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Influence of magnetic fluctuations in the magnetocaloric effect on rare-earth
intermetallic compounds
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A theoretical model including both crystal-field and exchange interactions that considers the effect of magnetic
fluctuations is developed to evaluate the temperature dependence of the isothermal magnetic entropy changes in
ferromagnetic rare-earth-based intermetallic compounds. The Green’s functions are derived from their equation of
motion. The magnetic moment correlation functions are determined beyond the random phase approximation by
incorporating a measure of magnetic spontaneous fluctuations in a way that ensures self-consistency with regard
to the fluctuation-dissipation theorem. In particular, the exact magnitude of the entropy change without magnetic
moment fluctuations depends on the ratio of both the crystal-field first- and the crystal-field third-order magnetic
susceptibilities at the Curie temperature, TC . These theoretical predictions are compared with experimental data
on cubic RM2 (R = rare earth and M = Al and Ni) compounds, where the principal crystal-field and exchange
parameters are well known.
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I. INTRODUCTION

Tailored materials have long been one of the most important
issues in solid state physics. They often provide insights into
the underlying mechanisms governing the properties of mate-
rials and their potential applications. Nowadays, researchers
are fascinated with and involved in the design of a prototype of
magnetic refrigerator that exploits the magnetocaloric effect
(MCE), because this technology is thought to be less harmful
to the environment than that based on the conventional gas
compression-expansion method.1–7

The MCE is a magnetothermodynamical phenomenon char-
acterized by the entropy change (�Siso) in an isothermal (iso)
process and by the temperature change in an adiabatic process
as a result of a magnetic field variation. This phenomenon
has been extensively and intensively studied over the last
four decades. In 1997, Gd5Si2Ge2 was found to undergo a
magnetic first-order transition accompanied by an unusually
very large entropy change (−�Siso ≈ 18.8 J/K mol under
a magnetic field variation from 0 to 50 kOe at 273 K).8

These findings stimulated a great deal of activity that still
remains cutting-edge research into what have been called
giant magnetocaloric materials.9–11 Since then, the MCE
has been investigated in rare earth (R)–transition metal (M)
compounds12–16 and metallic glasses,17,18 among others. In
particular, in conventional RM ferromagnets undergoing a
second-order phase transition such as cubic RM2 (M = Al
and Ni) compounds, the temperature dependence of −�Siso

exhibits a peak around the Curie ordering temperature TC .
The magnitude of this peak depends on the applied magnetic
field H , and the direction of H has an important effect on
the energetic level ordering of the Zeeman states in rare earth
compounds, which can easily be calculated on the basis of an
interaction Hamiltonian. This dependence is studied in the
present work. The MCE in R-based compounds has been
numerically described by including the relevant crystalline
electric field (CEF) and exchange interactions involved in
coupling localized magnetic moments.19

Motivated by these considerations, the aim of this paper is to
gain a better understanding of the MCE through comparison

of the experimental and calculated temperature dependence
of isothermal magnetic entropy changes at temperatures for
which thermal energies are comparable with those related to
CEF splitting and exchange energies. We have thus focused
our interest on cubic systems where the determination of the
CEF parameters is much easier than in uniaxial compounds,
such as tetragonal or hexagonal ones, or systems with lower
local symmetry.20,21 The effects of magnetic fluctuations are
considered using the Green’s function calculation. The method
goes beyond the random phase approximation (RPA) by taking
into account spontaneous fluctuations through the fluctuation-
dissipation theorem.

Our article is arranged as follows. Section II contains
essential information and definitions for analyzing the role
of magnetic fluctuations in the MCE. Details of the critical
mean-field behavior of −�Siso are given in the Appendix.
The theory developed is applied to RM2 (R = rare earth and
M = Al and Ni) compounds in Sec. III, which also includes
the self-consistent correlation effects that are determined
numerically and the comparisons with the experimental data.
We likewise discuss the success and shortcomings of the
present theory and the molecular-field theory in its application
to RM2. Section IV concludes the article.

II. THEORY

We use a general formulation developed for a periodic-field
model, which is based on an N-site Hamiltonian H, N being
the number of magnetic ions over one period of the magnetic
structure.22,23 To investigate the effects of fluctuations, our
starting point is the simplest model used to describe the
occurrence of most of the observed properties in rare earth
magnetism. The Hamiltonian is thus written as the sum of the
CEF, Zeeman, and isotropic Heisenberg terms. Regrouping
these terms into a single-ion part H1 and an interion exchange
part H2, we obtain

H = HCEF + HZ + Hex ≡ H1 + H2, (1)
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with the one-ion term H1 defined as

H1 =
N∑

j=1

HCEF(j ) −
N∑

j=1

H · M(j ) −
N∑

i,j �=i

J (ij )Jz(i)〈Jz(j )〉,

(2)

where HCEF represents the single-ion CEF Hamiltonian
appropriate for cubic symmetry; that is,24

HCEF = B4
(
O0

4 + 5O4
4

) + B6
(
O0

6 − 21O4
6

)

= W

(
x

F4

(
O0

4 + 5O4
4

) + 1 − |x|
F6

(
O0

6 − 21O4
6

))
, (3)

where Om
l and Bl are the Stevens operators and crystal-field

parameters, respectively. Furthermore, according to (3), Bl can
also be written in terms of the parameters x and W used by
Lea et al.24 The parameter x is limited to the range −1 �
x � 1, while W scales the energy splittting (F4 and F6 are
factors that are common to all matrix elements and specific
to each rare earth ion).25 The second term in (2) represents
the Zeeman coupling of the 4f magnetic moments with the
applied magnetic field H, while the third term is the mean-
field approximation of an isotropic bilinear Heisenberg-type
interaction.

Thus, the Hamiltonian H1 defines the standard-basis oper-
ators and hence H1 can be written as

H1 =
N∑

j=1

2J∑
n=0

En|nj 〉〈nj |. (4)

The eigenfunctions at site i and the energy levels are denoted
|n〉i and En, respectively. On the other hand, the two-ion term
H2 is given by

H2 = −1

2

N∑
i,j �=i

J (ij )Jz(i)(Jz(j ) − 2〈Jz(j )〉)

−1

4

N∑
i,j �=i

J (ij )(J+(i)J−(j ) + J−(i)J+(j )). (5)

We introduce the Green’s functions for the total angular
momentum components,

Gαβ(ij,t) = −iθ (t)〈[Jα(i,t),Jβ(j,0)]〉, (6)

to find the magnetic fluctuations at finite temperature taking
into account all energy levels.

The Fourier transform of Gαβ(ij,t) is

Gαβ(�q,ω) = 1

N

∑
i,j �=i

e(−i �q �Rij )
∫ +∞

−∞
dteiωtGαβ(ij,t). (7)

The equations of motion of the Green’s functions are de-
rived using appropriate commutator relations. These equations
of motion for G are set and high-order Green’s functions are
reduced using RPA decoupling developed according to the
formalism described by Jensen et al.26 Solving the equation
of motion for these functions within the RPA theory leads to a

system of linear coupled equations,

Gαβ(�q,ω) = gαβ(ω) − J (�q)gαz(ω)Gzβ(�q,ω)

− 1
2J (�q)(gα+(ω)G−β(�q,ω) + gα−(ω)G+β(�q,ω)),

(8)

where the single-ion CEF susceptibilities are given by

gαβ(ω) =
∑
m,n

〈m| Jα |n〉〈n| Jβ |m〉
ω − ωn + ωm

(fm − fn), (9)

where fm and fn are the thermal population factors for
CEF states |m〉 and |n〉, respectively, and J (�q) = ∑

i,j �=i

J (ij )e(−i �q �Rij ) is the Fourier transform of the intersite exchange
coupling constant J (ij ). As previously mentioned, a decou-
pling of the different excitation modes is needed to solve linear
system (8) by using symmetry rules for the matrix elements
that appear in gαβ(ω). These symmetry considerations allow
us to define longitudinal and transverse excitations that can
be well separated, yielding to gzz(ω), g+−(ω), and g−+(ω),
respectively. Taking these considerations into account, linear
system (8) is reduced to

Gzz(�q,ω) = gzz(ω) − J (�q)gzz(ω)Gzz(�q,ω), (10)

and

G±∓(�q,ω) = g±∓(ω) − 1
2J (�q)g±∓(ω)G±∓(�q,ω). (11)

Hence the expression of Gzz(�q,ω) and G±∓(�q,ω) can be
easily obtained. On the other hand, the matrix of equal-time
correlation functions,

C�q = 1

N

N∑
i,j �=i

exp(−i �q �Rij )

×

⎛
⎜⎝

〈J+(i)J+(j )〉 〈J+(i)J−(j )〉 〈J+(i)Jz(j )〉
〈J−(i)J+(j )〉 〈J−(i)J−(j )〉 〈J−(i)Jz(j )〉
〈Jz(i)J+(j )〉 〈Jz(i)J−(j )〉 〈Jz(i)Jz(j )〉

⎞
⎟⎠ ,

(12)

should, according to the well-known fluctuation-dissipation
theorem, be related to Gαβ(�q,ω):26

C�q = − 1

π

∫ +∞

−∞
dω

1

1 − e−βω
ImGαβ(�q,ω), (13)

where Im represents the imaginary part of Gαβ(�q,ω). Thus, the
internal energy per ion in this combined RPA/molecular-field
model is found to be

U = U1 + U2 =
2J∑

n=0

Enfn − 1

2N

∑
�q

J (�q)
(
C33

�q + C12
�q

)
.

(14)

Finally, the specific heat C is easily obtained by performing
the temperature derivative of U at any temperature, and the
magnetic entropy can be calculated by integrating C/T . In
the following section we present the calculated dependencies
for the RM2 comparing the results obtained using the mean-
field approximation and the RPA/molecular-field model from
Eq. (14). For evaluating the latter equation we have considered
the information on J (�q) along the three principal symmetry
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directions, 〈100〉, 〈110〉, and 〈111〉, as determined by Purwins
et al.27 We can anticipate that the strongest effect of the
fluctuations is found to be around TC .

III. RESULTS AND DISCUSSION

In this paper, a theoretical model for describing the
isothermal magnetic entropy change −�Siso in intermetallic
compounds has been studied within the RPA/mean-field
formalism. The main result is that the exact shape of −�Siso is
determined by the relative magnitude of the exchange and
CEF parameters and the incorporation of fluctuations has
a major effect near TC . This quite original result can shed
light on the experimental curves shown here, as well as on
other data found in the literature. We start by presenting the
special case of ErAl2. The temperature dependence of the
experimental and numerically calculated [using Eq. (14) and
within the mean-field approximation] isothermal magnetic
entropy change on the magnetic field from 0 to 50 kOe for
ErAl2 is shown in Fig. 1. −�Siso has a maximum near TC

(∼15 K), with an experimental value close to 8.2 J/K mol.
The calculated value around TC obtained from the mean-field
approximation when the magnetic field is applied along the
[111] easy-axis magnetization is almost 10 J/K mol. This
difference can be explained by taking into account the fact that
the theoretical entropy change is markedly dependent on the
direction of the applied magnetic field (see inset in Fig. 1).
This means that it is necessary to perform an azimuthal
average to obtain the theoretical temperature dependence of
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FIG. 1. (Color online) Temperature dependence of the isothermal
magnetic entropy change −�Siso in ErAl2 on the magnetic field
variation from 0 to 50 kOe. Solid lines are calculations obtained from
the RPA/molecular-field model, Eq. (14), while symbols correspond
to experimental data taken from Oliveira et al.19 The dashed
line corresponds to the mean-field calculation. Inset: Theoretical
magnetic field azimuthal dependence of the isothermal entropy
change calculated at TC .

the isothermal magnetic entropy change in a polycrystalline
sample of this material, assuming that all orientations of the
easy-axis [111] magnetization with respect to the applied
magnetic field are possible. The value thus obtained is found
to be 8.7 J/K mol when the calculations are done using
the mean-field approximation; when considering the effect of
fluctuations from Eq. (14), the magnitude is 8.3 J/K mol,
which is much closer to the experimental value reported
above. Apart from that, the theoretical variation satisfactorily
describes the observed experimental dependence within the
paramagnetic phase of this compound, indicating that the
crystal-field scheme accounts well for the temperature depen-
dence of the magnetic entropy change. The calculated variation
in the ordered region is quite similar to the experimental one,
with small deviations below 10 K. In contrast, other RM2

(M = Ni or Al) do not present large azimuthal magnetic
dependencies of −�Siso like that already shown for ErAl2. In
particular, −�Siso values for ErNi2, DyNi2, and DyAl2 have a
maximum near their respective TC values, with experimental
values around 5.8, 6.0, and 4.0 J/K mol, respectively. These
values are near the 5.5, 5.7, and 4.0 J/K mol predicted by the
RPA/molecular-field formalism for these materials and are not
far from those calculated using the mean-field estimations (see
Table I; further details on the analytical determination of the
magnitude of −�Siso at TC are given in the Appendix). As
a result, the incorporation of magnetic fluctuations provides
a better model for the magnitude of −�Siso near TC . In
addition, the temperature dependence of −�Siso shows trends
in the paramagnetic phase for ErNi2, DyNi2, and DyAl2 (see
Fig. 2) similar to that found previously for ErAl2. As in the
preceding case, these results clearly indicate the reliability
of the parametrization employed, where only two CEF pa-
rameters were used, together with the wave-vector-dependent
Fourier transform of the intersite exchange coupling constant.
Taking into account the success of the model, due mainly
to the high-cubic symmetry environment of the rare earth
ions in the paramagnetic phase of RM2, the CEF scheme is
well established. This simple model probably works despite
the highly complex physics involved in these materials, as

TABLE I. Calculated isothermal magnetic entropy change �Scal
iso

in several RM2 compounds at the ordering temperature (TC ) according
to expression (A3) on the magnetic field variation from 0 to 50 kOe;
experimental or estimated values �Sest

iso are taken from Oliveira et al.19

PrNi2 is a paramagnet, while TmNi2 shows a ferromagnetic transition
temperature of 1.1 K and a crystal-field singlet ground state.30 All data
are given in J/K mol.

RAl2 RNi2

R −�Scal
iso (TC) −�Sest

iso(TC) −�Scal
iso (TC) −�Sest

iso(TC)

Pr 3.7 4.2(1) – –
Nd 1.6 2.1(2) 4.7 3.9(2)
Gd 1.6 2.0(2) 3.6 3.5(1)
Tb 3.4 3.7(1) 7.7 7.0(1)
Dy 4.2 4.0(1) 5.9 6.0(1)
Ho 6.3 6.4(2) 8.4 8.7(2)
Er 8.3 8.3(1) 5.7 5.8(2)
Tm 6.0 7.0(2) – –
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FIG. 2. (Color online) Temperature dependence of the isothermal
magnetic entropy change −�Siso for ErNi2, DyNi2, and DyAl2

on the magnetic field variation from 0 to 50 kOe. Solid lines are
calculations obtained from the RPA/molecular-field model, Eq. (14),
while symbols correspond to experimental data taken from Oliveira
et al.19 (see the text for more details). Dashed lines correspond to the
mean-field calculation.

we see below. In fact, in Fig. 2 some deviations between
theory and experimental dependencies can be observed at low
temperatures for ErNi2, DyNi2, and DyAl2. In all of these
materials the theoretical variations predict some features that
are not experimentally reproduced: a Schottky-like anomaly
(related to the fact that four quantum levels are found to be
separated at an interval of 10 K) for ErNi2 and slight bumps
for DyNi2 and DyAl2 that are not observed experimentally
(see Fig. 2). Considering that our calculations include the
main interactions in play, these features could suggest that
other higher-order interactions such as the one-ion or two-ion
magnetoelastic coupling or quadrupolar pair coupling that are
expected to be of minor importance could also be of relevance
for understanding this low-temperature behavior of −�Siso

in these materials. It is thus clear from the discrepancies
observed at low temperatures between theory and experiments
that a much more complete formalism is needed to remove
the remaining deviations. Further research will hence be of
interest to elucidate this issue.

IV. CONCLUSIONS

In summary, we have shown that an RPA/mean-field ap-
proach is able to describe quite satisfactorily the experimental
magnetic entropy changes in the immediacy of the ordering
temperature of rare earth intermetallic compounds undergoing
a second-order para-ferromagnetic phase transition. This was
made possible due to a good knowledge of the crystal-field and
exchange interaction parameters in well-known RM2 (M = Al
or Ni) cubic systems. In addition, the analysis allows us to

extract information on the influence of spin fluctuations near
TC when the calculations are compared with those obtained
from the mean-field approximation. These results could be
applied to low-symmetric systems to understand the large
MCEs observed.
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APPENDIX: CRITICAL MEAN-FIELD BEHAVIOR

Within the mean-field approximation the critical behavior
of �Siso in the near vicinity of TC can be analytically obtained
using an expansion of the magnetic moment at each site
〈M(i)〉 = M for a collinear ferromagnet at powers of the
corresponding exchange field up to third order in the presence
of CEF effects,

M = χ0Hex + χ
(3)
0 (Hex)3, (A1)

where χ0 and χ
(3)
0 are the first- and third-order CEF single-ion

magnetic susceptibilities.28 The same procedure as in Ref. 22
can be used to derive the magnetic field dependence of the
magnetization on the reduced variable t = (1 − T/TC)1/2 in
the vicinity of the Curie temperature TC . The isothermal
magnetic entropy change can be calculated by integration of
the Maxwell relation:

�Siso(TC) =
∫ H

0

(
∂M

∂T

)
H

dH. (A2)

Using the latter expression together with the field depen-
dence of the magnetization developed at powers of t up to H 4

as indicated above, we can write

�Siso(TC) = 1

2

dχ0(TC)

dT

((
− χ0(TC)

χ
(3)
0 (TC)

H

)1/3

+ H

)2

+ 1

4

dχ
(3)
0 (TC)

dT

((
− χ0(TC)

χ3
0 (TC)

H

)1/3

+ H

)4

,

(A3)

where dχ0(TC )
dT

and dχ
(3)
0 (TC )
dT

are the values of the temperature
derivatives of the first- and third-order magnetic susceptibili-
ties at TC . Equation (A3) satisfies two important restrictions.
First, for small magnetic fields it complies with the requirement
that �Siso tends to 0 when H → 0; and, second, for H → ∞,
Eq. (A3) does not diverge because the derivatives of the
high-order magnetic susceptibilities are 0 above a certain
order.29

The first consequence of Eq. (A3) is that the change in
isothermal magnetic entropy at TC for FM systems is governed
by the relation − χ0(TC )

χ
(3)
0 (TC )

. This is an important result of the

present study because it should allow us to understand how
the magnitude of the isothermal magnetic entropy increases
in a second-order magnetic phase transition (χ (3)

0 < 0) as the
third-order magnetic susceptibility decreases. In addition, χ (3)

0 ,
passing through 0, becomes positive and the second-order

024412-4



INFLUENCE OF MAGNETIC FLUCTUATIONS IN THE . . . PHYSICAL REVIEW B 84, 024412 (2011)

magnetic phase transition changes to a first-order transition
(the associated isothermal magnetic entropy for a first-order
magnetic phase transition is expected to be larger than that for
a second-order phase one). On the other hand, expression (A3)
is reduced, for low applied magnetic fields, to the well-known
expression for the case of gadolinium-based compounds5 when

using the appropriate expressions for dχ0(TC )
dT

and dχ
(3)
0 (TC )
dT

,29

�Siso(TC) = −3

2
qR

(
J (J + 1)

(J 2 + (J + 1))2

)2/3(10

9

gJ μBH

kBTC

)2/3

+ o(H 4/3), (A4)

where q is the number of magnetic ions per mole.
The second important consequence of the above analytical

treatment is the magnetic field dependence of �Siso at TC . In
magnetic systems with small magnetocrystalline anisotropy
such as gadolinium compounds or the La(Fe,Si)13 family, an
H 2/3 law was normally used to describe the magnetic field
dependence of �Smax near the Curie point, TC . However, very

recently Lyubina et al.,31 based on Landau’s theory for the
second-order magnetic phase transition, also within the mean-
field approximation, showed that

−�Smax = A(H + H0)2/3 − AH
2/3
0 + BH 4/3, (A5)

where A and B are intrinsic material constants, while H0

is an extrinsic parameter determined from the purity and
homogeneity of the sample. Our present findings agree well
with these previous results, since in Eq. (A3), �Siso is a
combination of different powers of H , for example, H 2/3,
H 4/3, and H 2, depending on the magnitude of the derivatives of
the high-order magnetic susceptibilities. Results of �Siso at the
Curie temperature for cubic RM2 (M = Al and Ni) obtained
using Eq. (A3) are listed in Table I, considering the crystal-field
and exchange parameters taken from Oliveira et al.19 and
Purwins et al.27 As expected, the calculated isothermal mag-
netic entropy changes are in quite good agreement with those
found experimentally in both RM2 series (M = Al and Ni)
(see Table I).
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Sánchez-Marcos, and J. A. Blanco, J. Phys. D 41, 192003 (2008).
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