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The spatial variability of the polarization dynamics in thin film ferroelectric capacitors was probed by
recognition analysis of spatially resolved spectroscopic data. Switching spectroscopy piezoresponse force
microscopy (SSPFM) was used to measure local hysteresis loops and map them on a two dimensional (2D)
random-bond, random-field Ising model. A neural-network based recognition approach was utilized to analyze
the hysteresis loops and their spatial variability. Strong variability is observed in the polarization dynamics
around macroscopic cracks because of the modified local-elastic and electric-boundary conditions, with the
most pronounced effect on the length scale of ∼100 nm away from the crack. The recognition approach
developed here is universal and can potentially be applied for arbitrary macroscopic and spatially resolved data,
including temperature- and field-dependent hysteresis, I-V curve mapping, electron microscopy electron energy
loss spectroscopy (EELS) imaging, and many others.
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I. INTRODUCTION

Disorder attributable to point, extended, and volume
defects is ubiquitous in condensed-matter systems rang-
ing from strongly correlated magnetoresistive oxides,1

superconductors,2 metal-insulator systems,3 spin and cluster
glasses,4 and ferroelectric relaxors5 to polycrystalline films
and ceramics. Despite the broad range of underpinning struc-
tural and physical mechanisms, these systems often exhibit
similar types of time and field dynamics, allowing for classi-
fication in terms of small number of universality classes. The
universality classes can be related to statistical physics models6

and, in many cases, can be established based on macroscopic
measurements such as the temperature or field dependence of
characteristic properties in the vicinity of the phase-transition
points, as well as the phenomenological information about the
structure and underpinning interactions.7

However, in many materials, the structural disorder devel-
ops across multiple length scales. As a prototypical example, in
polycrystalline ceramics or films, inhomogeneities of vacancy
or cation distributions lead to the atomic-level disorder, with
the domain textures and extended defects forming the next
structural level, and grains boundaries separating crystallites
with length scales extending to micron range. Similarly,
many ferroic materials form hierarchical domain structures
or textures, with this tendency being especially pronounced in
the vicinity of ferroelectric-antiferroelectric or morphotropic-
phase boundaries. Macroscopic property measurements will
necessarily sample the collective effects arising from all
these length scales, and decoupling of these effects (e.g.,
using impedance type measurements) is subject to multiple
uncertainties. The situation is further complicated by the fact
that in many cases the material response is hysteretic in nature,
precluding description by linear models. A number of groups
are exploring identification of disorder based on the systematic
analysis of macroscopic-hysteresis loops and minor-hysteresis

loop families;8–10 however, relating this behavior to individual
microstructural elements remains a challenge.

Recently the study of materials on the nanoscale has
allowed probing of responses dominated by finite size
effects,11,12 thus providing insight into local behavior. As
an alternative to fabricating isolated nanoscale structures,
the emergence of high-resolution imaging techniques enables
spatially resolved observations of the geometry of static and
moving interfaces in disordered systems.13–16 This approach
requires careful analysis of finite image size, random noise,
and resolution effects on data analysis.17 The disorder class
can be identified based on fractal dimensionality of the front
geometry or other statistical descriptors of the system, but the
variations in type and strength of disorder between adjacent
locations remain inaccessible.

Here we explore an approach for the identification and
spatially resolved mapping of strength and type of disorder
in complex physical systems based on the combination of
spectroscopic-hysteresis loop imaging and neural-network
recognition fitting onto a selected statistical physics model.18

As a model system, we have chosen columnar ferroelectric
capacitors,19 previously extensively studied in the piezore-
sponse force microscopy imaging.20–24 The local hysteretic
responses are mapped onto a two-dimensional (2D) random-
bond, random-field Ising model at zero temperature, and the
spatial variability of corresponding disorder parameters is
mapped down to nanometer scales.

II. MAPPING LOCAL-POLARIZATION DYNAMICS BY
BAND EXCITATION (BE) SWITCHING

SPECTROSCOPY PIEZORESPONSE FORCE
MICROSCOPY (SSPFM)

The ferroelectric capacitors used in this study are pre-
pared from a sol-gel deposited (0.3)Pb(Ni0.33Nb0.67)O3–
(0.7)Pb(Zr0.45Ti0.55)O3 thin film (corresponding to the
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FIG. 1. (Color online) (a) Surface topography (arrow indicates the propagating crack), (b) PFM image collected at 250 kHz using a probing
amplitude of 1V, (c) resonance frequency, and (d) Q-factor images of the polycrystalline capacitor surface. Histograms of (e) resonance
frequency and (f) PFM amplitude obtained across the surface.

morphotropic phase boundary composition) with top and
bottom platinum electrodes.25,26 The film thickness was
630 nm, which was large enough to exceed the critical
thickness for cracking attributable to the thermal expansion
coefficient mismatch between the material and the Si sub-
strate. The average coercive voltage for this film was 1.9 V,
corresponding to a coercive field of 29 kV/cm. Field emission
scanning electron microscopy images revealed a dense and
large-grained microstructure with an average grain size of
200 ± 80 nm. X-ray diffraction (XRD) analysis showed
pure perovskite phase with 80% {001} texture as determined
using the Lotgering formula.27 Before performing switching
spectroscopy measurements, the film was poled by applying
10 V to the top electrode for 15 minutes.

In many proper ferroelectric films the domains interact
across grain boundaries because of local electric and elastic
fields28 and also experience the random fields because of
defects and top and bottom interfaces. Spatially resolved
switching studies of similar materials without top electrodes
have demonstrated that the polarization switching typically
occurs uniformly within the grains.29 The typical switching
fields are of the order of several volts, thus minimizing the
role of spontaneous thermally activated polarization reversal.
These considerations suggest that the salient features of system
behavior can be approximated by random-field, random-bond
2D Ising model, with the spontaneous polarization in regions of
correlated switching inside individual columnar grains playing
the role of Ising spins; random electric fields because of
charged defects and interfaces playing the role of on-site
random fields; and grain-grain coupling, fluctuations in Zr/Ti
ratio, and rhombohedral/tetragonal phase stability playing the

role of random-bond component. We further note that while
in the bulk materials the applicability of the Ising model is
necessarily limited by the long range of the depolarization,
strain, and electrostatic fields, in thin films these interactions
are screened on a length scale on the order of the film thickness.

To obtain a system with defects at several length scales,
a region on the capacitor surface with a well-defined macro-
scopic crack was chosen, as shown in Fig. 1. The topographic
image shows an average grain size of 246 ± 110 nm and
noticeable topographic contrast corresponding to the three
cracks forming a junction point at the center of the imaged
region. We note that interpretation of the local Piezoresponse
Force Microscopy (PFM) data on the capacitor-type structures
should include both local effects attributable to response of
material directly below the tip, as well as surface acoustic
waves and any bending bimorph modes of the device.29

To explore the spatially resolved switching behavior in
the capacitor structure, BE PFM30–34 and BE SSPFM were
utilized. A modest (0.5–2 Vpp) BE bias is applied between the
two electrodes, resulting in an electromechanical response of
the surface that is detected by an scanning probe microscopy
(SPM) tip. The PFM and SSPFM were implemented on a
commercial Asylum Cypher system with additional in-house
electronics for BE and SSPFM measurements based on an
NI PXI platform (National Instruments). For measurements
made on electroded areas, the bottom electrode was grounded,
while the voltage was applied simultaneously to the tip and
the top electrode. The electrodes were connected through
wirebonds to an external bias source. Vertical PFM and
SSPFM measurements were performed near the contact
resonance of the tip-sample configuration in order to obtain
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FIG. 2. (Color online) Data acquisition and processing in band ex-
citation switching spectroscopy PFM. (a) At a single spatial location,
the switching signal is formed by the triangular waveform modulated
by rectangular pulses. The on-state pulse induces switching, while
the electromechanical response is detected in the off-state in a
broad frequency range centered at the tip-surface resonance using
a band-excitation waveform. At each pixel, the measured amplitude
response represents a 2D (b) amplitude and (c) cantilever response
phase versus frequency and time spectrogram. The evolution of
amplitude and phase with applied DC waveform is clearly seen.
(d) The signal in the 2D spectrogram is (i) integrated over the
frequency axis or (ii) fitted by a simple harmonic oscillator (SHO)
model to yield the single-point hysteresis loops.

high signal-to-noise ratio through resonance-enhancement.
Pt-coated conductive tips (Olympus AC240TM) were used for
the SSPFM studies. To implement BE SSPFM, the tip was first
brought to contact the sample surface. Once the tip established
contact, a triangular waveform composed of a sequence of
pulses with increasing DC bias (12 V maximum) at a constant
time interval was applied, as shown in Fig. 2(a). The bias
pulse was used to switch the sample. A chirp excitation with a
predefined frequency band and amplitude (1 V) was applied to
the tip during interval between two pulses as shown in Fig. 2(a),
and the mechanical tip response was simultaneously registered
at this interval. Details of hysteresis-loop extraction from the
obtained data are provided below. A LABVIEW-MATLAB code
developed in-house and synchronized with the controller was
used for generating the probing signal and for data acquisition
and analysis.

The excellent vertical resolution of scanning probe mi-
croscopy allows displacements as small as ∼3–10 pm to be
detected locally at an integration time for the data acquisition
card of ∼1 ms. In capacitor experiments the effective lateral
resolution (probed-lateral size) is determined by the surface
strain distribution induced by a uniform electric field and can
be estimated as ∼(0.2–0.5) H + (0.5–1) L, where H is the
ferroelectric thickness and L is the top electrode thickness.35

Here we estimate spatial resolution as ∼150–400 nm, in the
vicinity of the observed grain size for this film. Note that in the
case where there is either weak mechanical contact between
the grains or strong variations in the electromechanical activity
in the surface layers of the film, features visible at higher

resolution might be detected. Finally the macroscopic-bending
modes of the substrate localized on the length scale of the
Si-substrate thickness can give rise to offsets in measured PFM
images and spectroscopic data.35

To improve the signal-to-noise ratio in the PFM imaging
and minimize topographic cross talk, we utilize the BE
method.36 Briefly the PFM signal is the oscillatory surface
response determined as a product of driving voltage Vac, elec-
tromechanical response d33,eff , and contact/cantilever transfer
function F (ω) as PR = Vacd33,effF (ω). The use of resonance
enhancement [F (ω) = 1 for low frequencies and F (ω) = Q

at the contact/cantilever resonance, where Q is of the order
of 30–100 for contact resonances] is limited by the strong
position dependence of contact resonance.37–39 The use of BE
[Fig. 2(a)], or equivalent methods (e.g., pulse excitation,40,41

dual frequency measurements,42 fast lock-in sweeps,43 or
rapid multifrequency imaging),44 allows efficient tracking
of the resonance response in PFM and, hence, high-fidelity
spectroscopic measurements.45,46 In the BE experiment the
full amplitude and phase versus frequency curve is measured
in a preselected frequency interval chosen to contain the
tip-surface resonance peak. The data is analyzed using a simple
harmonic oscillator (SHO) fit to extract the response amplitude
at resonance, resonant frequency, and Q-factor.

Shown in Fig. 1(b) is the PFM-amplitude image of the ca-
pacitor surface collected at a frequency of 250 kHz. The cracks
are seen as regions with slightly enhanced electromechanical
activity. In addition a number of grain-like regions of enhanced
and lowered electromechanical activity are now visible with
feature size of around 300–500 nm. The histogram in Fig. 1(f)
shows a relatively broad distribution of the PFM amplitude
across the scanned surface. The corresponding resonant
frequency image obtained using BE SSPFM shows primarily
noise that is likely to be associated with small-scale surface
roughness of the top electrode. This behavior is expected
since the local resonance frequency is influenced primarily
by topographic features comparable to the tip-surface contact
radius, and hence its variation reflects the variability of surface
topography at small length scales. The lack of systematic
changes in the slow-scan axis direction, or abrupt jumps in
resonance frequency between scan lines, suggest the absence
of gradual tip wear or failure. We also note that the fact that
resonance frequency does not show anomalies in the crack
area suggests that the electrode delamination does not occur,
and geometric or topographic effects do not influence the
switching behavior around the crack significantly. Also the
negligible resonance frequency shift suggests that the crack
is quite shallow and the tip does not penetrate into the crack
by more than 5 nm as compared to the electrode thickness of
40 nm. The corresponding histogram is shown in Fig. 1(e)
and illustrates that the variation frequency on the surface
is ∼8 kHz as compared to the resonant peak width of the
order of ∼4 kHz. This consideration illustrates the need for
BE imaging since the use of constant-frequency PFM in the
vicinity of the resonance would result in the spurious changes
of measured signal by a factor of ∼30–100 because of changes
in relative difference between driving and contact-resonance
frequencies.45 Finally the Q-factor image (again averaged
over the hysteresis loop) is relatively featureless with slightly
enhanced Q-factor in the region of the crack. Comparison
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FIG. 3. (Color online) (a) Switchable polarization map and
(b) hysteresis loops at selected locations across the capacitor surface
from the same region as Fig. 1.

with the BE PFM amplitude image suggests that the apparent
increase of the Q-factor observed near the crack is probably
an artifact related to the fitting procedure (effective peak
narrowing in the presence of the higher white noise floor).
Correspondingly, this dissipative behavior, while of interest
both for applications and fundamental energy loss processes
in ferroelectrics, is deferred for future studies.

To explore polarization switching in the capacitor structure,
we employ Piezoresponse Force Spectroscopy (PFS).47−52 In

PFS a probing AC signal is superimposed on the top of the DC
switching signal. The evolution of electromechanical response
with periodic (typically a stepped triangular wave) DC bias
provides the local analog of an electromechanical hysteresis
loop. Similar to imaging, we utilize the BE version of PFM
spectroscopy (BEPS)53 in order to minimize topographic cross
talk and increase signal-to-noise ratio through the use of
cantilever resonances. Finally in the SSPFM experiment, the
hysteresis loops are acquired on a grid of points, providing
spatially resolved information on the switching behavior.54

The waveform used for probing switching at a single
location is shown in Fig. 2(a). The typical imaging conditions
used here correspond to 128 frequency bins and 64 voltage
points per loop. Shown in Fig. 2(b) is the typical single-point
amplitude response in BE SSPFM measurements, representing
the simultaneous measurement of response as a function of
frequency and applied DC waveform. The single-point phase
response in the measurement is shown in Fig. 2(c). These
2D spectrograms are the basic measured signal in BE SSPFM
measurements and are acquired at each location on the spectral
image grid. The envelope of voltage sweep versus time is
a triangular wave. Here the signal is analyzed using direct
integration of the area under the peak (in the frequency
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FIG. 4. (Color online) Switching parameters of the selected region on the surface. Shown are (a) positive coercive field, (b) negative
coercive field, (c) imprint, (d) positive remanent response, (e) negative remanent response, (f) switching polarization, (g) work of switching,
(h) positive nucleation bias, and (i) negative nucleation bias, as extracted from the experimental spatially resolved hysteresis loops array.
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FIG. 5. (Color online) (a) 2D random-bond, random-field Ising model describing grain-grain interactions Jij in the random field of defects
hi . (b) Hysteresis loops for J = 0, δh = 0, and δJ = 1, 2, 3, 4 calculated for continuous field sweep.

direction), allowing hysteresis loops to be obtained as shown
in Fig. 2(d). Alternatively the frequency-dependent data can
be fitted using either a SHO or a more complex model, giving
rise to the hysteresis loops for associated parameters (e.g.,
amplitude, phase, resonant frequency, and dissipation for SHO
model).

Shown in Fig. 3(a) is the map of the switchable polarization
across the surface. The hysteresis loops at several grains sur-
rounding the cracks are shown in Fig. 3(b), showing significant
changes in vertical offset and switchable polarization as well as
variation in shape. This behavior is further illustrated in Fig. 4,
showing a full set of SSPFM maps extracted from fitting the
experimental hysteresis loops to an empirical model.54 Strong
contrast around the crack and adjoining grains is observed in
the switching parameters. Both forward and reverse coercive
fields are smaller in magnitude close to the crack boundary.
The imprint (lateral shift) is uniform in the different grains,
but the region around the crack shows shift towards negative
values. Both switchable polarization and work of switching
are reduced at the crack. Also note the variation of the
signal between the regions separated by the crack system.
The positive and negative nucleation biases on the crack are
slightly enhanced with respect to the bulk of the grains. Note
that the variability of switching behavior in the vicinity of
the crack is expected since the strain state of the film around
the crack is modified (i.e., film is clamped to the substrate far
from the crack region and only partially clamped in the vicinity
of the crack). Since internal stresses couple to the effective
piezoelectric coefficient, domain wall mobilities, internal bias,
and hence overall switchability, the modification of switching
behavior is expected. It should be noted that there does appear
to be a correlation between the switching polarization and
distance away from the crack. Namely, there is an increase
in the observed switching polarization in regions adjacent to
the crack, which decreases as a function of distance from the
crack.

The data in Figs. 3 and 4 illustrates the presence of
significant spatial variability of the polarization switching
in the capacitor and strong effect of microstructure on this

behavior. However, despite the readily observed contrast,
direct interpretation in terms of materials parameters is limited
by lack of appropriate physical models. In the tip-electrode
PFM experiment, the electric field is concentrated in the small
volume of material below the tip, allowing for deterministic
models.55−61 However, in measurements of switching on top
electrodes the field is almost uniform, and hence switching
is initiated at the nucleation sites in the material and not
necessarily directly below the probe, precluding the devel-
opment of deterministic physical models. Here we analyze
the data using recognition analysis that allows extraction of
model parameters from the hysteresis loop by directly mapping
them on relevant statistical physics model (or potentially any
numerical model).

III. RECOGNITION DATA ANALYSIS

A neural-network based recognition approach was used for
the analysis of the hysteresis loops.18 In a classical approach
the data analysis is performed using the known analytical form
of response and use of least-square minimization (e.g., using
Levenberg-Marquart search) to extract model parameters from
measured data (and obtain an estimate of the applicability of
the model). However for many classes of practical problems,
an analytical description is absent, and the dimensionality
of parameter space is sufficiently high to preclude direct
search methods. The neural network approach operates in a
complementary manner reminiscent of “recognition” in human
brain, combining the universality of associative approach with
the precision of a mathematical model.

A. Theoretical response

The system dynamics were modeled using a generalized
random-bond, random-field Ising model. The Hamiltonian for
this system is defined as

H(H ) =
∑

i.j

Jij SiSj +
∑

i

(hi + H )Si, (1)
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where Si = ±1 are local dipoles, Jij are nearest-neighbor
interactions, hi are random fields, and H is the external
field. The nearest-neighbor interactions are assumed to have
a Gaussian distribution with average J0 and width δJ . The
random-field components are assumed to have a Gaussian
distribution with zero average and width δh as shown in
Fig. 5(a). The simulation of Eq. (1) in the presence of
external fields yields a hysteresis loop S(H ) as a function
of model parameters, (J0, δJ , δh) as shown in Fig. 5(b). The
time dependence of the field is chosen similar to that used
experimentally [realistic switching bias waveform as shown in
Fig. 2(a), with the total polarization of the system determined
in the field-off state after the application of field pulse].

For given model parameters (J0, δJ , δh), the evolution of
the system was studied on a 2D (10 × 10) field using Glauber
dynamics.6 At each time step the polarization is assumed to
flip if it is antiparallel to the local field hi

loc =∑
j Jij Sj −(H+hi ),

i.e., for hi
locSi < 0. For hi

locSi > 0 the spin is stable. At each
field value H the polarization values are updated randomly
until for 100 iterations the average polarization 〈Si〉 does not
change. The resulting hysteresis loop SH = 〈Si(H )〉 defines
the field dependence of average polarization averaged over 40
realizations of disorder.

B. Recognition analysis

To extract model parameters from experimental hysteresis
loops, we utilize the nonparametric-deconvolution method
based on a combination of principal value decomposition62

with neural-network interpolation63 as shown in Fig. 6.
The family of theoretical hysteresis loops SH (J0,δJ,δh)

is generated using Eq. (1) in the parameter interval
J0 ∈ (Jmin,Jmax), δJ ∈ (δJmin,δJmax), and δh ∈ (δhmin,δhmax),
where δhmin is positively defined. Note that while the chosen
2D field is relatively small, the necessity to run simulations
for a large number of families in the three dimensional (3D)-
parameter space results in large computation times (∼5–10
days on a quad-core i7 computer with 8GB of RAM).

The dimensionality of the data set containing P points in
field direction is reduced using principal component analysis

FIG. 6. Schematics of recognition analysis of experimental
data utilizing principal-component-analysis based decorrelation and
neural-network recognition.

(PCA).63,64 In PCA the hysteresis loops are represented as a
superposition of the eigenvectors wj ,

Sm(Hj ) = amkwk(Hj ), (2)

where amk = ak(J0,δJ,δh) are expansion coefficients. The
eigenvectors wk(H ) and the corresponding eigenvalues λk

are found from the covariance matrix C = SST , where S is
the matrix of all experimental data points Smj . The rows of
S correspond to parameter variation (m is the total number
of hysteresis loops in a family), and columns correspond
to field points. Mathematically the eigenvalues and corre-
sponding eigenvectors are determined through singular value
decomposition of the S matrix.65 The number of significant
values m is chosen based on the presence of correlations in
the amk maps.66 The eigenvectors wk(H ) are orthonormal and
are ordered such that corresponding eigenvalues are placed
in descending order, λ1 > λ2 > · · ·. Consequently the first
eigenvector w1(H ) contains the most common information
within the data set, the second contains the most common
response after the subtraction of the first one, and so on.
Practically, the sum in Eq. (2) can be truncated after the first
several terms. This representation reduces the number and
decorrelates the independent variables. In our modeling 10–15
principal components are sufficient to represent a response
signal containing 8100 points.

The resulting parameter vector is used to train a feed-
forward neural network with the set of ak(J0,δJ,δh) as inputs
and the corresponding J0,δJ,δh as target outputs. Typically for
m input neurons (corresponding to the number of significant
PCA components) the optimal results are obtained with (2–3)m
neurons in the hidden layer using sigmoidal (tansig) and linear
(purelin) transfer functions in the hidden and output layers
correspondingly. Here we used a feed-forward neural network
with 10 principal components, 24 hidden neurons, and 3
outputs. For optimal fitting, the overall error decreased by ∼2–
3 orders of magnitude compared to initial value. The increase
in the number of PCA components or hidden-layer neurons

Im

W

Off

H

FIG. 7. Schematics of the normalization process applied to
experimental data. The loops are shifted in vertical and lateral
directions and normalized to unity. Thus extracted parameters are
stored as imprint, Im; width, W; height, H; and vertical offset, Off.
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FIG. 8. (Color online) (a)–(f) Loading maps for first six PCA components, (g) normalized eigenvectors for first three PCA components, and
(h) normalized eigenvectors for next three PCA components. (i) Plot of eigenvalue versus principal-component number (scree plot) suggesting
that PCA components above 10 do not have significant correlation and hence do not provide information about the adopted model.

beyond an optimum leads to overtraining of the network and
emergence of spurious minima.67 The software is implemented
using Neural Network Toolbox for MatLab. The trained
neural network acts as a universal interpolator that establishes
the relationship between the hysteresis loop described as
coefficients ak(J0,δJ,δh) in the basis of linearly independent
eigenvalues wk(Hj ) and model parameters J0,δJ,δh. Note that
in this approach the finer details of the hysteresis-loop shape
(as described by the higher PCA components) are weighted
equally with the gross features in the hysteresis loop, unlike
the straightforward least square error-based criterion.

On the analysis stage the same set of wk(Hj ) is used to
project unknown experimental loops Sexp(H ) (after proper
normalization) on to a set of αi exp values. The αi exp are
then fed into the neural net trained by theoretical curves to
yield J0,δJ,δh. This effectively forms a solution algorithm to
the inverse problem of Eq. (1), i.e., reconstruction of disorder
parameters from the hysteresis loop shape.

IV. RESULTS AND DISCUSSION

The local hysteresis loops were processed to extract vertical
(offset) and horizontal (imprint bias) shifts and normalized
by width (coercive bias) and height (maximal response), thus

normalizing the data. The corresponding parameters are illus-
trated in Fig. 7. The position dependence of these parameters
yields normalization parameter maps, which are similar to
phenomenological descriptors of ferroelectric behavior.

In order to reconstruct the disorder parameters from the
hysteresis loops, the experimental loops are projected onto
the eigenvectors that are obtained by running PCA on the
simulated loops. The loading maps of amk that represent
the map of expansion coefficients in Eq. (2) for the first
six eigenvectors are shown in Fig. 8(a–f). The eigenvectors
used to generate these maps are shown in Fig. 8(g) and
(h). These projection maps illustrate the spatial variability of
hysteresis-loops behavior in the basis of Ising loop family.
Note that the eigenvectors, and hence projection maps,
strongly depend on the choice of the model (unlike the direct
PCA analysis of the experimental data, which operates on
the statistically significant data set and allows for unique
decomposition). Furthermore, the number of the nontrivial
maps (i.e., those containing visible correlations) provides
information on the goodness of the model. If the number
of nontrivial maps is small (i.e., less than 5), the model
describes the data well. If the number of nontrivial maps
is large (greater than 20), the model does not describe the
data.
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FIG. 9. (Color online) Recognition analysis of the S-PFM data set (90 × 90 spatial pixels, 64 bias points per loop). Top row illustrates
normalization parameter maps, including (a) vertical offset, (b) imprint, (c) loop height. The middle row illustrates recognition parameter maps,
including (d) J, (e) δJ, and (f) h. Histograms for the reconstructed disorder parameters are (a) J, (b) δJ, and (c) h.

Using the recognition algorithm described in Sec. III A,
and III B for a J -δJ -h family (i.e., all three parameters are
varied), recognition parameter maps for J , δJ , and h are
obtained. A comparison of the normalization parameter maps
and recognition parameter maps is shown in Fig. 9(a) –
(f). The recognition maps qualitatively capture most of the
features observed in the maps obtained from the normalized
experimental loops, confirming the validity of the approach
used here.

The histograms for the disorder parameters J , δJ , and h

shown in Fig. 9(g–i) clearly reveal a distribution of the param-
eters which most likely arises from the variability in hysteresis
behavior across the different grains and cracked regions. Note
that the distribution of extracted parameters is relatively nar-
row, J0 = 3.71 ± 0.35, δJ = 4.29 ± 1.07, h= 3.16 ± 2.18, with
the maximal variability for the built-in field. The correlation
functions for the normalization parameters and disorder pa-
rameters are shown in Fig. 10(a) and (b), respectively. The cor-
relation function illustrates the presence of spatial correlations
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FIG. 10. (Color online) Spatial correlation functions for (a) normalization parameters and (b) reconstructed disorder parameters for the
J-δJ-h family. The distance is normalized to image size.
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closest simulated loops for the area 1 and (e) area 2 selected in map (a).

in both the normalization parameters as well as the disorder
parameters.

The recognition fit for the J -δJ -h family is shown in
Fig. 11. For a selected area on the map as shown in
Fig 11(a), the average experimental and average of closest
simulated loops are shown in Fig. 11(d) and (e). Notice that
the “fit” (i.e., the calculated hysteresis loop for the model
parameters determined from the neural net recognition) is
similar to the target loop. At the same time, both “fit” and
“target” have relatively high noise level—from the insufficient
averaging in the statistical physics model and experimental
noise, respectively. However, the capability to perform such
recognition analysis on stochastic data in the absence of
analytical expressions is the unique aspect of the recognition
fit approach. This allows the underlying physics to be extracted
even in the absence of an analytical formulae.

The relatively small variation of model parameters across
the sample surface naturally renders a question as to whether a
smaller number of parameters would be sufficient to describe
the system. Hence, we further explore if the recognition
can be performed with a partial parameter set, i.e., J -δJ ,
J -h, or δJ -h families. Using the recognition fit algorithm,
partial families of J -δJ , J -h, or δJ -h are reconstructed as
shown in Fig. 12. The performance of average simulated loops
extracted from these families in comparison to the normalized
experimental loops is shown in Fig. 12(c), (f), and (i) for a
selected area. Clearly for the region selected, the J -δJ family
outperforms J -h and δJ -h families, thus revealing that choice

of different partial families may be better for different grains.
This is further exemplified in the fit-quality map obtained by
comparing the fitting errors (difference between reconstructed
and normalized experimental families) from reconstructed
J -δJ , J -h, and J -δJ -h families shown in Fig. 13, which
reveals that while the J -δJ family is better than J -h and
δJ -h families in two cracked regions, the J -h family is better
in the third region. Overall the δJ -h family performs quite
poorly in comparison to the other families, which may suggest
that these two parameters are not appropriate to describe the
system. At the same time the models in which both exchange
bias and exchange-bias disorder are allowed to change across
the sample surface provide a good description of observed
phenomena. The parameters used in the adopted Ising model
to describe ferroelectrics are the strength of the grain-grain
coupling (analogous to exchange bias) and the disorder in the
grain-grain coupling (analogous to exchange-bias disorder).
The presence of asymmetries, fine features, and noise in
the experimental data precludes more unambiguous model
identification.

Based on the analysis above, we conclude that on the length
scale of the spectroscopic measurements (10 > L > 0.3 μm) the
capacitor behaves as an almost spatially uniform random bond-
random field (RB-RF) Ising system with strong variability of
ferroelectric coupling between the grains (J0 ∼ δJ ). The use of
spectral imaging reveals the presence of mesoscopic (∼1 μm)
fluctuations in disorder strengths, primarily attributed to the
J and δJ terms. Specifically, the switching behaviors are
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FIG. 12. (Color online) Reconstructed parameters (a) J, (b) δJ, (c) average experimental and closest simulated loops in the selected area
for J-δJ family, (d) J, (e) h, (f) average experimental and closest simulated loops in the selected area for J-h family, (g) δJ, (h) h, and (i) average
experimental and closest simulated loops in the selected area for δJ-h family.

strongly affected in the vicinity of the crack because of partial
strain release and loss of intergrain coupling. Note that the
decrease of both J and δJ observed in the reconstructed
parameter maps for J -δJ -h families (Fig. 11) close to the
crack over a length scale of ∼ grain size is in agreement with

the chosen Ising-type model with near-neighbor interactions.
In comparison larger-scale contrast seen in the field-disorder
component is consistent with the strain-induced variations
of electromechanical fields on the length scale of the film
thickness.
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0. 008

0.004

J

hJ

h

FIG. 13. (Color online) (a) Quality map obtained by comparing the fitting errors (difference between reconstructed and normalized
experimental families) from reconstructed J-δJ, J-h, and J-δJ-h families (b) Minimum-error map obtained by comparing the errors from
reconstructed families and the best fit between the families is demarcated at each pixel in (a).
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V. SUMMARY

Spatially resolved polarization dynamics in polycrystalline-
ferroelectric capacitors were studied using BE switching
spectroscopy piezoresponse microscopy. The hysteresis loops
were analyzed by recognition analysis, mapping the loop shape
on the parameters of the random bond-random field Ising
model. We demonstrate that the variability of the loop shape
is primarily related to the vertical offset and imprint fields and
can be interpreted as nonswitchable polarization components,
effects of large-scale bending, and the existence of local
electrical or mechanical fields. The recognition analysis
using several possible parameter sets suggests that both the
grain-grain coupling (analogous to exchange interaction) and
field-disorder change across the sample surface, and J ∼ δJ

(i.e., broad distribution of grain coupling strengths). Given
the nonideality of the experimental data, the models (i.e.,
dominant-disorder type) cannot be further refined.

The recognition analysis of the normalized loops re-
veals clearly-visible variations in the grain-grain coupling,
random bond, and random-field disorder components. The
switching behavior is strongly affected in the vicinity of
the crack, with both J and δJ decreasing by a factor of
∼2, consistent with the loss of intergrain coupling. Finally
the random-field component is affected over a larger length
scale, presumably as a consequence of the strain fields
in the vicinity of the crack. These studies thus provide
insight into the spatial variability of disorder strength in
the systems with multiple structural length scales and can

in the future be linked to the continuum and stochastic
models.

In conclusion we note that the hysteretic response is a
universal feature of random systems, ranging from strongly
correlated oxides to structural (glasses, polymers), magnetic
(spin glasses) or polar (dipole glass) to polycrystalline ma-
terials. The polycrystalline ferroelectrics capacitors studied
here offer a convenient model system, in which the dipole
reorientation does not change the underlying crystallographic
lattice and hence is (potentially) reversible. At the same time
the strong coupling between polarization and strain (lattice
deformation) allows the dynamics to be studied locally. The
recognition approach developed here is universal and can
potentially be applied for arbitrary macroscopic and spatially
resolved data, including temperature- and field-dependent
hysteresis, I-V curve mapping, electron microscopy electron
energy loss spectroscopy (EELS) imaging, and many others.
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