}),
two sublattice indices (labeled by Pauli matrices {μi}), and
two valley indices (labeled by Pauli matrices {νi}). Just like
graphene, the two valleys are located at K and K′, i.e.,
the vertices in the honeycomb-shaped first Brillouin zone.
Following the convention shown in Fig. 1, the momenta of
these two cones are K = 4π

3
�b1 + 2π

3
�b2 and K′ = 2π

3
�b1 + 4π

3
�b2,

respectively, where {�b1 = (
√

3, − 1)/
√

3a,�b2 = (0,2)/
√

3a}
are the reciprocal lattice vectors corresponding to lattice
vectors {�a1 = (a,0),�a2 = (1,

√
3)a/2}.

Expanding the mean-field Hamiltonian of a u-RVB state
with uα = iτ 0 (here k = 2√

3a
(kx,ky) = k1 �b1 + k2 �b2),

HuRVB = i (ψ†
k,A,ψ

†
k,B ),[

0 −τ 0(1 + e− i k2 + e i (k1−k2))
τ 0(1 + e i k2 + e i (k2−k1)) 0

]

·
(

ψk,A

ψk,B

)

around K and K′, we immediately obtain the Dirac equations

HK = (ψ†
k,A,ψ

†
k,B)

[
0 τ 0(ky + ikx)
τ 0(ky − ikx) 0

] (
ψk,A

ψk,B

)
,

HK′ = (ψ†
k′,A,ψ

†
k′,B)

[
0 τ 0(k′

y − ik′
x)

τ 0(k′
y + ik′

x) 0

](
ψk′,A
ψk′,B

)
.

Defining the following eight-component spinor,

�T ≡ (
ψT

k,A,ψT
k,B,ψT

k′,B,ψT
k′,A

)
, (E1)

we can write the above effective Hamiltonian of the u-RVB
state as

H = �†μ3(μ2∂x + μ1∂y) ⊗ τ 0 ⊗ ν0�. (E2)

Therefore only those mass terms M = μ3 ⊗ τ a ⊗
νb,a,b = 0,1,2,3 satisfy that {H,�†M�} = 0 so that a mass
gap can be opened in the Dirac spectrum. In the following
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we study how the mass term changes under the action of
symmetry transformation such as spin rotations, time reversal
T , and translations T1,T2. The physical symmetry of a SL state
realized by the mean-field ansatz allows only those masses that
are invariant under the corresponding PSG. If a PSG already
rules out all possible mass terms M = μ3 ⊗ τ a ⊗ νb,a,b =
0,1,2,3, we conclude the corresponding SL realized by the
mean-field ansatz is gapless.

First we work out the transformation rules of Dirac spinor
� and M under a PSG. We focus on the 24 PSGs near the
u-RVB state with form (C2) as summarized in Table I.

a. Spin rotations

It’s straightforward to show that a spin rotation along the ẑ

axis by 2θ angle is realized by

� → e i θ�, (E3)

while a spin rotation along the ŷ axis by π angle is realized by

� → iτ 2μ1ν1�∗. (E4)

Apparently Sz rotations leave the mass term invariant, while
under Sy rotations by π the mass term transforms in the
following way:

M → −μ1 ⊗ ν1 ⊗ τ 2MT τ 2 ⊗ μ1 ⊗ ν1. (E5)

Since the mass term is invariant under spin rotations, its
allowed form as seen from the above constraint can only be

M
(a)
A = μ3 ⊗ ν3 ⊗ τ a, a = 1,2,3 (E6)

or

M
(b)
B = μ3 ⊗ νb ⊗ τ 0, b = 0,1,2. (E7)

b. Time reversal T

Since a mean-field bond uij becomes
−(−1)si gT uij g

†
T (−1)sj under the time reversal transformation

in a PSG (C2), clearly T is realized by

� → g
†
T ⊗ μ3 ⊗ ν3�,

(E8)
M → −M,

so the mass term is invariant under time reversal T if

M = −gT ⊗ μ3 ⊗ ν3Mg
†
T ⊗ μ3 ⊗ ν3. (E9)

Ten SLs near the u-RVB state, i.e., Nos. 1–10 in Table I,
have gT = τ 0. In these cases, mass terms M

(a)
A ,a = 1,2,3 will

violate transformation rule (E9), and the only allowed masses
are M

(1)
B ,M

(2)
B .

The other 14 SLs around the u-RVB state (Nos. 11–24 in
Table I) are characterized by gT = iτ 3. In this case the allowed
masses are M

(1)
B ,M

(2)
B and M

(1)
A ,M

(2)
A .

c. Translations T1,T2

Under translations T1,T2 in a PSG, (C2), the eight-
component spinor changes as

T1 : � → e− i 2π
3 ν3 ⊗ g

†
1�,

(E10)
T2 : � → e i 2π

3 ν3 ⊗ g
†
2�,

since K · �a1,2 = ∓ 2π
3 and K′ · �a1,2 = ± 2π

3 . For the mass term
to be invariant,

M = e i 2π
3 ν3 ⊗ g1Me− i 2π

3 ν3 ⊗ g
†
1

= e− i 2π
3 ν3 ⊗ g2Me i 2π

3 ν3 ⊗ g
†
2, (E11)

the symmetry-allowed masses can only be: M (0)
B and M

(a)
A ,a =

1,2,3 if g1 = g2 = τ 0; M
(0)
B and M

(3)
A if g1 = g−1

2 = e i 2π/3τ 3
;

M
(0)
B for the special case of No. 10 in Table I.
Combining conditions (E9) and (E11) we can see that

{M (b)
B ,b = 0,1,2} are not allowed by symmetry in any of the

24 SLs near the u-RVB state. In what follows we will focus on
masses M

(a)
A ,a = 1,2,3.

d. Reflection σ

Similar to time reversal T , under reflection along the x̂ axis,
the spinor transforms as

� → μ1 · g†
σ ⊗ μ3 ⊗ ν3� = − ig†

σ ⊗ μ2 ⊗ ν3�. (E12)

The mass term is invariant under reflection σ if

M = gσ ⊗ μ2 ⊗ ν3Mg†
σ ⊗ μ2 ⊗ ν3. (E13)

The symmetry-allowed masses are none if gσ = τ 0 or
M

(a)
A ,a �= b, if gσ = iτ b.

e. π/3 rotation C6

Under C6, i.e., a rotation by π/3, the spinor transforms as

� → g
†
C6

⊗ e i 5π
6 μ3 ⊗

(√
3

2
ν1 − 1

2
ν2

)
�. (E14)

The mass term is invariant under reflection σ if

M = gC6 ⊗ e− i 5π
6 μ3 ⊗

(√
3

2
ν1 − 1

2
ν2

)
· M

· g†
C6

⊗ e
i
5π

6
μ3

⊗
(√

3

2
ν1 − 1

2
ν2

)
. (E15)

The symmetry-allowed masses are none if gC6 = τ 0,e i θτ 1,3

with θ �= 0 mod π/2, or M
(a)
A ,a �= b, if gC6 = iτ b.

2. Realizing the four gapped Z2 spin liquids near
the u-RVB state

Among all 24 SLs near the u-RVB states, it turns out that
there are no symmetry-allowed masses for 20 of them. In
other words, these 20 SLs cannot open up a mass gap through
a perturbation around the u-RVB state. Only the following 4
SLs near the u-RVB state can obtain an energy gap in the
spectrum through adding a symmetry-allowed mass term:

No. 16 with two symmetry-allowed masses M
(1,2)
A = μ3 ⊗

ν3 ⊗ τ 1,2;
No. 17 with one symmetry-allowed mass M

(2)
A = μ3 ⊗

ν3 ⊗ τ 2;
No. 19 with one symmetry-allowed mass M

(2)
A = μ3 ⊗

ν3 ⊗ τ 2;
No. 22 with one symmetry-allowed mass M

(2)
A = μ3 ⊗

ν3 ⊗ τ 2.
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TABLE II. Symmetry-allowed mean-field ansätze of the 4 pos-
sible gapped SLs near the u-RVB state. We follow the notation for
mean-field bonds in Appendix D. We only summarize the mean-field
bonds that are necessary to realize a gapped Z2 SL. Ellipses represents
those longer-range mean-field bonds unnecessary for a Z2 SL, which
are not listed in this table. Up to third n.n. mean-field bonds
{uα,uβ,uγ }, only one Z2 SL, i.e., No. 19 can be realized on a
honeycomb lattice.

No. uα uβ uγ uδ uε Ninth n.n. 〈1,2,0〉
16 iτ 0 {τ 1,τ 2} iτ 0 iτ 0 {τ 1,τ 2} · · ·
17 iτ 0 τ 2 iτ 0 { iτ 0,τ 3} · · · · · ·
19 { iτ 0,τ 3} {τ 1,τ 2} · · · · · · · · · · · ·
22 iτ 0 τ 2 iτ 0 iτ 0 τ 2 {τ 1,τ 2}

In fact, as summarized in Table II, these 4 gapped SLs can be
realized by a mean-field ansatz {uij }, which satisfies consistent
conditions from the corresponding PSG, as discussed in
Appendix D. In the following we describe the mean-field
ansatz for these 4 gapped Z2 SLs. In the end only one gapped
Z2 SL, i.e., No. 19, can be realized by a mean-field ansatz up
to third n.n. bonds.

a. Z2 spin liquid No. 16: Up to fifth n.n. bonds needed

The mean-field ansatz {uij } for Z2 SL No. 16 is summarized
in Table II up to fifth n.n. bonds. The corresponding SL has a
Z2 gauge structure if and only if [uβ,uε] �= 0, so that the IGG
of this mean-field ansatz is a Z2 group {±τ 0}.

It is straightforward to check that the second n.n. bond uβ =
β1τ

1 + β2τ
2 opens up a mass gap M ∼ μ3 ⊗ ν3 ⊗ (β1τ

1 +
β2τ

2) = β1M
(1)
A + β2M

(2)
A .

b. Z2 spin liquid No. 17: Up to fourth n.n. bonds needed

The mean-field ansatz {uij } for Z2 SL No. 17 is summarized
in Table II up to fourth n.n. bonds. The corresponding SL has a
Z2 gauge structure if and only if [uβ,uδ] �= 0, so that the IGG
of this mean-field ansatz is a Z2 group {±τ 0}.

It is straightforward to check that the second n.n. bond
uβ = βτ 2 opens up a mass gap M ∼ βμ3 ⊗ ν3 ⊗ τ 2 = βM

(2)
A .

c. Z2 spin liquid No. 19: Up to second n.n. bonds needed

The mean-field ansatz {uij } for Z2 SL No. 17 is summarized
in Table II up to second n.n. bonds. The corresponding SL has
a Z2 gauge structure if and only if uβ = β1τ

1 + β2τ
2 with

β1,β2 �= 0, so that the IGG of this mean-field ansatz is a Z2

group {±τ 0}. This is the only gapped Z2 SL near the u-RVB
state that can be realized in a mean-field ansatz up to third n.n.
bonds.

It is straightforward to check that the second n.n. bond
uβ = β1τ

1 + β2τ
2 opens up a mass gap M ∼ β2μ

3 ⊗ ν3 ⊗
τ 2 = β2M

(2)
A .

d. Z2 spin liquid No. 22: Up to ninth n.n. bonds needed

The mean-field ansatz {uij } for Z2 SL No. 17 is summarized
in Table II up to ninth n.n. bonds. The corresponding SL has a
Z2 gauge structure if and only if [uβ,u9] �= 0, so that the IGG
of this mean-field ansatz is a Z2 group {±τ 0}. u9 ≡ 〈1,2,0〉 is

the ninth n.n. mean-field bond. In this Z2 SL, the symmetry-
allowed consistent mean-field bonds for the sixth, seventh, and
eigth n.n.’s are

u6 ≡ 〈2,0,0〉 ∝ τ 2,

u7 ≡ 〈2,0,1〉 ∝ iτ 0,

u8 ≡ 〈0,2,1〉 ∝ iτ 0.

It is straightforward to check that the second n.n. bond
uβ = βτ 2 opens up a mass gap M ∼ βμ3 ⊗ ν3 ⊗ τ 2 = βM

(2)
A .

APPENDIX F: SCHWINGER-FERMION MEAN-FIELD
STUDY OF THE J1- J2 MODEL ON A HONEYCOMB

LATTICE

Can a SPS be realized in the Hubbard model when t/U ∼
1/4, where numerics show a gapped SL phase? In particular,
by the Mott transition theory of Hermele,23 the u-RVB (or
ASL) state is in the neighborhood of the Mott transition. Can
a SPS be more favorable than the ASL state? To address this
question, we use a t/U expansion of the Hubbard model43 to
obtain an effective J1-J2 spin model on a honeycomb lattice:

H = J1

∑
〈ij〉

�Si · Sj + J2

∑
〈〈ij〉〉

�Si · Sj , (F1)

where J1 and J2 are the first neighbor and second neighbor AF
couplings. Following Ref. 43, we find that, up to t4/U 3 order,
the effective J1 and J2 are

J1 = 4t2/U − 16t4/U 3, J2 = 4t4/U 3. (F2)

Naively plugging in t/U ∼ 1/4 gives J2/J1 ∼ 1/12.
We use the following variationally mean-field ansatz:

HMF = χ
∑
〈ij〉

f
†
iαfjα + �eiθ

∑
〈〈ij〉〉∈A

εαβf
†
iαf

†
jβ

+�e−iθ
∑

〈〈ij〉〉∈B

εαβf
†
iαf

†
jβ + h.c. (F3)

It is equivalent to SPS ansatz (11) by an SU(2) gauge
transformation. Note that this mean-field study is biased
toward a spin disordered ground state. For example, we do
not include a Néel order which is known to be the ground state
at J2 = 0, and we also do not include the spiral spin order
which is found by semiclassical study of the J1-J2 model.44,45

The purpose of the current mean-field study is to understand
whether a gapped SL can be more favorable compared with the
gapless ASL state when J2 is tuned up and frustration becomes
important.

By minimizing the mean-field energy in Eq. (5), the phase
diagram of J1-J2 model is obtained and shown in Fig. 4, where
we fix J1 + J2 = 1 and EMF is scaled from Eq. (5) by 8/3.
We find that when J2/J1 < 0.85 (or J2/(J1 + J2) < 0.46), the
ground state is the u-RVB(or ASL) state: χ �= 0 and � = 0.
When J2/J1 > 0.85, the ground state is an s-wave pairing
state: χ,� �= 0, and θ = 0. The s-wave pairing state opens
an energy gap for spinons but has a remaining U (1) gapless
gauge fluctuation. Due to monopole proliferation38 the s-wave
pairing state is not a stable phase. In this mean-field study, the
gauge fluctuations are not considered and this is the reason why
we find the s-wave pairing state as a ground state. Taking gauge

024420-13
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FIG. 4. (Color online) Mean-field phase diagram of J1 − J2

model by Schwinger-fermion approach.

fluctuations into account, the likely fate of the s-wave pairing
state is that θ becomes nonzero and the Z2 SPS state is realized.

We propose to study the J1-J2 model by Gutzwiller
projected wave-function variational approach46 because it can
be viewed as a method to include the gauge fluctuation. We
leave this projected wave-function study as a direction of future
research, which may realize the SPS as the ground state.
Projected wave functions are also classified by PSG, so the
present work also provides guideline for the search of ground
states in the projected wave-function space.

APPENDIX G: DERIVATION OF THE MUTUAL
CHERN–SIMONS TERM

We start from the following low-energy effective La-
grangian of spinon fields ψ in imaginary time (i.e., Euclidean
space-time):

L = ψ†γ0(∂μ − iaμ)γμψ + m n̂ · ψ† �Mψ

+ 1

4g2
a

f 2
μν + 1

2u
(∂μn̂)2. (G1)

We are aiming for an effective action of gauge fields aμ

obtained by integrating out the spinon fields ψ in

Leff = ψ̄[ iγμ(∂μ − iaμ) + imn̂ · �σ ]ψ (G2)

where we define ψ̄ ≡ ψ†γ 0. For simplicity let’s
denote − iG−1 = γμ(∂μ − iaμ) + mn̂ · �σ , then integrate
out spinon fields ψ to yield the effective action
S = − ln det(G−1) = −Tr ln(G−1). Following the spirit
of Abanov and Wiegmann,26,47 we use a large-m expansion to
obtain the low-energy effective theory in the long-wavelength
limit ω � m. By defining G−1

0 = i (γμ∂μ + mn̂ · �σ ) we have

G−1 = G−1
0 + aμγμ. Let’s denote ∂/ ≡ γμ∂μ and similarly

a/ ≡ γμaμ, and we have

S = −Tr ln(G−1
0 + a/) = −Tr ln(G−1

0 ) − Tr ln(1 + G0a/)

= S0 +
∞∑
l=1

(−1)lTr(G0a/)l .

Here S0 gives the nonlinear-sigma-model dynamics ∼ (∂μn̂)2

of vector n̂, while the coupling between vector n̂ and gauge
field aμ is given by the second term. In the large-m expansion
we consider only the leading-order term:

S1 = −Tr(G0a/) = −Tr
{
G−1

0

[
G−1

0

(
G−1

0

)†]−1
a/
}
.

It is straightforward to check that G−1
0 (G−1

0 )† =
−∂2 + m2 − m�σ · ∂/n̂; therefore large-m expansion leads to

[
G−1

0 (G−1
0 )†

]−1 = (−∂2 + m2)−1
∞∑
l=0

(
m�σ · ∂/n̂

−∂2 + m2

)l

,

and consequently

S1 = −
∞∑
l=0

Tr

{
i (∂/ + mn̂ · �σ )

−∂2 + m2

(
m�σ · ∂/n̂

−∂2 + m2

)l

a/

}
.

It turns out that l = 0,1 terms both vanish and the leading-order
correction to the low-energy effective action is the following
topological term:

Stopo = −aμTr

[
γμ

imn̂ · �σ
−∂2 + m2

(
mγν(∂νn̂) · �σ
−∂2 + m2

)2]

= i

4π
εμνλaμn̂ · (∂νn̂ × ∂λn̂). (G3)

Notice that in the CP 1 parametrization of order parameter
n̂ = w†σw, spinor w is the eigenvector of n̂ · �σ whose spin
orientation is along unit vector n̂. Therefore the skyrmion
current of n̂,

J Sk
μ = 1

2
· 1

4π
εμνλn̂ · (∂νn̂ × ∂λn̂), (G4)

which equals half the winding number of n̂ wrapping around
S2, is nothing but the Berry’s phase48 for spinor w. Since
spinor w obtains the π phase (i.e., a minus sign) as n̂ wraps
around S2 once (i.e., n̂ covers 4π solid angle), this gives a
direct correspondence between the skyrmion current density
and the U (1) gauge field strength Fμν coupled to w:

1

4π
εμνλn̂ · (∂νn̂ × ∂λn̂) = 1

π
εμνλ∂νAλ. (G5)

Therefore topological term (G3) is exactly the mutual CS term
mentioned earlier

Stopo = i

π
εμνλaμ∂νAλ.
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