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Formation of defects in multirow Wigner crystals
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We study the structural properties of the ground state of a quasi-one-dimensional classical Wigner crystal,
confined in the transverse direction by a parabolic potential. With increasing density, the one-dimensional crystal
first splits into a zigzag crystal before progressively more rows appear. While up to four rows the ground state
possesses a regular structure, five-row crystals exhibit defects in a certain density regime. We identify two phases
with different types of defects. Furthermore, using a simplified model, we show that beyond nine rows no stable
regular structures exist.
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I. INTRODUCTION

The electron crystal has created considerable interest since
its possible existence was first pointed out by Wigner.1 The
three-dimensional Wigner crystal and its two-dimensional
counterpart have been extensively studied, and there ex-
ist beautiful experimental realizations of the latter using
electrons trapped on the surface of liquid helium.2–5 More
recently, Wigner crystallization in one dimension has re-
ceived renewed interest;5–22 for recent reviews, see Refs. 23
and 24.

The realization of a one-dimensional system requires the
dominance of the confining potential over internal energies,
in particular, the interparticle interactions. On increasing
density (and, thus, the interaction energy), or weakening
the confining potential, the crystal deviates from its strictly
one-dimensional structure. It has been shown that at a critical
density, a transition to a zigzag crystal takes place.7,11,23,25,26

Though not for electrons, this zigzag transition has indeed
been observed using 24Mg+ ions in a quadrupole storage
ring.27

Here we investigate the structural properties of the classical
quasi-one-dimensional Wigner crystal beyond the zigzag
regime at zero temperature. While previous investigations7

have concentrated on regular structures, we are interested in
the formation of defects in the ground state. From symmetry
considerations the assumption of regular crystals is plausible
at low densities when the number of rows is small, however, its
validity is not at all obvious once the lateral extent of the crystal
increases at higher densities. In fact, one expects a nonuniform
charge density in the direction transverse to the wire axis. In
particular, considering the electrostatics problem of charges in
two dimensions (x-y plane) confined by a parabolic potential,
V (y) ∝ y2, the density profile should obey n(y) ∝

√
w2 − y2,

where w is the width of the system.28,29 Therefore, the
assumption of perfect rows with equal linear densities should
eventually break down. Similar questions arise in the context of
quantum dots: while shell effects dominate for a small number
of particles, Wigner crystals with defects form for a larger num-
ber of particles.30–32 The formation of defects in a quasi-one-
dimensional geometry is of particular interest because they will
have a direct impact on the transport properties of the system:
While regular rows are locked, defects are expected to be
mobile.

II. MODEL

We consider classical particles in two dimensions inter-
acting via long-range Coulomb interaction. The system is
assumed to be infinite in the x direction and confined in the
transverse y direction by a parabolic confining potential Vconf .
The energy of the system then reads

H = Hint + Hconf (1)

= e2

2ε

∑
i �=j

1

|ri − rj | + 1

2
m�2

∑
i

y2
i , (2)

where ε is the dielectric constant of the material and � is the
frequency of harmonic oscillations in the confining potential.

At low densities, the system is one dimensional, and
the particles minimize their mutual Coulomb repulsion by
occupying equidistant positions along the wire, forming a
structure with short-range crystalline order—the so-called
one-dimensional Wigner crystal.1 On increasing the den-
sity, the interelectron distance diminishes, and the resulting
stronger electron repulsion eventually overcomes the confining
potential Vconf , transforming the classical one-dimensional
Wigner crystal into a staggered (zigzag) chain. From the
comparison of the Coulomb interaction energy Vint(r) = e2/εr

with the confining potential an important characteristic length
scale emerges. Indeed, the transition from the one-dimensional
Wigner crystal to the zigzag chain is expected to take place
when distances between electrons are of the order of the scale
r0 such that Vconf(r0) = Vint(r0). Within our model, i.e., for a
parabolic confining potential and Coulomb interactions, the
characteristic length scale r0 is given as

r0 = (2e2/εm�2)1/3. (3)

It is convenient for the following discussion to measure lengths
in units of r0. To that purpose we introduce a dimensionless
densit

ν = ner0, (4)

where ne = N/L is the linear density of the system. Rescaling
lengths, the energy can be written as

H = E0

[
1

2

∑
i �=j

1

|r̂i − r̂j | +
∑

i

ŷ2
i

]
, (5)

where E0 = (e4m�2/2ε2)1/3.
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TABLE I. Number of rows in the crystal as a
function of the dimensionless density ν, assuming
regular structures.

No. of rows (M) Density range

1 ν < 0.78
2 0.78 < ν < 1.71
4 1.71 < ν < 1.79
3 1.79 < ν < 2.72
4 2.72 < ν < 3.75
5 3.75 < ν < 4.84
6 4.84 < ν < 5.99

As a first step, we minimize the energy assuming regular
rows, aiming to find approximate values for the density range
in which a configuration with a given number of rows is stable.
Assuming staggering in the x direction between neighboring
rows and inversion symmetry of the y positions of the rows
with respect to the wire axis, the number of minimization
parameters is M/2 [(M − 1)/2] for even (odd) number of
rows M , and the minimization is straightforward. Within these
constraints, the minimization of the energy with respect to
the electron configuration reveals7,8,25 that a one-dimensional
crystal is stable for densities ν < 0.78, whereas a zigzag chain
forms at intermediate densities 0.78 < ν < 1.71. More rows
appear as the density further increases. The number of rows as
a function of ν is shown in Table I. One notices that, with the
exception of the four-row structure7 in the regime 1.71 < ν <

1.79, the linear density per row νrow = ν/M is of order � 1
in all cases, i.e., another row is added to the crystal when the
distance between particles within a row is of the order of r0.
A typical regular structure is shown in Fig. 1.

To investigate the importance of defects, the above condi-
tions have to be relaxed. In the following, we concentrate on
the density regime 1.79 < ν < 5.99, encompassing structures
with three to six rows. In Sec. III the numerical method is
introduced, and in Sec. IV we present our results. In Sec. V
we introduce a simplified minimization procedure that allows
us to extend the calculation to a larger number of rows, before
concluding in Sec. VI.

ν=4.17

FIG. 1. Regular structure with five rows at ν = 4.17, shown with
its Voronoi construction for illustration purposes. This structure was
obtained for 60 electrons in the unit cell.

III. NUMERICAL METHOD

In order to find the ground-state configuration of the system,
the energy of the electrons in the parabolic confining potential
is minimized with respect to the positions of the electrons for
given confinement strength and density.

A simulation box of finite length L along the wire contain-
ing N electrons is used. Periodic boundary conditions in the x

direction are enforced to remove size effects. As the number
of particles used in the simulation is finite, commensurability
effects are important. To realize a regular M-row structure,
the number of particles in the simulation box has to be
a multiple of M . Similarly, to realize a defected structure,
the defect density is determined by the number of particles
used in the simulation. To illustrate this, let us consider a
five-row structure. Regular structures are realized for N = 5n;
for all other N , defects appear. As we expect the density to
be maximal at the center and decrease toward the edges,
the simplest symmetric defected structure possible is one
where the outer rows are missing one particle each compared to
the inner rows, i.e., structures of the form [(n−1)nnn(n−1)].
Such structures are realized for N = 5n − 2. The defect
density may be defined as the number of missing particles in
the outer rows divided by the number of particles in the inner
rows, ndef = (ninner − nouter)/ninner = 1/n = 5/(N + 2). The
minimum defect density that can be realized is, therefore,
determined by the maximal number of particles that can
be simulated. Thus, to find the ground state of the system,
we have to vary N at fixed confinement strength and
density.

Conceptually, the proposed calculation is straightforward.
The computational difficulty arises from the complexity
of the minimization problem. It is well known from the
study of related problems, e.g., the determination of the
ground state of atomic clusters or the optimal arrangement
of charges in a two-dimensional confined geometry,31,33,34

that the corresponding energy functional has a number of
metastable states that increases exponentially with the number
of particles. In such a case, classic minimization techniques
are not the optimal choice.

Hybrid techniques employing genetic algorithms have
been used in many related problems31,33,34 as a general tool
to explore the available phase space more thoroughly and
obtain better solutions with comparable computational cost
to conventional optimization techniques. One frequently finds
that counterintuitive disordered structures are favored.

For the summation of the interaction series, a quasi-one-
dimensional restriction of the Ewald method is employed,
following a similar technique to that reported in Ref. 35. The
appropriate methods of proven stability for our quasi-one-
dimensional geometry are of complexity O(N2) and this fact,
in conjunction with the significant number of minimizations
that need to be carried out (various system sizes for given
total linear density), implies the necessity of substantial
computational resources.

The total energy per particle of a particular configuration
of N electrons {rij } can be written as

E[{rij }] = E0

N

{
r0

L
ε[{rij }] +

(
L

r0

)2 ∑
ij

y2
ij

}
, (6)
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where E0 is the previously defined energy scale and distances
are now measured in units of L. The complicated expression
for the (dimensionless) interaction energy ε and the details of
its calculation are shown in Appendix. For a given number of
electrons N in a cell of length L, and a given density ν, one has
to minimize E[{rij }] with respect to the electron configuration
and thereby obtain the stable structure with energy EGS(ν; N ).

In a nutshell, the algorithm proceeds along the following
steps: An initial population of structures with random ar-
rangements of electrons within the cell is partially relaxed
toward a (local) minimum by a small number of iterations of
a conventional minimization algorithm. Every member of the
original population is then randomly split into two pieces, and
the next generation is created by merging the pieces in all
possible combinations while conserving the total number of
particles. Subsequently, all newly obtained structures are fully
relaxed to a (perhaps only local) minimum by a conventional
minimization algorithm. A number of them are then chosen as
parent structures for the next generation, always maintaining
an appropriate diversity in the available configurations, i.e.,
a wide enough distribution in energies. The structure with
the minimum energy is always retained to serve as a parent.
The entire cycle is repeated until acceptable convergence is
achieved. As expected, this hybrid approach is superior to
simple minimization: it rapidly and consistently converges
to complicated structures, avoiding being trapped in local
minima.

In the end, to find the ground-state configuration of the
system at a given density ν, the structure with the lowest
energy, EGS = minN {EGS(ν; N )}, is chosen.

IV. RESULTS

With the method described above, we are able to consider
systems composed of up to N ∼ 200 electrons in the unit cell.
We find that the lowest energy structures for a given energy are
either regular structures or structures where the linear density
of the outer-most rows, νouter, is lower than the linear density of
the inner rows, νinner.36 The finite number of particles in the unit
cell implies a lower limit to the defect density we can consider.
Here we define the defect density as ndef = 1 − νouter/νinner.
For up to six rows, the number of particles per row exceeds
30. We are, therefore, able to identify defected structures with
linear defect densities ndef down to ∼0.03.

Let us summarize our main findings before discussing them
in more detail: Up to four rows, the ground state of the system
is free of defects. In the five-row structure, defects appear as
one approaches the transition to six rows. Typical examples of
such defected structures are shown in Fig. 2. We find that the
defect density quickly increases with density and then levels
off at values of the order ndef ∼ 0.08. Note that different types
of defects appear: In the low-density regime where the defect
density rapidly increases with density, the structure possesses
inversion symmetry with respect to x axis, i.e., the centers
of the defects in the two outer rows are located at the same
x position as shown in Fig. 2(a). By contrast, the structures
with the maximal defect density ndef ∼ 0.08 display defects
that are maximally shifted with respect to each other along
the x direction as shown in Fig. 2(b). The transition to six-
row structures is shifted to a larger density as compared to

ν=4.85

ν=4.70(a)

(b)

FIG. 2. (Color online) Defected structures with five rows at
(a) ν = 4.70 and (b) 4.85. The unit cell consists of 128 and 58
electrons, respectively, with the two outer rows missing an electron.
The corresponding defect densities are n4.70

def = 1/26 ≈ 0.038 and
n4.85

def = 1/12 ≈ 0.083. Electrons in red half-filled disks indicate the
formal centers of the defects encountered.

the value given in Table I. Above the transition, the ground
state is a regular six-row structure. Only on further increasing
the density do defects appear again before the transition to
a seven-row structure. Further analyzing the spatial structure
of the ground-state configurations, we find that the presence
of defects in the outer rows also affects the particle positions
in the inner rows. While structures without defects consist
of straight rows without corrugation, structures with defects
display corrugation, i.e., distortions of the regular structure in
both the x- and y directions.

A. Defects in five- and six-row crystals

Using the full numerical minimization procedure, we find
that the five-row Wigner crystal is stable in the density
range 3.75 < ν < 4.86. Defected structures replace the regular
ground state at ν(5)

c = 4.695 and persist until the transition to
six rows. Note that, as the finite number of particles limits
the defect densities we can probe, the value ν(5)

c represents
an upper boundary for the range of stability of the regular
structure.

A regular five-row crystal is shown in Fig. 1, whereas
two defected five-row crystals are shown in Fig. 2. The
five-row crystals in Fig. 2 correspond to ν = 4.70 and ν = 4.85
and have a defect density ndef = 0.038 and ndef = 0.083,
respectively. Figure 3 shows how the defected structures
were identified. In particular, the ground-state energy at fixed
density ν = 4.85 as a function of the number of particles in
the unit cell is shown. Regular five-row structures are realized
for N = 5n with n ∈ N. For all other N , defected structures
are obtained. Let us discuss the high-density structure ν =
4.85 displayed in Fig. 3(b) first. Three equivalent minima
at N = 58, N = 116, and N = 174 can be clearly seen.
These minima correspond to configurations with defects in
the outer-most rows, i.e., the outer rows have less particles
than the inner rows, namely Ninner = 12 (24,36), and Nouter =
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FIG. 3. (Color online) EGS(N ) at fixed density for (a) ν =
4.70 and (b) ν = 4.85. The energy is measured in units of E0 =
(e4m�2/2ε2)1/3 from the lowest-energy regular structure. (a) For
ν = 4.70, four minima can be clearly seen. As the defect densities
sampled differ slightly, they are not exactly equal in energy. The
global minimum is found at N = 379, corresponding to a defect
density n4.70

def = 0.390. (b) For ν = 4.85, three degenerate minima
appear at N = 58,116,174, all corresponding to a defect density of
n4.85

def = 0.083.

11 (22,33), respectively. The corresponding defect density
is n4.85

def = 1 − 11/12 = 0.083. The low-energy structure ν =
4.70 displayed in Fig. 3(a) displays only one minimum at
N = 128 within the regime that can be explored by the
full minimization procedure. This minimum corresponds to
a defect density ñ4.70

def = 0.0385. To rule out finite size effects,
we extended our calculation to a larger number of particles
employing conventional minimization techniques, utilizing
as starting guesses the structures obtained form the full
minimization in the smaller unit cell. As Fig. 3(a) shows,
further minima appear at N = 251, N = 379, and N = 502
corresponding to approximately the same defect density. In
fact, the lowest energy structure is obtained for N = 379 where
n4.70

def = 0.0390.
For comparison, Fig. 4 shows the equivalent diagram at

a lower fixed density ν = 4.17 corresponding to the regular
ground state shown in Fig. 1. The energy of defected structures
keeps decreasing with defect density until the lowest defect
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ν=4.17
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FIG. 4. Difference in energy at fixed density ν = 4.17 as a func-
tion of the size of the unit cell. N = 5n − 1 structures [(n−1)nnnn]
form the lowest excitation branch, followed by N = 5n + 1 [n(n+1)
nnn], N = 5n − 2 [(n−1)nnn(n−1)], and N = 5n − 3 [(n−1)(n−
1)nn(n−1)]. Fitting the lowest excitation branch to a general
functional form α + β/Nγ we obtain γ ∼ 1 and an energy gap in
the thermodynamic limit 	E∞ = 2 × 10−7.

density ndef = 1 − 39/40 = 0.025 reached given our limita-
tion on the number of particles. Note that the lowest excitation
branch shown in the picture corresponds to structures missing
one particle from only one of the outer rows. Fitting that branch
to a general functional form α + β/Nγ we obtain γ ∼ 1 and
an energy gap in the thermodynamic limit 	E∞ = 2 × 10−7.
Thus, we do not expect that the regular structure becomes
unstable at even lower defect densities.

Our findings in the vicinity of the transition from five to
six rows are summarized in Fig. 5. The defect density as well
as the energy gaps to the lowest-lying regular or defected
structure are shown as a function of density. Note that due
to the substantial computational effort involved, the density
interval is not uniformly sampled. As mentioned, the defect
density quickly increases in a narrow density interval and
then levels off to an almost constant value until the transition
to six rows is reached. The six-row crystal is stable in the
density range 4.86 < ν < 6.04. It develops defects at around
ν = 5.75, which also persist until the transition to seven
rows.

To better understand the structures that appear we now
turn to a more detailed analysis of the spatial arrangement of
particles in the crystal.

B. Analysis of row corrugation

As can be seen from Fig. 2, two types of defected structures
appear. These two structures can be distinguished by analyzing
the distortion of the crystal. The distances between rows vary
as a function of density. While regular structures consist of
straight rows, structures with defects display corrugation. Let
us label the positions of particles as r(k)

j , where j denotes
the row and k denotes the position along the row. In regular
structures, we find y

(k)
j = y

(k′)
j for all j,k,k′, within the
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FIG. 5. (Color online) Energy gaps |	E| and boundaries for
the various phases encountered. The red vertical lines show the
phase boundaries as obtained by the location of the zero of the
corresponding energy difference between five-row regular and five-
row defected structures (blue circles) and then six-row regular and
five-row defected structures (red rhombi). The dashed line indicates
the location of a first-order transition between the two types of defects
encountered: in region I the centers of the defects coincide, whereas
in region II the centers of the defects are maximally separated within
the unit cell. The gray line shows the energy difference between five-
and six-row regular structures. (Its zero is the prediction for the phase
boundary under the assumption of regular rows.) Furthermore, the
black stars show the defect density ndef as a function of density ν.
Note the jump at the boundary between regions I and II.

accuracy of the calculation. For the defected structures, we
define the average displacement of each row

yj =
Nj∑
k=1

y
(k)
j /Nj , (7)

where Nj is the number of particles in row j . In Fig. 6, the
average positions of the rows are shown. Due to the symmetry
of the structure only half of them are displayed.

As expected, there are jumps at the transition to a structure
with a larger number of rows; in the intermediate region
the distance grows linearly with density. Interestingly, as
shown in the inset, a continuous transition to the structures
with defects appears to take place. The transition also marks
the onset of corrugation in the crystal structure. However,
within the density regime of defected structures, we find a
discontinuity. In the region labeled I, the distance between
rows increases rapidly, a behavior that is well fitted by a
square root. At the boundary between regions I and II, the row
position displays a jump before it increases linearly again in
region II. This suggests two different defected phases that can
be characterized by their corrugation.

A close look at the defected structure reveals that the
corrugation exists in both directions, along and perpendicular
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FIG. 6. (Color online) Average positions of the crystal rows in
units of r0 as a function of density. Note that due to symmetry, only
half of the rows are shown. The inset shows the detailed behavior
at the transition from the regular five-row to the defected five-row
structure. For regular structures, the distance between rows increases
linearly with ν. In region I, the distance between rows increases more
rapidly. At the boundary between regions I and II, there is a jump. In
region II, the distance increases again linearly with the same slope as
for the regular structures.

to the wire axis. We define the corrugation in the y direction as
the deviation from the average row position in that direction,

δy
(k)
j = y

(k)
j − yj . (8)

We can also define the average interparticle distance for a given
row j by

	xj =
Nj∑
k=1

(
x

(k+1)
j − x

(k)
j

)
/Nj = ν−1

j , (9)

where νj is the dimensionless density in that row. Note that
ν = ∑M

n=1 νj . Subsequently, we define the corrugation in the
x direction by

δ(	x)(k+1 k)
j = x

(k+1)
j − x

(k)
j − 	xj . (10)

While the corrugation is less than 1% in both directions, it
turns out to be very important in determining the ground state
of the system. Figure 7 shows examples of the two dominant
types of corrugation accompanying five-row defected struc-
tures. Note that the arrows indicate the particle located at the
center of the defect in each case. As before, the chosen density
values are ν = 4.70 and ν = 4.85, close to the boundaries
shown in Figs. 5 and 6. Figure 7(a) shows the corrugation for
ν = 4.70, i.e., a structure close to the density where defects
first appear. This kind of corrugation is typical for the narrow
density regime 4.695 < ν < 4.712, where the defect density
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FIG. 7. (Color online) Corrugation in the transverse (right panels) and longitudinal (left panels) direction for the defected structures that
appear at (a) ν = 4.70 (top panels) and (b) ν = 4.85 (bottom panels). For the definition of the corresponding quantities please see the main
text. The corrugation in the longitudinal direction (left) is measured in units of the average interparticle distance within the row, while that in
the transverse direction (right) is measured in units of the average distance between rows. The arrows indicate the particle located at the center
of the defect in each case. See also Fig. 2.

rapidly increases with ν. Figure 7(b) shows the corrugation
for ν = 4.85 with defect density ndef = 0.083. This kind of
corrugation is characteristic of the structures exhibiting the
maximum defect density ndef ∼ 0.08.

Qualitatively, the two types of structures exhibit different
features. In the first defected structure that is encountered
[see Fig. 7(a)], the defects in the exterior rows are rather
localized, and they are located at the same position along
the crystal. The displacements are maximal for the outer
rows and decrease as one moves toward the interior of the
crystal. In particular, due to the symmetry of the defect, the
inner-most row exhibits no corrugation in the y direction at
all. At a higher density, both the x and y corrugations are
approximately sinusoidal. Furthermore, the defects on the two
exterior rows are maximally separated, i.e., they are shifted
by half a period; see Fig. 7(b). For this kind of structures, the
center line possesses the maximum amplitude of y oscillations.
A possible explanation is that, while the interaction energy

(which drives the corrugation) is sensitive only to the relative
corrugation, a deformation of the inner rows entails a smaller
change in confining potential energy.

We, thus, encounter two distinct phases with defects.
Figure 8(a) shows the energy as a function of defect density
for different densities close to the boundary between the two
phases. Two minima corresponding to the different types of
defected structures can be clearly identified. The position
of one of the minima changes rapidly with density. This
minimum corresponds to the type of defect encountered in
the low-density regime. The position of the other minimum
barely shifts with density. This minimum corresponds to the
sinusoidal defects encountered in the high-density regime.
At low density, it describes a metastable state. However, its
energy with respect to the other minimum decreases with
density until, at ν(5)

I−II = 4.712, it eventually becomes the global
minimum and, therefore, the ground state. Both the defect
density (Fig. 5) and the distance between rows (Fig. 6) display
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FIG. 8. (Color online) (a) Difference 	E = Edefect − Eregular for
five-row structures as a function of defect density ndef within a
simplified calculation scheme that incorporates defects by allowing
the linear densities in the inner and outer rows to differ. Note that
there is a region before the critical ν = 4.86 of the 5 → 6 transition
where the defected structures become stable. (b) Energy of five-row
defected structures at various densities as a function of defect density
ndef using the full minimization procedure. The minima are shifted
to zero for clarity of presentation. Note that the minimum present at
small defect densities is not captured by the simplified method.

a discontinuity at the transition. The transition between the
two defected phases is, thus, of first order.

The nature of the transition from regular to defected
structures is more difficult to identify as it requires going

to very low defect densities. The fact, that with decreasing
density, the defect density becomes lower and lower, until we
reach the minimal value we can simulate, suggests, however,
that the transition might be second order. In order to approach
this transition, simplified models that allow one to simulate
a larger number of particles are required. This models, then,
may also be used in order to extend the calculation to larger
number of rows.

V. SIMPLIFIED MINIMIZATION PROCEDURES

The full minimization procedure is computationally inten-
sive, which sets practical limits on the size of the unit cell
one can simulate. That, in turn, imposes constraints on the
defect density. Therefore, simplified models that allow us to
simulate a larger number of particles are worth investigating
to gain a better understanding. We start with the simplest
model possible, compare with the results of the full simulation
described above, and then discuss possible improvements.

Up to six rows, we find that defected structures have less
particles in the outer rows. In the previous section, we pointed
out that these defected structures display corrugation. As a
first approximation, one may neglect this corrugation and
assume that all rows are straight and regular, i.e., δy

(k)
j =

δ(	x)(k+1 k)
j = 0. Defects are incorporated by allowing the

linear densities in the inner and outer rows to differ—in
particular, the two outer rows have fewer particles, nouter <

ninner. The density of defects is controlled by the parameter
λ = ninner/nouter, i.e., the density of defects is then given as
ndef = 1 − λ−1. In that case, for a fixed defect density, one has
a minimization involving 2M − 1 parameters, namely the y

position of the rows and their relative shifts in the x direction.
Assuming that defects are located in the outer rows, the calcu-
lation can be further improved by “unfreezing” the x positions
of particles in the outer rows. This is the method we will use
in the following. Given the much reduced parameter space, a
conventional minimization procedure is sufficient here.

The findings for five-row structures are shown in Fig. 8(a).
Note that the model captures correctly the appearance of
defects in the five-row structure, and it also predicts a
regular ground state for the four-row crystal. Furthermore,
the maximal defect density is reproduced: For the five-row
structure, we can see that the defect density, ndef ∼ 0.08,
leading to the minimal energy is in agreement with the full
minimization.

Analyzing the results in more detail, (expected) discrepan-
cies are found. Due to the constraints imposed, the energies of
defected structures are too high. For the five-row structures, for
example, the simplified model finds that defects appear around
ν = 4.78, whereas the full minimization reveals that defected
structures become the ground-state configuration already at a
lower density, ν = 4.695. Furthermore, the simplified model
does not capture the rise in defect density up to the maximal
value. In particular, the simplified model completely misses
the low-density regime with symmetric defects. Comparing
Figs. 8(a) and 8(b), the additional minimum at low-defect
densities present in Fig. 8(a) is clearly absent in Fig. 8(b).
Thus, the simplified method captures only the high-density
phase with sinusoidal defects. The reason is most likely that
it corresponds to a fairly smooth corrugation and, therefore,
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is still present when one imposes straight rows. By contrast,
the minimum at low defect densities is associated with fairly
sharp features in the corrugation profile and may, therefore, be
suppressed by imposing straight regular rows. In particular, it is
straightforward to verify that, for constant linear density in the
inner rows, the defects on the outer rows will be maximally
separated. In order to obtain a defected structure where the
centers of the defects coincide, a longitudinal distortion of the
inner rows is indispensable.

To summarize, the simplified model correctly reproduces
the typical defect density, although it overestimates the energy
of the defected structures which therefore are stable only
in a reduced density interval. However, the model does not
reproduce the low-density defected phase and, therefore,
cannot be used to explore the nature of the transition from
regular to defected structures. The method may be used to
study the stability of regular structures for structures with
more rows. We find that on further increasing the number of
rows, the regime of densities where the ground state contains
defects widens. Under the assumption that only the outer rows
contain defects, regular structures disappear completely once
the number of rows exceeds nine, as is evident from Table II.
As the simplified method overestimates the energy of defected
structures and misses the phase with symmetric defects, it is
likely that regular crystals cease to be the ground state for a
smaller number of rows.

As also shown in Table II, the typical defect density
increases with the number of rows and also slightly varies
with density for a given number of rows. Note that considering
structures of the type [(n− 1)n . . . n(n− 1)], the defect densities
obtained can take only the discrete values ndef = 1/n.

Eventually, one expects that more complicated structures
will appear. The simple configuration we studied is in competi-
tion with structures where defects appear away from the edges,
such as structures of the type [(n−1)(n−1)n . . . n(n−1)
(n−1)], for example. Detailed calculations within these
simplified models reveal that such structures are indeed
competitors for the ground state, but for up to 13 rows such a
minimum is not realized.

To approach the transition between regular and defected
rows, we use a different trick. An unbiased search for the global

TABLE II. Number of rows and defect density in the crystal as
a function of the dimensionless density ν. All numbers shown were
obtained using the simplified minimization procedure described in
Sec. V.

No. of Total Density range
rows density range with defects ndef

4 2.72 < ν < 3.75 N/A N/A
5 3.75 < ν < 4.86 4.77 < ν < 4.86 0.083
6 4.86 < ν < 6.04 5.75 < ν < 6.04 0.091–0.100
7 6.04 < ν < 7.31 6.76 < ν < 7.31 0.100–0.111
8 7.31 < ν < 8.64 7.80 < ν < 8.64 0.100–0.125
9 8.64 < ν < 10.01 8.87 < ν < 10.01 0.111–0.125
10 10.01 < ν < 11.37 10.01 < ν < 11.37 0.125–0.143
11 11.37 < ν < 12.77 11.37 < ν < 12.77 0.125–0.143
12 12.77 < ν < 14.19 12.77 < ν < 14.19 0.143–0.167
13 14.19 < ν < 15.67 14.19 < ν < 15.67 0.143–0.167

minimum is numerically costly because a simple minimization
may get stuck in a metastable minimum. However, if the initial
guess of the electron configuration is sufficiently close to the
global minimum, a simple minimization will converge. Having
identified the structure of defects in region I, one may feed such
structures into a simple minimization at lower densities. The
results of such a procedure have been included in Figs. 5 and 6.
There, structures with defect densities down to ndef ∼ 0.03
were obtained with the full minimization, whereas structures
close to the phase boundary with lower defect structures were
obtained with the method described here. The results suggest
that the defect density indeed vanishes at the transition which
points to a second-order phase transition.

VI. CONCLUSION

We study quasi-one-dimensional systems of classical par-
ticles interacting via long-range Coulomb interactions and
confined by a parabolic potential in the transverse direction.
The ground-state configurations are multirow Wigner crystals
where the number of rows is controlled by the density (or the
strength of the confining potential). We find that defects that
accommodate the density variation in the transverse direction
appear once the number of rows exceeds 4.

Defected ground states have less particles in the outer than
in the inner rows. The full numerical minimization for five
rows reveals that two distinct types of defected phases exist.
On increasing density, the regular structure at low-densities is
replaced by a structure with symmetric defects, i.e., where the
center of the defect on the two outer rows is located at the same
x position. As the number of particles that can be simulated
sets a lower limit on the defect density that can obtained,
the full minimization allows one only to provide an upper
limit for the density at the transition from regular to defected
structures. We extend our calculations to lower densities by
using structures with the type of defect described above as the
input for a simple minimization. The results indicate that the
defect density vanishes at ν(5)

c = 4.695 and that the transition is
of second order. To obtain symmetric defects, the longitudinal
distortion of the inner rows, namely an increased density at the
center of the defect, is crucial. Any analytical description of
the transition would have to take into account this distortion.

On further increasing density, the defect density in the
ground state rapidly increases. At a critical density, ν

(5)
I−II =

4.712, structures with a different type of defect corresponding
to a sinusoidal distortion of the rows with a phase shift of half a
period between the two outer rows become become the ground
state. This second regime is characterized by a defect density
that barely varies with density and extends up to the transition
to six rows. The transition between the two defected phases
with different symmetries is first order.

Simplified models neglecting the corrugation of the rows
only capture this second defected phase. Thus, these models
do not allow one to further investigate the nature of the phase
transition from regular to defected structures. However, as this
second phase occupies most of the density interval, they may
be used to study the stability of regular structures on increasing
the number of rows. We find that beyond nine rows, no stable
regular structures exist, i.e., states with sinusoidal defects are
lower in energy over the entire density range. Taking into
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account that the simplified model overestimates the energy of
defected structures, we expect that stable regular ground states
may disappear even earlier.
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APPENDIX: EWALD SUMMATION METHOD FOR A
QUASI-ONE-DIMENSIONAL GEOMETRY

The method we use essentially follows the steps outlined in
Ref. 35. It is based on the Poisson summation formula relating
summations over direct and reciprocal space,

+∞∑
n=−∞

f (nL) = 1

L

+∞∑
m=−∞

F

(
2πm

L

)
, (A1)

where the Fourier transform of f (x) is defined as

F (k) =
∫ +∞

−∞
dx eikxf (x). (A2)

Let us consider the function f (x) = e−(ρ+x)2t . By completing
the square and carrying out the Fourier transform integration,
we obtain the fundamental equation

+∞∑
n=−∞

e−(ρ+nL)2t =
√

π

L
t−1/2

∑
G

eiGρe− G2

4t , (A3)

where the reciprocal lattice vectors are given by G = 2πm/L

with m = 0, ± 1, . . .. The following definition of the incom-
plete � function is extensively used and therefore given here
for reference:

�(μ,ux2)

x2μ
=

∫ +∞

u

dt tμ−1e−x2t . (A4)

The system we are considering contains a basic cell of length
L with N electrons. The spatial extent in the y direction is
limited by the confining potential. In the x direction, we impose
periodic replications of the basic cell to avoid edge effects. The
interaction energy per cell of the system can be written

ε̃[{rij }] = 1

2

∑
i �=j

∑
n

qiqj

|rij + nLx̂|

+ 1

2

∑
j

q2
j

∑
n�=0

1

|nLx̂| , (A5)

where qi is the charge of particle i, rij = ri − rj , and the index
n runs over replicas of the unit cell. The artificial separation
of the terms is for our convenience. We then introduce the
notation

�(r) =
∑

n

1

|r + nLx̂| (A6)

for |r| �= 0 and �0 = ∑
n�=0 1/|nLx̂|.

In what follows we will split the summations in direct
and reciprocal space. To cancel the divergencies appearing

in the above sums, we will assume a uniform neutralizing
background charge.

Using Eq. (A4), we obtain the following representation,

�(r) = 1√
π

∑
n

∫ +∞

0
dt t−1/2e−|r+nLx̂|2t . (A7)

Here we will introduce an artificial separation constant α which
will control the splitting of the summation between direct and
reciprocal space. We then have �(r) = �>(r) + �<(r), where

�>(r) = 1√
π

∑
n

∫ +∞

α2
dt t−1/2e−|r+nLx̂|2t

=
∑

n

erfc(α|r + nLx̂|)
|r + nLx̂| (A8)

and

�<(r) = 1√
π

∑
n

∫ α2

0
dt t−1/2e−(x+nL)2t e−y2t . (A9)

To evaluate �<(r), we use Eq. (A3), yielding

�<(r) = 1

L

∑
G

eiGx

∫ α2

0
dt t−1e− G2

4t e−y2t . (A10)

While for G �= 0 the integration yields incomplete Bessel
functions,37∫ α2

0
dt t−1e− G2

4t e−y2t = K0

(
G2

4α2
,α2y2

)
, (A11)

the G = 0 term (denoted I0 in the following) is divergent and
has to be treated separately. Using the substitution z = α2/t

and expanding the second exponential, one finds

I0 = 1

L
lim
G→0

∫ +∞

1
dz z−1e

− G2

4α2 z

+∞∑
m=0

(−1)m

m!
(αy)2mz−m.

The divergent contribution comes from m = 0, namely

lim
G→0

∫ +∞

1
dz z−1e

− G2

4α2 z = −γ + ln 4α2 − lim
G→0

ln G2.

The rest of the sum can be evaluated to
+∞∑
m=1

∫ +∞

1
dz z−1 (−1)m

m!
(αy)2mz−m

=
+∞∑
m=1

(−1)m

mm!
(αy)2m = −γ − ln(α2y2) − �(0,α2y2).

(A12)

Thus,

I0 = − 1

L

{
2γ + lim

G→0
ln G2 + ln(y2/4) + �(0,α2y2)

}
and

�<(r) = 1

L

∑
G �=0

eiGxK0

(
G2

4α2
,α2y2

)
+ I0. (A13)

Splitting up �0 in the same way, we find

�>
0 (r) =

∑
n�=0

erfc(α|n|L)

|n|L (A14)
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and

�<
0 (r) = 1

L

∑
G

∫ α2

0
dt t−1e− G2

4t − 1√
π

∫ α2

0
dt t−1/2

= 1

L

∑
G �=0

�

(
0,

G2

4α2

)
− 1

L

{
γ − ln 4α2 + lim

G→0
ln G2

} − 2α√
π

. (A15)

At this stage we put everything together, ε̃[{rij }] =
1
2

∑
i �=j qiqj�(rij ) + 1

2q2
j �0, and combining various terms we

obtain the result for the interaction energy per cell of the
system,

ε̃[{rij }] = 1

2

∑
i,j

qiqj

{∑
n

′ erfc(α|rij + nLx̂|)
|rij + nLx̂|

+ 1

L

∑
G �=0

eiGxij K0

(
G2

4α2
,α2y2

ij

)}

− 1

2L

∑
i �=j

qiqj

[
γ + ln α2y2

ij + �
(
0,α2y2

ij

)]
− α√

π

∑
j

q2
j − 1

2L

( ∑
j

qj

)2

× [
γ − ln 4α2 + lim

G→0
ln G2], (A16)

where the notation �′
n implies that for n = 0 there is no

self-interaction term in the summation. For a charge neutral
system, the last term vanishes. For a system of electrons, as
the one under consideration, a uniform positive neutralizing
background will exactly cancel the divergent term limG→0

ln G2.
We define a dimensionless separation constant through α =

α̃/L and introduce dimensionless coordinates. Subsequently,
the dimensionless interaction energy per electron in the
simulation box can be cast as follows

ε[{rij }] = 1

2

∑
i,j

f [{rij }] − Nα̃√
π

− N2

[
γ − ln

(
2α̃

L

)]
,

(A17)

with

f [{rij }] =
∑

n

′ erfc
(̃
α
√

(xij + n)2 + y2
ij

)√
(xij + n)2 + y2

ij

+ 2
+∞∑
q=1

cos(2πqxij )K0

(
π2q2

α̃2
,̃α2y2

ij

)
− ln α̃2y2

ij − �
(
0,̃α2y2

ij

)
. (A18)
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