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Phase diagram of a frustrated quantum antiferromagnet on the honeycomb lattice: Magnetic order
versus valence-bond crystal formation
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We present a comprehensive computational study of the phase diagram of the frustrated S = 1/2 Heisenberg
antiferromagnet on the honeycomb lattice, with second-nearest (J2) and third-neighbor (J3) couplings. Using
a combination of exact diagonalizations (EDs) of the original spin model, of the Hamiltonian projected into
the nearest-neighbor short-range valence-bond basis, and of an effective quantum dimer model, as well as a
self-consistent cluster mean-field theory, we determine the boundaries of several magnetically ordered phases in
the region J2,J3 ∈ [0,1], and find a sizable magnetically disordered region in between. We characterize part of
this magnetically disordered phase as a plaquette valence-bond crystal phase. At larger J2, we locate a sizable
region in which staggered valence-bond crystal correlations are found to be important, either due to genuine
valence-bond crystal (VBC) ordering or as a consequence of magnetically ordered phases, which break lattice
rotational symmetry. Furthermore, we find that a particular parameter-free Gutzwiller projected tight-binding
wave function has remarkably accurate energies compared to finite-size extrapolated ED energies along the
transition line from conventional Néel to plaquette VBC phases, a fact that points to possibly interesting critical
behavior—such as a deconfined critical point—across this transition. We also comment on the relevance of this
spin model to model the spin liquid region found in the half filled Hubbard model on the honeycomb lattice.
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Magnetic frustration is a very appealing route to weaken
or destroy magnetic order, which can result in new phases
of matter: these phases can usually be classified and named
according to the broken symmetry (spin, lattice) if any, or
they can belong to the spin liquid zoo when no symmetry
is broken.1 The quest for a genuine gapped spin liquid in a
spin-1/2 model with SU(2) symmetry and an odd number of
sites in the unit cell started a long time ago with the proposal
by Anderson2 that the ground state of the Heisenberg model
on the triangular lattice could be viewed as a superposition of
short-range valence bonds (VBs), called a resonating valence-
bond (RVB) state. For the specific example of the triangular
lattice it turned out later, however, that a magnetically ordered
state is realized.3 Up to now, there is still no firmly established
spin liquid ground state with the aforementioned properties
in a reasonably realistic SU(2) spin model, although there
are potential candidates, such as the triangular lattice with
ring exchange interactions4 or the Heisenberg model on the
kagomé lattice.5 On the other hand, if one considers lattices
with an even number of sites per unit cell, then Hasting’s
generalization6 of the Lieb-Schultz-Mattis theorem7 does not
apply, and it is possible in principle to stabilize a magnetically
disordered ground state that does not break any symmetry
and has only trivial topological properties. One can think, for
instance, of a Heisenberg model on a square bilayer lattice with
strong interlayer exchange. The honeycomb lattice is peculiar
in this respect because no simple lattice-symmetry preserving
deformation is known that would lead to a gapped magnetic
state.8

In recent years a promising new direction in the search
for spin liquids has opened up, focusing on the behavior of

insulating phases upon approaching the Mott insulator-metal
transition. In the half filled triangular lattice Hubbard model a
picture with a spin bose metal spin liquid phase sandwiched
between the metallic phase at small U/t and the magnetically
ordered Néel phase at large U/t has emerged.9–13 It has been
recognized that this spin liquid phase can be understood in
terms of a pure spin model, where the rising charge fluctuations
are cast into an increasingly complex spin Hamiltonian beyond
the Heisenberg model.11,13 A second striking example of a
spin liquid located between a magnetically ordered phase and
a (semi)metal has recently been uncovered in the half filled
Hubbard model on the honeycomb lattice.14 Such spin liquid
phase is reported to have a small spin gap and no appreciable
correlations of any kind.

This exciting finding leads us to the natural question of
whether this spin liquid phase on the honeycomb lattice
can also be described within a pure S = 1/2 spin model,
despite the vicinity of the insulator to semimetal transition.
A high-order derivation of the corresponding spin model is in
progress,15 but the typical value of the expansion parameter
t/U ∼ 0.25 relevant for the spin liquid phase renders this
task more challenging in comparison to the triangular lattice,
where a typical value for the spin liquid regime is about
t/U ∼ 0.11. In the absence of an accurate prediction for
a relevant spin model, we start by exploring the effect of
the next-to-leading-order correction to the nearest-neighbor
Heisenberg model, which is a second-neighbor Heisenberg
coupling J2 arising at fourth order in t/U . We thus consider in
the following a frustrated S = 1/2 Heisenberg Hamiltonian on
the honeycomb lattice, where we also include a third-neighbor
coupling J3 for completeness.

024406-11098-0121/2011/84(2)/024406(22) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.024406


A. F. ALBUQUERQUE et al. PHYSICAL REVIEW B 84, 024406 (2011)

J2

J3

J1

(a)

Γ
K

M

(b)

FIG. 1. (Color online) (a) Honeycomb lattice with the different
spin exchange interactions considered in this paper; (b) corresponding
Brillouin zone with relevant k points.

The honeycomb (hexagonal) lattice Hamiltonian [see
Fig. 1(a)] reads

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj + J3

∑
〈〈〈i,j〉〉〉

Si · Sj . (1)

In this paper we focus solely on antiferromagnetic interactions
Ja � 0, set J1 = 1, and restrict ourselves to the window
J2,J3 ∈ [0,1]. Aspects of this frustrated model have been
explored previously in the literature, based on spin-wave
theory,16–19 a nonlinear σ -model treatment,20 Schwinger bo-
son approaches,21,22 and exact diagonalizations.16,23 Note also
that a similar frustrated model gives rise to a rich phase diagram
on the square lattice.24,25

In this work we thoroughly explore the phase diagram
in the considered window, based on a combination of exact
diagonalizations (EDs) of the spin model (up to 42 spins),
EDs in the nearest-neighbor valence-bond (NNVB) subspace
(up to 96 spins), EDs of an effective quantum dimer model
(QDM) (corresponding to up to 126 spins), complemented by
a self-consistent cluster mean-field theory (SCMFT) and the
study of a fully projected Gutzwiller wave function of the half
filled honeycomb tight-binding “Dirac sea.”

The key finding of our work is the presence of a sizable
magnetically disordered region adjacent to the well studied
Néel phase of the unfrustrated honeycomb Heisenberg model.
We identify a large part of this region as a plaquette valence-
bond crystal (VBC). Interestingly we find evidence (within
the ED realm) for a possibly continuous phase transition
between the Néel phase and a plaquette valence-bond crystal.
In addition, the energy and some of the key correlations of the
frustrated spin model in the transition region are well captured
by a simple Gutzwiller projected (GP) Dirac sea wave function.
These findings raise the possibility of a continuous quantum
phase transition beyond the Ginzburg-Landau paradigm in this
honeycomb lattice spin model.

The outline of the paper is as follows: We start by giving a
quick overview of the phase diagram in Sec. I. Then the mag-
netically ordered phases are located using a SCMFT in Sec. II.
Next we study the spin model using EDs in Sec. III, followed
by EDs in the NNVB subspace and EDs of a QDM which are
presented in Sec. IV. We close with a discussion and conclu-
sion in Sec. V. In the appendices we discuss the properties
of the Gutzwiller projected Dirac sea (Appendix A), present
the derivation of an effective quantum dimer model from the

Hamiltonian projected into the NNVB subspace (Appendix B),
compare the energies and the finite-size behavior of the NNVB
versus the QDM approach (Appendix C), and derive the
expected correlation functions in model valence-bond crystal
states (Appendix D).

I. OVERVIEW OF THE PHASE DIAGRAM

We start by summarizing the main result of this paper,
the phase diagram of the frustrated S = 1/2 Heisenberg
Hamiltonian Eq. (1) in the considered parameter window,
displayed in Fig. 2. The phase diagram emerges from a
combination of different information extracted from ED of
the spin model:

(i) For a first analysis without further input we have inves-
tigated the structure of the fidelity f , i.e., the overlap between
ground states (GSs) obtained for different parameters:26

f (J2,J3|J ′
2,J

′
3) = |〈GS(J2,J3)|GS(J ′

2,J
′
3)〉|, (2)

for consecutive points along the two directions of the (J2,J3)
plane using a grid spacing of 0.05. Local minima of f in the
directions of J2 and J3 of f are indicated by star symbols
for both the N = 24 and N = 32 samples. These dips already
give a first impression of some phase boundaries in the phase
diagram.

(ii) In addition, we highlight the quantum numbers of the
lowest excited state and—if not a triplet already—the quantum
numbers of the lowest triplet, both for N = 24. The basic idea
is that for sufficiently large systems the quantum numbers of
the low-energy spectrum are characteristic of the respective
phases, and can thus be used to chart a phase diagram if
used with care. For a detailed discussion of the expected
low-lying energy levels in the different phases we refer to
Sec. III A.

Based on these and further results to be discussed later,
the following phases are identified: (I) a Néel ordered phase
with a finite staggered magnetization, located around the
unfrustrated point J2 = J3 = 0; (II) a magnetically ordered
collinear phase corresponding to the classical phase (II) in
Ref. 16 arising at combined large J2 and J3; (III) one or
several phases corresponding to short-range or long-range
noncollinear magnetic order, resulting from the J1,J3 coupling
of two decoupled triangular lattices in the large J2 limit;
(IV) a collinear magnetically ordered phase [corresponding
to phase (IV) in Ref. 16] or a staggered dimer phase (also
called lattice nematic in Ref. 18); and finally (V) a mag-
netically disordered phase forming a plaquette valence-bond
crystal.

Analyzing the magnitude of the fidelity dips it seems
likely that the transition from phase (I) to (V) is continuous
(corresponding to a faint feature in the fidelity), while the
transitions from (I) to (II) and (V) to (II), (III), and (IV) seem
to be of first order because of strong avoided level crossings
observed on the clusters considered. The topology of the phase
diagram and the nature of the phases in the regions (III)
and (IV) display strong finite-size effects and require further
investigations beyond the scope of this work. We note that
phases (II), (III), and (IV) exhibit long-range staggered dimer
order also in the case of long-range magnetic order, because in
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FIG. 2. (Color online) Phase diagram of the frustrated S = 1/2 Heisenberg model honeycomb lattice in the region J2,J3 ∈ [0,1], based
on a combination of exact diagonalization results discussed in the main text. The five regions identified here correspond to (I) a Néel
ordered phase with staggered magnetization, (II) a collinear magnetically ordered phase, (III) one or several phases corresponding to short- or
long-range-ordered noncollinear magnetic order, (IV) a different collinear magnetically ordered (or disordered) phase corresponding to phase
(IV) in Ref. 16, and (V) a magnetically disordered phase forming a plaquette valence-bond crystal. The five phases are sketched in the panels
around the phase diagram. Note that the phases highlighted in gray, (III) and (IV), show substantial finite-size effects and are therefore difficult
to characterize precisely.

the magnetically ordered phases one of the nearest-neighbor
(NN) bond energies is different from the other two.

We now proceed to a self-consistent cluster mean-field
treatment, which is well suited to detect various magnetically
ordered phases.

II. SELF-CONSISTENT CLUSTER MEAN-FIELD THEORY

The very same frustration accounting for the rich physics
exhibited by the here-considered model [Eq. (1)] also adds
enormous complexity to the task of determining its properties.
In this context, approximate approaches can be valuable and
employed in obtaining “draft phase diagrams” that may guide
subsequent application of more accurate techniques. The so-
called self-consistent cluster mean-field theory (SCMFT)27,28

is a tool particularly well suited to this task. In a nutshell,
SCMFT consists of diagonalizing the Hamiltonian under
investigation on small clusters that, besides including actual
in-cluster couplings, so that quantum fluctuations at the local
level are partially taken into account, are also coupled to
mean fields that are to be determined self-consistently. This
technique has been shown to considerably improve upon
more conventional mean-field approaches for the case of
hard-core bosons on the triangular lattice28 and, more recently,

to yield results that compare well with the ones from more
sophisticated techniques when applied to an effective model
for a frustrated antiferromagnet.29

In applying SCMFT, we consider the clusters comprising
N = 6 and 8 sites depicted in the insets of Fig. 3. We split the
Hamiltonian Eq. (1) according to

Ĥ = Ĥin + ĤMF. (3)

Ĥin accounts for in-cluster couplings,

Ĥin =
∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj + J3

∑
〈〈〈i,j〉〉〉

Si · Sj , (4)

and is treated in an exact way. 〈i,j 〉, 〈〈i,j 〉〉, and 〈〈〈i,j 〉〉〉 re-
spectively denote nearest-, second-nearest-, and third-nearest-
neighbor in-cluster sites (open circles in Fig. 3, where in-
cluster NN bonds are represented by thick lines). Couplings to
the mean fields are included in HMF, which reads

ĤMF =
∑
[i,j ]

Si · 〈Sj 〉 + J2

∑
[[i,j ]]

Si · 〈Sj 〉 + J3

∑
[[[i,j ]]]

Si · 〈Sj 〉.

(5)

Here, Si denotes a spin operator attached to an in-cluster site i

and is coupled to the mean field given by the expectation value
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FIG. 3. (Color online) Phase diagram obtained from SCMFT as applied to the N = 8 (a) and N = 6 (b) clusters. In the region labeled as
“disordered” no SU(2)-broken magnetic phases are obtained from the SCMFT procedure for the considered cluster. Insets: clusters employed
in our SCMFT calculations. Thick lines connecting open circles represent in-cluster couplings and dashed lines coupling to mean fields (only
J1 interactions are depicted).

〈Sj 〉 at the “across-the-boundary site” j (light-filled circles
in Fig. 3), for nearest ([i,j ]; dashed lines in Fig. 3), second-
nearest ([[i,j ]]), and third-nearest ([[[i,j ]]]) neighbors. That
is, one may see SCMFT as an exact diagonalization on
a finite cluster with periodic boundary conditions (PBCs),
where “across-the-boundary” interactions are replaced by
couplings to mean fields that are determined in a self-consistent
manner. One starts from a randomly chosen wave function and
computes the mean fields 〈Sj 〉 at every site j , which are then
used in setting HMF. The cluster Hamiltonian Eq. (3) is then
diagonalized and the so-obtained ground-state wave function
is used in resetting HMF; computation proceeds until all 〈Sj 〉
are converged and the existence of SU(2)-broken magnetic
phases is signaled by nonvanishing mean fields, 〈Sj 〉 �= 0.

In Fig. 3 we present the resulting SCMFT phase diagrams
obtained for (a) an N = 8 cluster and (b) an N = 6 cluster.30

For the N = 8 cluster we first note the presence of two
collinear magnetically ordered phases, labeled (I) and (II) in
Fig. 2. These phases are also present in the classical version
of the model, occupying roughly the same portion of the plane
(J2,J3).16,17 Furthermore, the phase labeled IV in Fig. 2—also
observed in the classical case but only for J3 < 0 (Refs. 16
and 17)—occupies part of the region shown to support a
spiral phase in Ref. 17. This might be an interesting effect,
where the collinear phase IV is stabilized for some J3 � 0
(i.e., beyond the classical domain of stability) by quantum
fluctuations. Note that a magnetically ordered phase of this
type is also compatible with the pronounced staggered dimer
pattern reported in previous ED studies16,23 for J2 � 0.4, and
the lattice nematic point of view.18

In order to study finite-size effects we apply SCMFT to an
N = 6 site cluster and present its phase diagram in Fig. 3(b).
First, we remark that this cluster [depicted in the inset of

Fig. 3(b)] is not compatible with both phases II and IV and that
no solutions with 〈Sj 〉 �= 0 are encountered in some parts of
the region stabilizing these orderings for the N = 8 site cluster
[Fig. 3(a)]. Furthermore, the size of the region supporting Néel
order is somewhat reduced31 in comparison with what is ob-
served in Fig. 3(a): we suspect that this may be explained by the
fact that the Kekulé-like state with resonating valence bonds is
particularly stable on the hexagon-shaped N = 6 cluster, with
the consequence that the “disordered” region is overestimated.
More interestingly, and in contrast with what happens for the
N = 8 cluster, a spiral state (phase III) is stabilized for large
J2. Such a state is adiabatically connected to the ground state
for J2/J1 � 1, where Eq. (1) decouples into two triangular
lattices, each of which exhibits 120◦ magnetic order.

Finally, we address the possible occurrence of nonmagnetic
phases for Eq. (1). We notice the existence of an extended
region in (J2,J3) where vanishing mean-field solutions, 〈Sj 〉 =
0, are obtained for both clusters considered in Fig. 3.
Intersecting the magnetically disordered phases from both
phase diagrams (N = 6 and N = 8), we obtain a putative
nonmagnetic region which roughly corresponds to the extent
of phase V in the ED based phase diagram shown in Fig. 2.

In the following we address the nature of this magnetically
disordered region in more detail and determine some of the
phase boundaries with higher accuracy based on finite-size
extrapolated ED simulations.

III. EXACT DIAGONALIZATION

We now explore the phase diagram based on large scale ED
in the Sz basis of finite honeycomb lattice samples with N =
24, 26, 28, 30, 32,16,23 34, 36, 38,33 and 42 sites. The clusters
with N = 24, 30, 36, 42 sites feature the two K points in their
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FIG. 4. (Color online) Pictorial representation of the three valence-bond crystal candidate states discussed in this work. The columnar VBC
(a) is also called the Read-Sachdev32 state in the literature, while the staggered dimer VBC is also known as “lattice nematic”.18

Brillouin zone [cf. Fig. 1(b)], while N = 24, 28, 32, 36 contain
one or several M points. The clusters N = 24, 26, 32, 38, 42
exhibit sixfold rotational symmetry.

We first study the low-lying energy spectrum in the full
parameter region in Sec. III A in order to provide more
information on the phase diagram shown in Fig. 2. Then
we address the stability of the Néel phase (I) by calculating
magnetic structure factors and energy scalings in Sec. III B,
and close this section with a discussion of the nature of the
dimer-dimer correlations in Sec. III C, supporting the presence
of an extended plaquette valence-bond crystal phase.

A. Nature of the lowest excitation

In compiling the phase diagram shown in Fig. 2, one set
of information was gathered from the quantum numbers of
the low-lying excitations. The idea is that symmetry broken
phases must exhibit a specific set of low-lying energy levels,
which will allow the spontaneous symmetry breaking in the
thermodynamic limit. In the case of SU(2) symmetry breaking
states, the appropriate structure is called a “tower of states”
(TOS) and has been successfully used to identify magnetically
ordered phases,3 as well as spin nematic phases.34 The
finite-size behavior of energy gaps is as follows: the levels
belonging to the symmetry-breaking tower states scale as 1/N

with system size, while the spin-wave modes scale as 1/L.3,35

For sufficiently large system sizes one should therefore detect
only states belonging to the TOS manifold in the lowest part
of the energy spectrum. In the case of discrete symmetry
breaking—such as for a VBC—a finite number of levels is
expected to collapse rapidly (exponentially beyond a certain
correlation length) onto the ground state. In each case, the
quantum numbers of the collapsing levels are determined by
the nature of the order parameter, i.e., the broken symmetries,
and generally they will be different for distinct phases (but
not always). In the following we summarize the expected
quantum numbers of low energy levels of several candidate
phases (some of the results were presented earlier in Ref. 16).
Note that the quoted quantum numbers are given as appropriate
for the N = 24 sample, and the C6v point group is located at
the center of a hexagon.

(1) The Néel ordered phase (I) has a simple TOS structure
with one level per total spin: all even spin sectors belong to
the � A1 representation, while the odd ones appear in � B2.

(2) The magnetically ordered phase (II) has three levels per
spin sector: the levels in the even spin sectors are found in �

A1 and the two-dimensional representation � E2. The levels
in the odd spin sectors belong to the threefold degenerate
M momentum, with even (odd) parity for reflections along
(perpendicular) to the � − M axis.

(3) The magnetically ordered phase (IV) has three levels per
spin sector: the levels in the even spin sectors are found in �

A1 and the two-dimensional representation � E2. The levels
in the odd spin sectors belong to the threefold degenerate M

momentum, with even parity for both reflections along and
perpendicular to the � − M axis.

(4) A columnar (Read-Sachdev32) [cf. Fig. 4(a)] or plaque-
tte VBC [cf. Fig. 4(b)] has three collapsing singlet levels: one
at � A1 and a two-dimensional K A1 representation. Note that
these two VBCs cannot be distinguished based on energy-level
quantum numbers alone.

(5) A staggered VBC [cf. Fig. 4(c)] has three collapsing
levels: � A1 and � E2 (2-dim representation).

It is interesting to note that the level crossing of the excited-
states quantum numbers shown in Fig. 2 match quite well the
dips in the fidelity (which is a ground-state observable). The
quantum numbers carry, however, more information and allow
us to label the quantum phases roughly, before studying them
in more detail using correlation functions, as we will do in the
following.

B. Stability of the Néel phase

The nonfrustrated model (J2 = J3 = 0) is known to possess
antiferromagnetic (AF) long-range order. This has been shown
by several techniques including linear spin-wave theory,36 a
coupled cluster method,37 ED,33,37 series expansions around
the Ising limit,38 tensor network studies,39–41 variational Monte
Carlo42 and quantum Monte Carlo (QMC) simulations.43–45 In
particular, the staggered moment is m∞ = 0.2677(6),44 a value
that is significantly reduced by quantum fluctuations compared
to the classical value of 1/2.

In Fig. 5, we plot ED data for the finite-size magnetic order
parameter squared:46

m2(N ) = 1

N (N + 2)

(∑
i

(−1)i Si

)2

(6)

for various clusters sizes N and J2 values (we set J3 = 0
for the moment). Standard finite-size scaling predicts leading
1/L = 1/

√
N corrections,46,47 which we find to be quite well

satisfied even for small clusters for the unfrustrated case. The
infinite system size estimate including all system sizes shown
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FIG. 5. (Color online) Squared staggered moment m2 vs 1/L at
J3 = 0 for several J2 values obtained by ED on the clusters N =
24, 26, 28, 30, 32, 34, 38 and the corresponding extrapolations to the
thermodynamic limit. In the nonfrustrated case J2 = 0, we obtain a
good agreement with the QMC value when using the N = 24, 28,
and 32 samples alone (see text). Inset: extrapolated value of the
staggered moment m2

∞ as a function of J2/J1, vanishing between
J2/J1 ∼ 0.17 and 0.22, depending on the extrapolation.

(N = 24, 26, 28, 30, 32, 34, 38) is m2(∞) = 0.0684 (m∞ =
0.262).48 Our best agreement with QMC is found based on the
samples with N = 24, 28, 32 sites only, yielding an estimate
of m2(∞) = 0.0728, corresponding to m∞ = 0.270. The
discrepancy between the different ED extrapolations results in
a ∼5% uncertainty on the magnitude of the magnetic moment.

When J2 is switched on we notice that the finite-size
data start to deviate systematically from a straight line in
1/L. We observe that systems that contain an M point
in the Brillouin zone (N = 24, 28, 32), behave consistently
with respect to each other—studying, e.g., the derivative
dm2/dJ2—compared to the other system sizes.49 We therefore
choose to base one of the extrapolations (solid circles in Fig. 5)
on this class of samples. The second estimate is obtained by
using all the shown system sizes (hatched circles in Fig. 5).
Now, as J2 is increased starting from zero, the extrapolated
staggered moment m2(∞) decreases quite rapidly, roughly
linear with increasing J2 (inset of Fig. 5), and vanishes
continuously around J c

2 = 0.17 ∼ 0.22, based on the two
extrapolations. Despite some uncertainty, this constitutes a
critical value J c

2 , which is larger than the classical estimate
1/6,17 the linear spin wave,16 and nonlinear σ -model20 results
of 0.1 ∼ 0.12, and substantially larger than a recent variational
Monte Carlo (VMC) estimate of 0.08.50 Our estimate is,
however, in agreement with a Schwinger-boson mean-field
treatment which reported a critical J2 of about 0.2.21 A possible
physical explanation of this shift of the transition to larger
values of J2 is that in some cases quantum fluctuations prefer
collinear over spiral states, such as, e.g., in the J1 − J3 model
on the square lattice.24,25,51

We have also determined the ordered moment along a
second J2 cut at constant J3 = 0.3 (data not shown). In this
case the cluster size and shape dependency is even more
pronounced and makes an accurate determination of the critical
J2 value rather difficult. Similar extrapolations based on either
all samples or only a subset of the samples gives a transition
point somewhere between J2 ∼ 0.27 and 0.33, although the
actual uncertainty is probably larger.

In order to corroborate the location of the disappearance
of Néel order, we study the energy per site along the same
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FIG. 6. (Color online) (Left panel) ED: Ground-state energy of samples up to N = 42 at J3 = 0, together with the resulting N → ∞
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two constant J3 lines, one located at J3 = 0 and the other
one at J3 = 0.3. In a Néel ordered phase the leading finite-size
corrections to the energy per site are expected to scale as

E/N = eN = e∞ − α c

N3/2
+ · · · , (7)

i.e., with a leading 1/L3 correction,46,47 and the coefficient
of this term is proportional to the spin-wave velocity c. In
Fig. 6 (J3 = 0 in the left panel and J3 = 0.3 in the right
panel) we display the energy per site of samples of up to
42 spins in the relevant J2 range together with the resulting
N → ∞ estimate e∞. We extrapolate the energy according
to Eq. (7) up to J2 = 0.3 for J3 = 0, and up to J2 = 0.4 for
J3 = 0.3. As can be seen in Fig. 7, the prefactor of the 1/N3/2

correction term is reduced upon approaching the transition
region, but seems to stay constant at the transition, in analogy
to the frustrated square lattice antiferromagnet.46,52 Note that
the shaded regions denote the approximate locations of the
transitions based on the extrapolation of the ordered moment,
and the minimum of the velocity agrees reasonably well with
those estimates.

Returning to the extrapolated energies, we note that for
the unfrustrated J2,J3 = 0 case in Fig. 6 (left panel) the
extrapolated energy per site e∞ is in very good agreement
with published QMC results,43,45 and we find similarly good
agreement for J2 = 0,J3 = 0.3 in Fig. 6 (right panel), where
we performed ALPS SSE simulations53,54 to obtain an accurate
estimate for the energy. For both J3 values the energy then
first rises almost linearly with increasing J2, as expected for
this particular Néel phase (note that the derivative de/dJ2 is
proportional to 〈Si · Sj 〉 on the J2 bonds as a consequence of
the Hellmann-Feynman theorem). The energy curves flatten at
larger J2 and exhibit a maximum around J2 ∼ 0.35 − 0.4 for
J3 = 0 and J2 ∼ 0.5 − 0.6 for J3 = 0.3. A comparison with
the fidelity data shown in Fig. 2 suggests that the maximum
of the energy approximately coincides with the avoided level
crossing to a different phase.

Inspired by the success of a simple Gutzwiller projected
half filled tight-binding wave function on the triangular lattice
in describing the spin liquid regime on the insulating side
of the Mott transition,11 we have analyzed a related wave
function on the honeycomb lattice: the Gutzwiller projected
half filled honeycomb tight-binding wave function (termed the
Gutzwiller projected Dirac sea in the following). This wave
function is discussed in some detail in Appendix A. It is a
parameter-free variational wave function, and its energy for the
Hamiltonian considered here is given in Eq. (A1). This energy
is plotted using a dashed green line in Fig. 6. Quite remarkably
the energy is very close to the finite-size extrapolated ED
energies precisely in the region where the Néel order is about
to vanish (light red-shaded uncertainty regions). As discussed
in Appendix A, the Gutzwiller projected Dirac sea wave
function has algebraically decaying spin-spin correlations with
a sign structure that is identical to the one displayed by
the Néel state. With its algebraically decaying correlation
this wave function could in principle describe qualitatively
a putative continuous quantum phase transition from the
Néel ordered phase to a quantum paramagnet. Inspecting
the nature of the dimer-dimer correlations in the Gutzwiller
projected Dirac sea, the signs of the dimer-dimer correlations
are identical to the ones in the columnar (Read-Sachdev) or
plaquette VBC (disregarding one particular distance high-
lighted in Fig. 20). Given the surprisingly accurate energy
of this wave function at the transition, a plausible scenario
is the presence of a continuous Néel to columnar/plaquette
VBC quantum phase transition in this frustrated honeycomb
antiferromagnet. We will discuss this scenario and other
possibilities in more detail later on. Let us now consider
the dimer-dimer correlations in the magnetically disordered
phase, in order to verify whether there is indeed a VBC phase
present.

C. Dimer correlations

Real-space correlations. In this section we study dimer-
dimer correlations using ED. Our aim is to highlight the
structure of the correlations along a J2-cut at constant J3 = 0.3
for the N = 24 sample.55 We measure the following four-spin
correlation function:

Cijkl = 4 (〈(Si · Sj )(Sk · Sl)〉 − (〈Si · Sj 〉)2), (8)

where i,j and k,l are nearest-neighbor bonds on the hon-
eycomb lattice. In Fig. 8 correlation function results for
four different values of J2 are shown. Panel (a) shows the
dimer-dimer correlations deep in the Néel phase at J2 =
0,J3 = 0.3, where we expect the correlations to decay rapidly,
but with a power law, due to the coupling to the multi-
spin-wave continuum. In panel (b), at J2 = 0.3,J3 = 0.3,
we sit approximately at the Néel to paramagnet transition,
and some of the more distant bonds have changed sign
compared to the Néel phase. Note that this correlation pattern
matches qualitatively the one of the Gutzwiller projected
Dirac sea discussed in Appendix A (as well as the Z2 liquid
discussed in Ref. 50), and surprisingly also the one reported
for the spin-liquid regime of the half filled Hubbard model in
Ref. 14. Panel (c) at J2 = 0.5,J3 = 0.3 shows pronounced and
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FIG. 8. (Color online) Four-spin correlations [Eq. (8)] on an N = 24 site cluster for several different J2 values and constant J3 = 0.3: (a)
(0.0,0.3) in the Néel phase I, (b) (0.3,0.3) in region of the phase transition from phase I to V, (c) (0.5,0.3) in the plaquette phase V, and (d)
(0.7,0.3) in the lattice nematic: magnetic phases III or IV (Fig. 2), or a staggered dimer VBC. The reference bond is indicated by the thick
black line. Negative (positive) correlations are represented by red (blue) bonds.

long-ranged correlations, which at first sight seem to be com-
patible with either a columnar (Read-Sachdev) or plaquette
VBC according to Appendix D. A more quantitative inspection
reveals, however, that the largest distance positive/negative
correlations are respectively close to 0.18 and −0.0935, which
is in favor of a (d-wave) plaquette phase. We revisit the
question of columnar versus plaquette order again in the
context of the effective quantum dimer model, and corroborate
the present finding of a plaquette phase. Finally, panel (d) at
J2 = 0.7,J3 = 0.3 shows very strong correlations reminiscent
of a staggered dimer phase. We stress again that this finding
alone does not discriminate between a spin gapped valence-
bond crystal or a magnetically ordered phase of type (II), (III),
or (IV). While a staggered valence-bond crystal neighboring

the plaquette phase is likely (according to Refs. 16,18,23),
at larger J2 the staggered signal in the dimer-dimer cor-
relations could persist despite the appearance of magnetic
order.

VBC structure factors. It is instructive to grasp correlations
using integrated quantities such as dimer structure factors.
As displayed in Fig. 24 (Appendix D), two different dimer
correlation patterns emerge for plaquette/columnar states or a
staggered state. In order to detect them, we define the dimer
structure factors as

Sα =
∑
〈k,l〉

εα(k,l)Cijkl, (9)
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Plaq./Col./Nb. Numbers correspond to 103S∗

Plaq./Col./Nb. (Right panel) staggered
VBC structure factor S∗

Stag./Nb for N = 24, obtained using ED in the Sz basis, as a function of (J2,J3). The radius of the circles is proportional
to S∗

Stag./Nb. Numbers correspond to 103S∗
Stag./Nb. Note that the strong plaquette/columnar signal is found within phase (V) of Fig. 3, while the

strong staggered signal is associated to phases (II), (III), and (IV).

with α = Plaq./Col. or α = Stag., where εα(k,l) = +1 if 〈k,l〉
are NN sites such that Cijkl � 0 for “pure” α states and
εVBC(k,l) = −2 otherwise (strong correlations closest to the
reference bond are not included for the related quantity S∗

α;
see Ref. 24). It is important to stress here that the Sα are order
parameters detecting lattice symmetry breaking, which do not
distinguish themselves between genuine VBC ordering or a
lattice symmetry-breaking magnetic state.

A full scan of dimer structure factors associated to either
plaquette/columnar or staggered valence-bond crystal order is
shown in Fig. 9. Consistently with real-space dimer correlation
analysis, two phases come up with strong plaquette/columnar
(left panel) or staggered (right panel) signal. The staggered
signal is especially strong in the vicinity of the J3 = 0 line
and close to the avoided level crossing. In contrast, the
columnar/plaquette signal is strongest around J2 ∼ 0.6,J3 ∼
0.4, and decreases upon approaching the J3 = 0 line. In order
to address the behavior at J3 = 0 we have also calculated
the Sz dimer correlations [cf. Eq. (A2)] for J2 = 0.3,J3 = 0
on the N = 42 sample, which would be compatible with a
columnar/plaquette VBC. The corresponding plot shown in
Fig. 10 exhibits a correlation pattern reminiscent of the one
expected for columnar/plaquette states, but the correlations
are not particularly strong, and also exhibit a few defects in
the form of bonds that show inverted correlations compared
to the columnar/plaquette expectations. We are thus currently
unable to discriminate whether this picture corresponds to a
columnar/plaquette VBC with a small order parameter or a
genuine spin liquid, and more work is needed to clarify the
behavior at J3 ∼ 0.

IV. EXACT DIAGONALIZATIONS IN THE
VALENCE-BOND BASIS AND QUANTUM

DIMER MODELS

A. Diagonalization in the nearest-neighbor valence-bond basis

In this subsection we present results obtained from exact
diagonalizations in the (variational) basis given by the set of
nearest-neighbor valence-bond states.24,56 Recently Mosadeq
et al.23 presented an analysis using the same technique but
limited to J3 = 0 and small system sizes (N = 54). Here we
consider the more general case of finite J3 ∈ [0,1] and inves-
tigate considerably larger clusters (N = 72 for correlations
and N = 96 for energies), allowing us to perform systematic
finite-size extrapolations.

1. Method

When frustration is dominant and destabilizes magnetic
phases it is possible to explicitly take into account that states
with nonzero total spin are unimportant in accounting for
the low-energy physics and to describe the system solely in
terms of the S = 0 subspace. This subspace can be spanned
by the set of arbitrarily ranged valence-bond (VB) states,57,58

which forms an overcomplete basis and is thus difficult to
manipulate, especially in numerical studies. A natural way
of circumventing this difficulty is to impose a cutoff on the
maximum range of the VBs to be considered; in particular,
it is possible to devise an approach where only nearest-
neighbor VB (NNVB) states are taken into account.24,56 While
the restriction to NNVB states is obviously a variational
approximation, it offers the key numerical advantage of a
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FIG. 10. (Color online) Sz version of the dimer correlations
[Eq. (A2)] obtained using ED in the Sz basis for N = 42 at
J2 = 0.3,J3 = 0.

significant reduction of the Hilbert space and has been shown to
yield sound results for a number of strongly frustrated models,
whose low-energy physics is dominated by short-range spin
singlets.24,56,59

We briefly recall how the method can be applied and refer
to Refs. 24,56 for details. We follow a heuristic argument
and try to formulate the eigenvalue problem in the restricted
NNVB subspace {|ϕi〉} simply as

∑
i αiĤ|ϕi〉 = E

∑
i αi |ϕi〉.

However, since the set {|ϕi〉} is not invariant under the
application of H, this relation cannot hold in the particular
singlet subspace but can explicitly be enforced in the restricted
NNVB subspace by considering∑

i

αi〈ϕj |Ĥ|ϕi〉 = E
∑

i

αi〈ϕj |ϕi〉, (10)

for all |ϕj 〉 ∈ {|ϕi〉}. This last equation is nothing but a
generalized eigenvalue problem (GEP) for the two matrices
with elements given by Hij = 〈ϕj |Ĥ|ϕi〉 and Oij = 〈ϕj |ϕi〉,
the latter explicitly denoting the nonorthogonality of NNVB
states. However, it is crucial here that despite their nonorthog-
onality, the NNVB states are linearly independent on most
relevant lattices,60,61 and particularly on the honeycomb
lattice with periodic boundary conditions considered here.61

GEPs are computationally more demanding than conventional
eigenvalue problems, especially in the present case where both
Hij and Oij are dense matrices. In spite of this, since for
a given system size the dimension of the NNVB subspace
is much smaller than that of the total Sz = 0 subspace,
the method discussed here allows us to treat considerably
larger clusters, and thus to perform more extended finite-size
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FIG. 11. (Color online) Comparison between the ground-state
energy obtained from diagonalization in the NNVB and in the Sz

basis, as a function of J2,J3 ∈ [0,1]. The radius of the circles is
proportional to the percent relative error, (ENNVB

0 − EED
0 )/EED

0 ×
100. Data obtained from a cluster comprising N = 24 sites.

extrapolations, than possible within conventional ED. We also
remark that, as for standard ED, it is possible to take advantage
of lattice symmetries, so that the size of the matrices to be
considered is further reduced and, even more importantly,
crucial information on quantum numbers is readily available.

Despite such appealing features, due to its variational nature
the method just described lacks built-in indicators of its own
reliability. This drawback can be circumvented by relying
on unbiased techniques, such as ED in the Sz basis, that
are used in providing benchmarks to validate the restriction
to the NNVB manifold. As a first step in this direction, in
Fig. 11 we plot results for the relative difference between
the ground-state energy of the model Eq. (1) obtained by
solving the GEP in the NNVB basis and from ED in the
Sz basis, (ENNVB

0 − EED
0 )/EED

0 , for an N = 24 site cluster.
(Qualitatively similar results are obtained for a less symmetric
cluster with N = 30 sites, not shown here. We note, however,
that finite-size effects in the NNVB energy per site seem
to be surprisingly large, as shown in Appendix C. The
qualitative result regarding the region of best match with
Sz ED seems to be stable with system size, however.) As
expected, since long-range VBs are required in accounting
for long-range spin correlations on two-dimensional lattices,62

ENNVB
0 compares poorly against EED

0 for couplings expected
to support magnetic phases (phases I, II, and III; see Fig. 2).
Conversely, (ENNVB

0 − EED
0 )/EED

0 � 5%, in the region of the
phase diagram where magnetically disordered phases are likely
to be stabilized, cf. Fig. 2; in particular, for J3 = 0 small
relative errors are observed for 0.2 � J2 � 0.3, in agreement
with Ref. 23. The fact that a small number of VB configurations
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(eight NNVB states, as opposed to 19 873 in ED in the Sz = 0
subspace—lattice symmetries being exploited in both cases)
is able to reproduce the GS energy in an extended region
of the parameter space up to a relative error that can be as
small as ∼1.5% constitutes good evidence that the NNVB
subspace may be able to capture the low-energy physics of
the magnetically disordered phases. Of course, to confirm
this statement it is crucial to go beyond a simple energy-
based criterion and to compare the nature of the correlations
contained in this variational wave function and the exact one.
In what follows we proceed to a thorough characterization of
four-spin correlations.

2. Four-spin correlations

Real-space correlations. We compute the four-spin con-
nected correlation function Cijkl as defined in Eq. (8) in
the ED section, where i,j and k,l are pairs of NN sites
(dimers) on the honeycomb lattice. Cijkl is readily evaluated
by analyzing the loop structure in the transition graphs 〈ϕj |ϕi〉
for nonorthogonal NNVB states, in terms of which the lowest-
energy state, solving the GEP [Eq. (10)], is expressed (for
technical details on how to compute expectation values for
NNVB states, see Ref. 63).

We once more gauge the validity of our variational approach
and compare the so-obtained results for Cijkl against those
from ED for the N = 24 site cluster and (J2,J3) = (0.5,0.3)
in Fig. 12. Semiquantitative agreement is observed, and
interestingly the correlations obtained from the variational
approach seem to be systematically smaller than those from
ED, suggesting that the exclusion of longer-range VBs has
the effect that VBC order is underestimated (see below).
Regarding the particular kind of VBC order that is stabilized,
the two sets of data in Fig. 12 are consistent with both
columnar (Read-Sachdev) and plaquette VBC order, although
the particularly strong correlations at the shortest range (those
involving the dimers closest to the reference bond) seemingly
favor the latter scenario (see Appendix D), as vindicated in
Refs. 16,23. We remark that evidence in favor of plaquette
VBC order is also found from the histogram analysis in the
framework of the effective QDM presented in Sec. IV B.

We take advantage of the substantially reduced dimension
of the NNVB subspace and compute four-spin correlations for
considerably larger clusters, comprising up to N = 72 sites.
The spatial dependence of Cijkl is depicted in Fig. 13 for
the N = 72 cluster and (J2,J3) = (0.5,0.3). An even stronger
resemblance to the correlation pattern for “pure” columnar and
plaquette states is observed than for the smaller cluster with
N = 24 sites [Fig. 12(b)], suggesting that the observed VBC
pattern is not merely a finite-size effect. This observation is
further corroborated by the data in Fig. 14(a), where we plot
|Cijkl| as a function of r (the distance between dimers i,j and
k,l) also for N = 72 and (J2,J3) = (0.5,0.3): |Cijkl(r)| decays
slowly with r , consistent with saturation at large distances, and,
furthermore, positive correlations are approximately twice as
large as negative ones, as expected for pure columnar (Read-
Sachdev) and plaquette VBC states.

Dimer structure factors. Reliable extrapolation to the
thermodynamic limit is achieved from the analysis of VBC
structure factors Sα [see Eq. (9)]. Sα is expected to scale
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FIG. 12. (Color online) Four-spin correlations [Eq. (8)] on an
N = 24 site cluster for (J2,J3) = (0.5,0.3), obtained from (a) ED
in the Sz basis and (b) by solving the GEP [Eq. (10)] in the NNVB
subspace. The reference bond, in both panels, is indicated by the thick
black line.

like C∞
α + A/N and thus the existence of α VBC phases is

signaled by a finite value of the bond order parameter C∞
α . In

Fig. 14(b) we plot SPlaq./Col./Nb and S∗
Plaq./Col./Nb (Nb is the

total number of bonds considered in the sum) as a function
of inverse system size, as obtained from both Sz ED and by
solving Eq. (10), for (J2,J3) = (0.5,0.3). We first notice that, in
agreement with our previous remark in connection to Fig. 12,
larger values for SPlaq./Col. and S∗

Plaq./Col. are obtained with Sz

ED and that the restriction to the NNVB manifold seemingly
underestimates VBC order in the present case. Linear fits to
the NNVB data shown in Fig. 14(b) (data for N = 18 and
for the less symmetric cluster with N = 36 sites are discarded
when fitting) yield the estimate C∞

Plaq./Col. ∼ 0.16, close to the
value 9/50 = 0.18 expected for the pure plaquette VBC state
(see Appendix D).

Finally, we analyze the strength of VBC order throughout
the parameter space and in Fig. 15 we plot S∗

Plaq./Col./Nb for
the N = 72 site cluster as a function of J2,J3 ∈ [0,1]. Unlike
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FIG. 13. (Color online) Four-spin correlations [Eq. (8)] on an
N = 72 site cluster for (J2,J3) = (0.5,0.3), obtained by solving the
GEP Eq. (10) in the NNVB subspace. The thickness of the bonds is
proportional to Cijkl and dark blue (pale red) indicates positive (neg-
ative) values. The reference bond is indicated by the thick black line.
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FIG. 14. (Color online) (a) |Cijkl | [Eq. (8)] as a function of
distance r for the N = 72 site cluster and (J2,J3) = (0.5,0.3),
obtained by solving the GEP Eq. (10) in the NNVB subspace; positive
and negative correlations are discriminated. (b) VBC structure factor
per per number of bonds, SPlaq./Col./Nb, as a function of the inverse
system size N−1 for (J2,J3) = (0.5,0.3), as obtained from ED and
from the variational approach in the NNVB basis. S∗

Plaq./Col. denotes
the structure factor obtained by eliminating the strongest correlations
encircling the reference bond and linear fits (dashed lines; data for
N = 18 and N = 36 are excluded from the fit) extrapolate the data to
the thermodynamic limit. In both panels, dotted lines are only guides
to the eye.

FIG. 15. (Color online) S∗
Plaq./Col./Nb for N = 72, as obtained by

solving the GEP Eq. (10) in the NNVB subspace, as a function of
(J2,J3). The radius of the circles is proportional to S∗

Plaq./Col./Nb.
Numbers correspond to 103S∗

Plaq./Col./Nb.

what happens for smaller clusters, for which correlations
mismatching the sign structure of the columnar/plaquette VBC
patterns are found in part of the parameter space, four-point
correlations for the N = 72 cluster are always fully consistent
with plaquette VBC order up to the point where, for given J3

and increasing values of J2, one enters a regime (highlighted in
Fig. 15) signaled by the occurrence of successive ground-state
level crossings (see Fig. 21, left panel, for J3 = 0.3), likely
associated with the breakdown of a description solely in
terms of NNVB states (see related discussion in Appendix C).
Maximal values of S∗

Plaq./Col./Nb are observed just before the
first such level crossing occurs. For comparison we refer to
the same quantity obtained by ED in the Sz using the N = 24
cluster in the left panel of Fig. 9. For larger J3 values the
agreement is quite remarkable, however as J3 is reduced to
zero, the VBC correlations are significantly reduced in the ED
approach compared to the NNVB results.

On the other hand, the region signalled in Fig. 9 (right
panel) by a strong staggered signal does not appear to occur
in a parameter range where the NNVB method can be safely
used due to a rather modest variational energy (see Fig. 11)
and the successive ground-state level crossings (see Figs. 15
and 21, left panel, for J3 = 0.3). It may seem surprising
that a staggered VBC state fails to be naturally captured
by the NNVB approach. However, two distinct arguments
can explain this paradoxical situation. (i) As mentionned in
Sec. III C, no definitive evidence supports the fact that
the ground state is a singlet (nonmagnetic) state at the
thermodynamic limit. In this respect a divergence of SStag.

is only a signal of the spatial symmetry breaking associated
to it, but does not preclude the possibility of a (magnetic)
nematic phase, which would obviously be out of reach of the
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NNVB method. (ii) If the ground state is a dressed staggered
(singlet) state, a good variational energy in the NNVB scheme
may be hard to reach due to the structure of the staggered
NNVB configuration [depicted in Fig. 4(c)]: contrary to the
case of the columnar or plaquette states [see Figs. 4(a) and
4(b)], resonating NNVB configurations needed to dress the
pure VBC state and lower its variational energy involve long
resonating loops in the corresponding overlap diagram (see
Appendix D) hence producing exponentially small overlaps
and corrections to the bare VBC energy. In summary, this
effective locking of the staggered NNVB configuration could
make it difficult to emerge in the NNVB approach. A route
to cure this issue and allow a more efficient relaxation to
other VB configurations may be to include longer range dimer
configurations, assuming that the GEP remains numerically
tractable.

B. Exact diagonalization of an effective quantum dimer model

The NNVB approach used in the previous section requires
an extensive numerical treatment of the non-orthogonality
of the VB states. It is therefore numerically demanding and
precludes the use of efficient iterative algorithms, such as the
Lanczos64 algorithm. In this respect, it would be desirable to
base the study on a reliable (orthogonal) quantum dimer model
(QDM) in order to significantly increase the accessible system
sizes.

Recently, a generic scheme for the derivation of QDMs from
underlying Heisenberg Hamiltonians has been proposed in the
context of two-dimensional frustrated antiferromagnets.65,66

This method aims to transform the generalized eigenvalue
problem of the Heisenberg model in the short-range valence-
bond basis (which was discussed in the preceding Sec. IV A 1)
to an effective orthogonal eigenvalue problem. In practice
the transformation is conveniently carried out by a truncated
diagrammatic expansion, containing only the most relevant
terms. This derivation is presented in Appendix B, and
provides a rather simple quantum dimer model with single-
and double-hexagon resonance and potential terms, that reads

Heff = − t6 − t10 +
t10
8

+
t6
4

+ v10 − v10

2
.

(11)

Interestingly, the parameters of the effective QDM (given in
Appendix B) only depend on the ratio J2/(J1 + J3), so that
the physics is invariant along simple isolines in the J2 − J3

plane within the QDM description. In retrospect—comparing
to Fig. 15—this invariance is also exhibited approximately by
the NNVB approach, and within the boundaries of the VBC
phase also to some extent in the Sz-ED approach (cf. left panel
of Fig. 9).

The leading contribution of the QDM, with terms on a single
hexagon, is a simple Hamiltonian of the Rokshar-Kivelson
form,67 with off-diagonal and diagonal terms with amplitudes
t and V , respectively, that has been studied in great detail in
Ref. 68. It turns out that the ratio V/t = 1/4 is fixed

(independent of J2 and J3), for which case it was shown that
the ground state is in the plaquette phase. Since our effective
Hamiltonian reduces to this form when J2/(J1 + J3) = 3/8
(i.e., the two-hexagon terms vanish), we expect that plaquette
physics will occur in this region. However, it is not yet clear
what will be the extent of this phase, since when we move
away from this line, the two-hexagon terms appearing in the
effective QDM might alter this behavior.

1. Comparison with NNVB

In deriving the QDM in Appendix B we made several
assumptions and simplifications. First of all we neglected
subdominant terms in order to keep the model simple. This
may cause some approximation errors that can be detected by
comparing the QDM with NNVB approach. Second, the QDM
is derived for an infinite lattice,66 which substantially improves
the finite-size scaling behavior. As shown in Appendix C the
ground-state energy converges to the same value as the NNVB
approach, however for the QDM the convergence is much
faster, i.e., it has smaller finite-size corrections. This validates
the quantum dimer model, and also explains the finite-size
differences between the QDM and the NNVB approaches.

A careful comparison between both approaches is presented
in Appendix C. In order to illustrate with a specific example
how all these methods agree, we have computed the finite-size
gap to the first singlet excitation with momentum K for
(J2,J3) = (0.5,0.3). This set of parameters was chosen based
on ED correlations computed for an N = 24 cluster (with
a grid spacing of 0.1), since it provides a strong plaquette
structure factor SVBC [see Eq. (9) for its definition]. As has
been discussed already, both plaquette and columnar VBCs
have the same discrete symmetry breaking, corresponding
to a threefold degeneracy in the thermodynamic limit. For
increasingly larger cluster sizes, the lowest singlet excitation
at the two equivalent K points should collapse onto the ground
state. Moreover, because of the finite correlation length in the
VBC, this singlet gap must ultimately vanish exponentially
with increasing system size.

In Fig. 16, we plot the scaling of this singlet gap �

computed with all our numerical techniques. Unbiased ED
data already shows a clear indication of a vanishing gap in
the thermodynamic limit, but the scaling seems rather ∼1/N

since we cannot reach large enough cluster sizes. Using NNVB
data, we can extend our computations to larger clusters (up
to N = 96), and we observe an excellent agreement when
comparing to ED data. This is not obvious since, for instance,
the variational NNVB energy is not that accurate (see Fig. 11
and Appendix C), but computing energy differences can give
accurate results when there is a systematic deviation in all
energies. Looking at the scaling of NNVB data, we see a
behavior that could be compatible with a scaling faster than
1/N , but there are still some irregularities in the finite-size
effects due to different cluster shapes. Our last set of data
is obtained from the QDM model, which was simulated up
to an N = 126 cluster: we note a semiquantitative agreement
with other techniques for the gap numerical data. Moreover, as
explained above, the QDM has much weaker finite-size effects,
which is clearly observed in the plot where finite-size scaling
is much smoother. The possibility to access large clusters with
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FIG. 16. (Color online) Finite-size scaling of the singlet gap
between the ground state and the lowest excitation with momentum K

for J2 = 0.5 and J3 = 0.3, obtained by ED in the Sz basis, the NNVB
and the effective QDM approach. Note that the singlet gap matches
quite well between the different techniques, despite the somewhat
poor variational energy of the NNVB and QDM approach.

small finite-size effects allows us to show convincingly that the
gap collapses fast enough and that the system has long-range
VBC order in the thermodynamic limit.

However, it remains to be determined which of the two
potential VBC candidates (columnar versus plaquette) is
realized.

2. Dimer vector histograms

Studying (orthogonal) quantum dimer models offers two
advantages: first of all one can study larger systems. Here
for example we were able to study honeycomb samples with
up to N = 126 sites, the second, even more interesting point
is that one has access to new observables that are hard to
define and implement in either the Sz or the NNVB basis.
In order to detect the underlying phase of a Hamiltonian,
one usually measures correlations in the ground state, as
done in Sec. IV A 2. However, the QDM allows for the
computation of a related useful observable.69–73 The idea is to
associate a two-dimensional vector to every dimer and collect
a histogram of the vector occupations. Writing the ground
state |ψ0〉 = ∑

i ai |ϕi〉 as a superposition of orthogonal dimer
configurations |ϕi〉, one defines the appropriate histogram as

P (Nx,Ny) =
∑

i∈CNx ,Ny

|ai |2 , (12)

where CNx,Ny
is indexing all dimer states |ϕi〉 that have a total

dimer vector

(Nx,Ny) =
∑

[i,j ]∈|ϕ〉
v[i,j ]. (13)

The left panel of Fig. 17 illustrates a particular choice
of dimer vectors that assigns three different vectors to the
three columnar (Read-Sachdev) states. The phase space of
the resulting histogram forms a triangle illustrated in the right
panel, where the corners of the triangle represent the columnar
states, while the plaquette states are signaled by a binomial

(a)

(b)

FIG. 17. (Color online) (a) All dimers belonging to the same of
three possible columnar states have the same dimer vector associated.
A resonating plaquette contains two different dimer vectors that
contribute equally to the resulting histogram. (b) Phase space built
by the dimer vectors forms an equilateral triangle, where the corners
represent the columnar states, while the plaquette states are signaled
by a binomial distribution on the edges.

distribution on the edges of the triangle. A staggered VBC
state, on the other hand, would contribute to the center of the
histogram.

In Fig. 18 we display dimer vector histograms obtained
within the QDM approach for the three largest samples with
N = 72, 96, and 126 sites, and for several J2 values at J3 = 0.
The parameter region in which the QDM approach is expected
to be appropriate for the original spin model is highlighted
with a white background, whereas the remaining parameter
region is shaded in gray. Let us start the discussion at J2 = 0.4,
which is close to the point J2 = 3/8 = 0.375, where the
QDM reduces to the Rokhsar-Kivelson model at V/t = 1/4,
expected to display a plaquette VBC ground state.68 Indeed
the histogram displays pronounced peaks in the middle of
the edges of the triangle, as expected for a plaquette VBC
phase. These results thus corroborate the complementary
findings based on four-point correlation functions using ED
in the Sz basis and the NNVB approach. Pushing the QDM
somewhat further into the “unphysical” region of larger J2,
the plaquette signal is even more pronounced. On the other
hand, by lowering J2 toward J2 ∼ 0.2, the histogram becomes
more rounded and fuzzy, reminiscent of the emergent U(1)
symmetry at deconfined quantum critical points at Néel to
VBC transitions.69,72–75 Upon lowering the J2 parameter, the
radius is also somewhat reduced and the dimer correlation
length increases, however our effective QDM using nearest-
neighbor valence bonds only is not able to reproduce the
vanishing of the VBC order parameter (i.e., the radius of the
distribution) as the Néel phase is approached. In spite of this
limitation, the approximate U(1)-like symmetry exhibited by
the histograms upon approaching the Néel phase may well
be a physical feature of the Néel to VBC transition on the
honeycomb lattice.

V. CONCLUSION

In the present work we have analyzed the phase diagram
of the frustrated J1 − J2 − J3 spin-1 /2 Heisenberg model on
the honeycomb lattice by using a combination of different
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FIG. 18. (Color online) Normalized dimer histograms P (Nx,Ny), as defined in Eq. (12), obtained within the effective QDM for different
system sizes at J3 = 0. We observe pronounced plaquette VBC signals at the larger J2 values shown, with a tendency toward a reduced radius
and a more U(1)-symmetric behavior as the Néel phase at smaller J2 is approached.

ED approaches and a SCMFT treatment. We have localized
the boundaries of several magnetically ordered phases in the
the region J2,J3 ∈ [0,1], and found a sizable magnetically
disordered region in between. We characterize a large part of
this magnetically disordered region as a plaquette valence-
bond crystal phase. Interestingly we find that a particular
parameter-free Gutzwiller projected tight-binding wave func-
tion has remarkably accurate energies compared to finite-size
extrapolated ED energies along the transition line from the
well-known Néel phase to the plaquette VBC, a fact that points
to possibly interesting critical behavior—such as deconfined
criticality—across the transition. In contrast, a direct Néel
to staggered VBC transition has recently been shown to be
strongly first order.76

Compared to previous work on the J1 − J2 − J3 phase
diagram we localize precisely the magnetic phases (phases
I and II in the phase diagram shown in Fig. 2) that have been
discussed to be present at the semiclassical level,16–18,21–23 and
we discuss the possibility of a reentrant collinear magnetic
phase IV in a region at larger J2, which would nevertheless be
compatible with the staggered dimer correlations found earlier
in the relevant region.16,18,23 The possibility of a plaquette
phase has been discussed recently in Ref. 23 restricted to the
J3 = 0 line, while an earlier work16 reported that the dimer
correlations might not be sufficiently strong for a plaquette
VBC, and put forward the idea of an RVB liquid.

Here we established that a plaquette phase does indeed
occur for larger J3 values when leaving the Néel phase (I) by
computing dimer-dimer correlations via exact diagonalizations
in the NNVB subspace and the analysis of dimer histograms
within an effective QDM, and we showed that the phase has a
sizable extent in the J3 direction, including the magnetically
disordered region found recently on the J2 = J3 line22 (and
thereby clarifying its nature). The precise fate of the plaquette
VBC upon approaching the J3 = 0 line is, however, still an
open question.

The situation regarding the staggered VBC versus magnetic
order in phases III and IV in Fig. 2 is not clear yet, and the
possibility of incommensurate behavior of spin correlations or
magnetic order renders an ED analysis quite challenging. It is
likely that this question can be more meaningfully addressed
using coupled-cluster or spin functional renormalization-
group (FRG) techniques, as done recently in the context of
incommensurate spin correlations on the frustrated square
lattice.25

At the technical level it is notable that we have found an
interesting example where we could explicitly show that it
is possible to derive an effective quantum dimer model that
accurately describes the magnetically disordered plaquette
VBC region. Such a connection was conjectured to be present
already some time ago.68 However, no precise connection
between a QDM and original spin models could be made
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at that time. It is still an open question to understand why
the NNVB and the QDM approaches are currently unable
to detect and describe the staggered VBC (lattice nematic)
discussed previously. It might be that both methods are biased
toward dealing with valence-bond configurations, which retain
some flipability on short loops, while the staggered VBC
configurations do not contain short flipable loops at all. On
the other hand, it could also be that the lattice nematic state
actually is a magnetically ordered state (at least in some part
of parameter space) that breaks the same lattice symmetries
as the the staggered VBC, giving rise to qualitatively similar
dimer-dimer correlations.

Returning to one of the initial motivations—the understand-
ing of the magnetism of the half filled Hubbard model upon
lowering of U/t , and the possible explanation of the spin liquid
behavior found in Ref. 14—the questions are (i) what is the
effect of the subleading next-nearest-neighbor J2 correction
to the nearest-neighbor J1 Heisenberg interaction in terms of
new phases arising; and (ii) are the required values of J2/J1 for
new physics beyond the Néel phase reachable by downfolding
the Hubbard model to a spin model at intermediate U/t , or
does one have to consider more correction terms?

Regarding (i): the scenario developed in the present paper
is that J2 destabilizes Néel order somewhere between J2/J1 ∼
0.17 and 0.22, and then a plaquette VBC phase (or a disordered
version thereof) sets in, up to a value of J2/J1 ∼ 0.35 − 0.4.
For even larger values of J2/J1 a lattice nematic (staggered
VBC) (cf. Refs. 16, 18 and 23 and right panel of Fig. 9) as well
as magnetically ordered spiral phases can arise. Based on the
success of the Gutzwiller projected Dirac sea wave function to
quantitatively describe the energies at the Néel to plaquette
VBC transition, as well as the qualitative agreement with
respect to spin-spin and dimer-dimer correlation functions, we
suggest that a deconfined critical point scenario might describe
this particular Néel to VBC transition on the honeycomb
lattice. Our current ED tools are admittedly not perfectly
suitable to resolve more complex scenarios, such as an SU(2)
algebraic spin liquid region77 with a small but finite extent. The
same is true for a small Z2 spin liquid region78–82 appearing
between the Néel and plaquette phases. We also note that
a recent instanton analysis of one kind of Z2 spin liquid
revealed an instability to a VBC phase,83 in agreement with
the plaquette VBC phase we find. Our analysis is, however,
at variance with the phase diagram put forward in the VMC
study of Ref. 50. In that work the succession of phases is Néel,
a rather large Z2 spin liquid region, followed by a rotational
symmetry-breaking state.

Regarding question (ii), a recent estimate on the ratio of
J2/J1 in the spin liquid region of the honeycomb Hubbard
model was put forward based on continuous unitary trans-
formations in Ref. 84, and a value of about J2/J1 ∼ 0.06
was quoted. While this value seems to be almost sufficient
to enter a new phase in the J1 − J2 model according to the
VMC analysis of Ref. 50, which reported a critical value
of J2/J1 = 0.08, our ED based value for the critical ratio is
around three times as large (0.17 − 0.22). We currently believe
that the small J2/J1 value in Ref. 50 is due to a comparatively
poor variational energy of the Néel state, when compared to
our finite-size extrapolated ED energies, therefore shifting the
VMC transition to a too small J2/J1 value. So we believe

based on our results that a simple J1 − J2 spin model alone
does not allow a quantitative description of the spin liquid
phase discovered recently in the Hubbard model.14 More work
is needed to understand whether the phase adjacent to the
Néel phase at J3 = 0 is a plaquette VBC with a small order
parameter or a genuine spin liquid phase, in which case the
J1 − J2 model at small J2 would at least qualitatively explain
the physics of the Hubbard model on the insulating side of
the Mott transition. Future efforts will also have to explore the
effects of higher-order corrections and thereby unravel whether
a quantitative spin-only description of the spin liquid phase in
the Hubbard model on the honeycomb lattice is possible.

Note added. After submission of this work we became
aware of Ref. 85, where a spin FRG study of the same model
is presented. In that paper a considerably large magnetically
disordered phase is also found.
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APPENDIX A: PROPERTIES OF THE
GUTZWILLER-PROJECTED WAVE FUNCTION

Wave function approaches to strongly correlated systems
can be valuable approximations because a good variational
wave function can provide significant physical insight due
to its relative simplicity. In the present study we focus on a
(completely) Gutzwiller projected half filled nearest-neighbor
hopping tight-binding model on the honeycomb lattice. As this
corresponds to a filled Dirac sea we term the wave function
Gutzwiller projected (GP) Dirac sea.86

Here we use a standard Monte Carlo procedure to evaluate
correlation functions of the parameter free wave function
according to the update scheme proposed by Ceperley, Chester,
and Kalos.87 While doing so we noticed the occurrence
of slowly equilibrating starting configurations, which had
a significant effect in determining some of the correlation
functions and their error bars. It is presently not clear to us
whether this is due to an inefficient Monte Carlo sampling or
due to a fat tailed distribution for some observables, as, for
example, discussed in Ref. 88 for continuum systems.

First we determine the nearest-neighbor, next-nearest, and
third-nearest-neighbor spin-spin correlation function, as they
allow us to determine the variational energy of this wave
function for the J1−J2−J3 Heisenberg Hamiltonian [Eq. (1)]
studied in this paper. The finite-size expectation values for
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FIG. 19. (Color online) Gutzwiller projected Dirac sea: Finite-
size scaling behavior and extrapolation L → ∞ of the spin correla-
tions relevant to the energy of the frustrated honeycomb Hamiltonian
(1). See text for the explanation of the two types of symbols
shown.

lattices with N = 2 × L2 with L = 8, . . . ,14 are displayed
in Fig. 19. Two different data sets are shown, first the bare
estimates with error bars including all independent Markov
chains (open symbols), and a second set where the anomalous
samples were removed in calculating the mean and the error
bars (hatched symbols). The latter procedure yields estimates
that show a markedly smoother finite-size behavior and are
used to linearly extrapolate the estimates to L → ∞.89 The
energy per site is then found to be approximately

E(J1,J2,J3)/N ≈ −0.353 × 3/2 × J1 + 0.128 × 3 × J2

− 0.120 × 3/2 × J3 . (A1)

As already shown in Fig. 6 (for J3 = 0 in the left panel and
J3 = 0.3 in the right panel), the energy per site of this wave
function is very close to the extrapolated energy per site of
the frustrated Heisenberg model close to the supposed Néel
to plaquette transition. This success is quite striking for a
parameter free wave function.

This surprising observation raises the question of whether
the wave function exhibits appropriate correlations to de-
scribe such a transition beyond the competitive ground-state
energy. We have therefore determined the spin-correlation
functions at larger distances and found that correlations are
perfectly staggered according to the Néel pattern and decay
algebraically as 1/rσs with a decay exponent σs ≈ 1.7(2).
Next we have measured dimer-dimer correlation functions of
nearest-neighbor bonds,

Czz
ijkl = 〈(

Sz
i S

z
j

)(
Sz

kS
z
l

)〉 − 〈
Sz

i S
z
j

〉〈
Sz

kS
z
l

〉
, (A2)

and display the correlation pattern for an L = 11 system in
Fig. 20. As already pointed out in Ref. 50, the short-range
structure of the dimer correlations in this wave function is
surprisingly analog to the one found in the spin liquid phase
of the honeycomb Hubbard model.14 What has, however, not
been noticed previously is that beyond the four “inverted”
bonds (highlighted by arrows in Fig. 20) all the other
dimer correlations explored here match the signs expected

P P EP P E P P

P P EP P EE P P

P EPE P

P PEP P E

P EP PE

P PP P EP P E P P

P P EP P EE P P

P E

FIG. 20. (Color online) Dimer correlations [Eq. (A2)] evaluated
in the Gutzwiller projected Dirac sea for a L = 11 sample. The
black bond denotes the reference bond, while the blue (red) bonds
denote positive (negative) correlations. The width of the bonds are
proportional to the value of the correlation function. The (E) letter
indicates hexagons with all negative correlations, while (P) indicates
plaquettes with a staggered signal. The four bonds indicated by arrows
are the only ones that differ in sign from the expectations for a
Read-Sachdev or plaquette VBC.

for columnar (Read-Sachdev) or plaquette VBC states as
derived in Appendix D. The dimer correlations also seem
to decay as a power law, but we have not been able
to determine the corresponding decay exponent accurately
enough.

The correlations measured in the Gutzwiller projected Dirac
sea qualify this wave function as a viable candidate to describe
a critical state separating a Néel ordered magnetic phase from a
VBC of columnar (Read-Sachdev) or plaquette type. The fact
that this wave function simultaneously exhibits staggered Néel
fluctuations, as well as columnar/plaquette VBC fluctuations,
is reminiscent of the SU(2) algebraic spin liquid state on
the honeycomb lattice put forward by Hermele,77 which is,
however, believed to describe an extended spin liquid region,
instead of a single critical point.90 Further work is required
to understand whether this wave function could possibly also
represent a deconfined quantum critical point74,75 separating
the two phases or whether there is indeed an extended algebraic
spin liquid phase present between the two ordered phases
(Néel-plaquette VBC) discussed in Ref. 90. Yet a different
scenario has recently been advocated in Refs. 50,78–80,
where a gapped Z2 spin liquid has been proposed as a
phase neighboring the Néel ordered phase. Variationally the
Z2 spin liquid was found50 to be a tiny fraction lower in
energy than the GP Dirac sea studied above. Whether this
is also true beyond the variational realm remains an open
question.
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APPENDIX B: DERIVATION OF AN EFFECTIVE
QUANTUM DIMER MODEL

In this section we redefine the J1–J2–J3–Heisenberg model
on the honeycomb lattice (1) as

Heff = 4

3
O−1/2HO−1/2 + NJ1

2
, (B1)

where H is the matrix introduced in Sec. IV A 1, O is the
overlap matrix for the NNVB basis states, and N is the number
of sites.

On the honeycomb lattice there is only one elementary
process that resonates between the two possible valence-bond
coverings on a hexagon. As shown in Ref. 66, this naturally
leads to a potential term, counting the number of flippable
plaquettes. The exact amplitudes of both processes are shown
to be given by t6 = −(6J2 − 3J1 − 3J3)α4/(1 − α8) for the
kinetic term and v6 = t6α

4 for the potential one. Here we
choose the bipartite convention with α = 1/

√
2.

Interestingly, the amplitudes t6 and v6 depend only on one
parameter, J eff

2 = J2/(J1 + J3). Note that this qualitatively
agrees with the phase diagrams (Figs. 2 and 3) suggested earlier
in this paper. One can therefore simplify the Hamiltonian to

Heff(J1,J2,J3) = (J1 + J3)Heff

(
1,

J2

J1 + J3
,0

)
. (B2)

One can check easily that this relation also holds for
processes that connect dimer configurations defined on two
hexagons. While those contributions cannot be obtained
analytically, we find some iterative, numerical algorithm that
allows for calculating the amplitudes for all possible terms of
this kind. This algorithm appears to converge rapidly and will
be briefly described in the following.

While it is relatively easy to obtain the inverse of an operator
within the present scheme,66 calculating the square root is
much less obvious. We therefore have to go beyond previous
works in order to derive an expression for O−1/2. The idea is
to explicitly work in a basis that is formed by all the diagrams
that are considered. Hence it is possible to write every sum of
processes as a vector and every fusion as a linear map applied
to this vector. As an example, in the basis

, , ,

the fusion of two flips on a hexagon can be written as⎛
⎝ 0 1 0

1 0 0
1 0 0

⎞
⎠ ·

⎛
⎝ 1

0
0

⎞
⎠ =

⎛
⎝ 0

1
1

⎞
⎠ ,

resulting in a contribution for a potential term on a hexagon
and a kinetic term on two hexagons.

Generalizing and applying this procedure to a larger basis
allows for an iterative solution of

1
2

{
O−1/2,O−1/2

} = O−1,

to obtain O−1/2. Putting the result into Eq. (B1), we arrive at
the Hamiltonian Eq. (11), with coefficients given by

One hexagon Two hexagons[
4
3

(
2J eff

2 − 1
)] [

4
3

(
8J eff

2 − 3
)]

t6 −0.6 t10 −0.049218(5)
v10 0.001562(9)

Note that t6 changes sign at J eff
2 = 1/2, while t10 and v10

change sign at J eff
2 = 3/8. The ratio of v10/t10 does not depend

on J eff
2 , although its analytical value is not known at the present

stage. We note in passing that the model with only the most
relevant t10 term has been studied in the context of supersolids
of hardcore bosons on the triangular lattice,91,92 whereas the
model at t10 = v10 = 0 corresponds to a particular point of the
Rokhsar-Kivelson model studied in Ref. 68.

The QDM combines the advantages from both exact
diagonalizations in the Sz basis, which can be performed
efficiently based on the Lanczos algorithm and from the
NNVB approach, which reduces the Hilbert space significantly
through the restriction to nearest-neighbor VB states. This
approach makes it possible to study honeycomb samples of up
to 126 sites using space-group symmetries.93

One drawback of both the NNVB and the effective quantum
dimer model approach is that they do not presently allow us
to gauge the quality of the approximation with respect to
the Heisenberg model within the methods themselves. One
therefore needs to compare energies or overlaps with exact
diagonalization data of the original Heisenberg model for
smaller system sizes in order to locate the regions in the phase
diagram where the NNVB approximation is valid.

APPENDIX C: COMPARISON BETWEEN
NNVB AND QDM

Although both the NNVB method discussed in Sec. IV A 1
and the approach relying on EDs of an effective QDM
(Appendix B) are similar in spirit, for both of them are
formulated in terms of NNVB degrees of freedom and are
thus especially suitable to the study of quantum spin liquids
and VBC states, they differ somewhat in detail. One such
difference concerns the fact that, in deriving an effective
QDM, the diagramatic expansion detailed in Appendix B must
eventually be truncated, but one lacks built-in indicators of the
convergence of the resulting expression. On the other hand,
overlaps are exactly dealt with within the NNVB approach
(Sec. IV A 1), which is therefore immune to this problem,
but this advantage comes at the cost that the system sizes
that can be analyzed via the NNVB approach are more
restricted than those that can be handled by diagonalizing
effective QDMs. Furthermore, and as far as finite-size analysis
is concerned, the formalism described in Appendix B has
the advantage that the amplitudes appearing in the effective
QDM are computed on an infinite lattice,66 implying that
faster convergence to the thermodynamic limit is attainable
within this approach. Altogether, these features imply that the
formalisms detailed in Sec. IV A 1 and Appendix B should
be regarded as complementary to one another. In this sense,
extensive comparisons between the results obtained from both
methods and, due to the variational nature of the NNVB
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FIG. 21. (Color online) Low-energy spectra for the frustrated
model Eq. (1), for J3 = 0.3 and as a function of J2, obtained by (a)
solving the GEP [Eq. (10)] in the NNVB subspace and (b) performing
EDs for the effective QDM derived in Appendix B.94 In both panels,
results have been obtained by diagonalization of an N = 54 site
cluster and energies are relative to the ground-state energy. Note that
this plot only serves to compare the NNVB and the effective QDM
approach on a technical level, because the J2 values considered here
are beyond the domain of validity of these approaches for the original
Heisenberg model.

subspace, from unbiased techniques such as ED are clearly
called for.

As a step toward this goal, in Fig. 21 we compare the
low-energy spectra obtained from NNVB and by diagonalizing
the effective QDM derived in Appendix B for the spin model
Eq. (1) with J3 = 0.3 and varying values of J2 (in both cases,
an N = 54 site cluster has been considered). We first remark
that overall features are similar in both spectra, in spite of the
subtlety that energy levels displaying similar dependence on J2

are characterized by different quantum numbers in Figs. 21(a)
and 21(b).94 Another feature salient in Fig. 21 concerns the
fact that, by increasing the value of J2, one enters a regime
characterized by the occurrence of successive level crossings.
Note that this plot only serves to compare the NNVB and the
effective QDM approach on a technical level, because the J2

values considered here are beyond the domain of validity of
these approaches for the original Heisenberg model.

We proceed to a more systematic comparison and in
Fig. 22 we plot the ground-state energy dependence on J2 for
J3 = 0.3, as obtained from NNVB and EDs for the effective
QDM, for system sizes N = 24 and 42 (data for other N

are shown only in the inset, but are fully consistent with
the analysis that follows). We first notice that much stronger
finite-size effects are indeed observed for the NNVB data, in
agreement with our discussion above. In extrapolating to the
thermodynamic limit we heuristically assume that the scaling
relation E0/N ∼ N−3/2, only justified in the case of the Néel
phase (see Sec. III B), also applies in the present case. As
shown in the inset in Fig. 22, this indeed seems to be the case.
Extrapolated values for the ground-state energy computed
from NNVB and from the analysis of the effective QDM
are also plotted in Fig. 22, and from the excellent agreement
obtained we conclude that the dominant terms are correctly

FIG. 22. (Color online) Ground-state energies for various sizes
vs J2 (J3 = 0.3) obtained by different numerical techniques. Extrap-
olations to the thermodynamic limit (see text) are also plotted. Inset:
for (J2,J3) = (0.2,0.3), finite-size scaling of the ground-state energy
obtained with ED of NNVB and QDM models.

taken into account by the truncated expansion detailed in
Appendix B. Finally, extrapolated data from both approaches
based upon NNVB states are compared against those from
EDs in the Sz basis: we observe that agreement is optimal
around the region where plaquette VBC order is strongest for
J3 = 0.3 (Fig. 15) and where a description based on NNVB
states should be at its most accurate level.

APPENDIX D: CORRELATIONS IN PURE VBC STATES

In this appendix, we compute the expectation values of
the four-spin-correlation function for the four candidate VBC
states denoted |ψc〉 (columnar), |ψst 〉 (staggered), |ψsw〉 (s-
wave plaquette), and |ψdw〉 (d-wave plaquette) in the thermo-
dynamic limit (see Fig. 4). For the plaquette state, indeed, we
may consider s-wave or d-wave linear combinations of the
two VB coverings of a single hexagon. For infinite systems
each of these states is degenerate since it breaks spatial
symmetries. This degeneracy is lifted at finite size and, in order
to allow direct comparison with finite-size numerical results,
we consider symmetrized trial states with (0,0) momentum
and belonging to the trivial point-group representation A1.

Orthogonality. The overlap 〈ψi
α|ψj

α 〉 between two distinct
components of |ψα〉 vanishes exponentially. This point is rather
obvious for |ψc〉 and |ψst 〉 but deserves more attention for
|ψsw〉 and |ψdw〉. Generically 〈ψi

α|ψj
α 〉 = 2nl (i,j )−N/2 with N

the size of the system and nl(i,j ) the number of loops of
the overlap diagram obtained by superimposing the dimer
coverings i and j . A direct inspection of such a diagram shows
that nl(i,j ) = N/6 for the columnar state and nl(i,j ) = √

N/2
for the staggered state, hence showing that any pair of distinct
components becomes orthogonal in the thermodynamic limit.

The plaquette state cases α = sw and α = dw are slightly
more involved since 〈ψi

α|ψj
α 〉 includes 2N/3 overlap contribu-

tions (see Fig. 23). It is possible, albeit not very illuminating,
to find an upper bound of this sum of terms that goes to zero
when the systems size goes to infinity.
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FIG. 23. (Color online) Overlap 〈ψi
α|ψj

α 〉 between two distinct
plaquette state components |ψi

α〉 (blue) and |ψj
α 〉 (red).

In fact, such a result is general: the overlap between two
periodic states |ψ〉 and |ψ ′〉 related by a discrete symmetry Ŝ
is either 1 or 0 in the thermodynamic limit. Before actually
showing this result let us mention how it can be anticipated
using a physical argument. The two states being periodic, the
structure of the scalar product 〈ψ |ψ ′〉 is itself periodic. It is
thus tempting to infer that 〈ψ |ψ ′〉 ∼ αNc in the thermodynamic
limit, where Nc is the number of local patterns (scaling like
the number of sites) and α is related to a local overlap or
fidelity. In this case, either |ψ〉 = |ψ ′〉 and α = 1 or |ψ〉 �=
|ψ ′〉 and α < 1, which implies 〈ψ |ψ ′〉 = 0 for an infinite

system. While qualitatively correct, the scaling 〈ψ |ψ ′〉 ∼ αNp

is actually nontrivial. Indeed, the scalar product 〈ψ |ψ ′〉 does
not generically break into a product of local disconnected terms
but may involve arbitrary scale resonances.

Let us consider a tensor product state |ψ〉 = ⊗c|ϕc〉, where
the same structure |ϕc〉 defined on a cluster c is repeated on the
lattice. The state |ψ ′〉 is related to |ψ〉 by applying the unitary
operator Ŝ. Typically in our case, c is a hexagon, and Ŝ is a
translation that transforms a hexagon into a neighboring one.
Denoting the density matrixρ̂ = |ψ〉〈ψ | = ⊗cρ̂c, the overlap
can be written

〈ψ |ψ ′〉 = Tr(Ŝρ̂) = Tr(⊗cŜρ̂c). (D1)

But since Ŝρ̂c and Ŝρ̂ ′
c do not commute in general, the relation

〈ψ |ψ ′〉 = ∏
c Tr(Ŝρ̂c) does not hold, which illustrates the

point raised previously according to which 〈ψ |ψ ′〉 cannot be
interpreted as the product of local quantities.

However, using the Hölder inequality for traces, we have
for any finite N ,

|〈ψ |ψ ′〉| = |Tr(⊗cŜρ̂c)| � Tr| ⊗c Ŝρ̂c|
�

∏
c

(Tr|Ŝρ̂c|Nc )1/Nc ,

where |X̂| denotes (X†X)1/2 and Nc is the number of clusters
c (scaling linearly with the system size N ).

1/2

−1/4

Columnar

1/2

−1/4

Staggered

s-wave plaquette

1/18

−1/36

−13/36

−2/9

9/50

−9/100

d-wave plaquette

9/25

−21/100

FIG. 24. (Color online) Four-point correlation function 〈P̂ij P̂kl〉 − 〈P̂ij 〉2 in the four trial VBC states. The reference bond (i,j ) is represented
using a thick black line. For plaquette states, the correlations values in the vicinity of the reference bond are different from the bulk values and
are displayed in snapshot frames.
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Taking N to infinity, Nc also goes to infinity and

|〈ψ |ψ ′〉| � lim
Nc→∞

λ
Nc

0 (|Ŝρ̂c|),

where λ0(X̂) stands for the maximal eigenvalue of the positive-
semidefinite operator X̂. It is then straightforward to obtain the
inequality

|〈ψ |ψ ′〉| � lim
Nc→∞

|〈ϕc|Ŝ|ϕc〉|Nc . (D2)

Two cases can occur: (i) |ϕc〉 is an eigenstate of Ŝ in which
case |〈ψ |ψ ′〉| = 1, or (ii) |ϕc〉 is not invariant under S, which
implies |〈ϕc|Ŝ|ϕc〉| < 1 and |〈ψ |ψ ′〉| = 0.

Correlations. Considering the bond permutation operators
P̂b, it is straightforward to remark that 〈ψi

α|P̂b|ψj
α 〉 and

〈ψi
α|P̂bP̂b′ |ψj

α 〉 vanish exponentially to 0 as well since these

operators can only produce local reconfigurations of loops.
It follows that the three components of |ψα〉 generate inde-
pendent contributions to the four-point correlation function
〈P̂ij P̂kl〉 − 〈P̂ij 〉2. Its expectation values for the four trial VBC
states is depicted in Fig. 24. Note that 〈P̂ij P̂kl〉 − 〈P̂ij 〉2 =
4[〈(Si · Sj )(Sk · Sl)〉 − 〈Si · Sj 〉2].

Note that in Ref. 23, the authors claim that the three
plaquette states are not orthogonal in the thermodynamic
limit, which is in contradiction with our general result.
However, their approximate numerical values for the
dimer-dimer correlations agree with our exact ones. In
Ref. 16, the dimer-dimer correlation between parallel bonds
on neighboring hexagons is quoted to be 0.01, while we find
a negative value of −0.09, a result which agrees in sign with
ED data deep in the plaquette phase [see Fig. 11(c)].
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