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First-principles study of elastic properties of Cr- and Fe-rich Fe-Cr alloys
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Elastic properties of substitutionally disordered Cr- and Fe-rich Fe-Cr alloys are derived from first-principles
calculations using the exact muffin-tin orbitals method and the coherent potential approximation. A peculiarity in
the concentration dependence of elastic constants in Fe-rich alloys is demonstrated and related to a change in the
Fermi surface topology. Our calculations predict high values for the elastic constants of Cr-rich Fe-Cr alloys, but
at the same time show that these alloys could be rather brittle according to the Pugh criterion (the ratio between
shear and bulk moduli is calculated to be greater than 0.5).
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I. INTRODUCTION

Fe-Cr alloys are the base for a wide range of materials, from
steels to superalloys. The Fe-rich Fe-Cr alloys are of primary
interest for the stainless-steel industry, whereas the Cr-rich
alloys are of importance for high-temperature applications.
The most attention has recently been drawn to the problems
of stainless steels because of their potential applications as
construction materials for nuclear fission and fusion reactors.1

Alloys from the middle of the Fe-Cr binary system undergo
a decomposition onto the mixture of Cr- and Fe-rich alloy
fractions at temperatures below about 800 K.2 Therefore,
detailed knowledge about the properties of these two terminal
compositional regions of the Fe-Cr system is of primary
practical importance.

At first sight, the elastic properties of this system seem
to be quite well established from both experimental3–12 and
theoretical13–18 points of view. However, there are many
complicated features of this system on both Fe- and Cr-
rich sides. In pure chromium and chromium-rich alloys,
the spin-density-wave (SDW) antiferromagnetic ordering19

affects many physical properties, including elastic properties,
and their investigation thus requires the use of elaborate
theoretical tools. In the Fe-rich Fe-Cr alloys, a peculiarity
has been noted3,20 in the concentration dependence of the bulk
modulus at around 6 at.% Cr, which is probably related to
the Fermi surface topology change that occurs near the same
composition.21 Whether or not the change of Fermi surface
topology has an effect on the elastic properties of the Fe-rich
Fe-Cr alloys is the main question that will be addressed in this
paper. Also, the results of our first-principles investigation of
the elastic properties of Cr-rich Fe-Cr random alloys will be
presented.

II. METHODOLOGY

A. Electronic structure calculations

The present electronic structure calculations of Fe-Cr alloys
are based on density functional theory22 (DFT) and have been
performed by means of the exact muffin-tin orbitals (EMTO)
method.23–25 Substitutional disorder in the body-centered-
cubic (bcc) Fe-Cr alloys is treated within the coherent potential
approximation (CPA).26 In this case, additional contributions
to the one-electron potentials of alloy components and the

total energy should be taken into consideration in the single-
site DFT formalism.27 The screening contributions to the
on-site electrostatic potential V i

scr and electrostatic energy Escr

are determined as27

V scr
i = −α

e2qi

S
and Escr = β

2

∑
i

ciqiV
scr
i . (1)

Here, e is the electron charge and S is the Wigner-Seitz (atomic
sphere) radius. The qi and ci are, respectively, the average net
charge (inside the atomic sphere) and the concentration for
the ith alloy component. The screening parameters α and β

were evaluated from supercell calculations using the locally
self-consistent Green’s function (LSGF) technique28 in the
work by Korzhavyi et al.21 The values of β were found to
vary linearly from β = 1.00 to 1.14, and those of α parameter
to vary nonlinearly from α = 0.658 to 0.830, as the alloy
concentration changes from 0 to 100 at.% Cr. The CPA was
also employed in this study for modeling the paramagnetic
state of the Fe-Cr alloys within the disordered local-moment
(DLM) approach.29–31

The total energies were calculated using the generalized
gradient approximation32,33 (GGA) within the full charge
density (FCD) formalism.34,35 All the self-consistent EMTO-
CPA calculations were performed using an orbital momentum
cutoff of lmax = 3 for partial waves. The integration over the
Brillouin zone was performed using a 37 × 37 × 37 grid of
special k-points determined according to the Monkhorst-Pack
scheme.36 For the calculations of electron density in the
vicinity of the Fermi surface transition, a finer 47 × 47 × 47
k-point grid was used. The core states were recalculated at
each self-consistency iteration.

In addition to the EMTO-FCD calculations described
above, we have performed the full potential projector aug-
mented wave37,38 (PAW) calculations of disordered Fe-rich
alloys containing 6.25 and 12.5 at.% Cr, which were modeled
using 256- and 128-atom supercells, respectively. The Vienna
ab initio simulation package39–41 (VASP) has been used for this
purpose. The VASP-PAW calculations have been performed in
the GGA.42 The energy cutoff was 350 eV. The convergence
criterion for the total energy was chosen to be 10−6 eV in
the lattice parameter calculations and 10−8 eV in the elastic
constants calculations. In order to keep the symmetry of the
lattice, which is preserved on average in real macroscopic
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alloys, the shape of the unit cells was kept fixed while all the
atomic positions inside the supercell were relaxed until the
forces acting on atoms were less than 10−2 eV/Å.

Both supercells were built up using a two-atom cubic
unit cell of the bcc structure, translated 4 × 4 × 4 times to
form the 128-atom supercell and 4 × 4 × 8 times to form the
256-atom supercell. Accordingly, we have used the 4 × 4 × 4
Monkhorst-Pack k-point mesh in the case of the 128-atom
supercell and the 4 × 4 × 2 k-point mesh in the case of the
256-atom supercell. Convergence with respect to k points was
checked by comparing the results for the equilibrium lattice
constant and elastic moduli of the 128-atom supercell obtained
using 2 × 2 × 2 and 4 × 4 × 4k-point meshes.

B. Elastic property calculations

A uniform lattice distortion in the elastic property calcu-
lations was imposed on the lattice by transforming the set of
primitive vectors ai to a set of new vectors a′

i using a strain
tensor ε: ⎛

⎝ a′
1

a′
2

a′
3

⎞
⎠ = (I + ε) ·

⎛
⎝ a1

a2

a3

⎞
⎠ , (2)

where I is the 3 × 3 identity matrix. There are 21 independent
elastic constants Cij , but symmetry of the cubic lattice reduces
this number to only 3 independent constants (C11, C12, and C44)
for cubic lattices. A uniform isotropic straining (compression
or expansion) of the lattice gives one the access to the bulk
modulus B, which is a linear combination of two elastic
constants

B = (C11 + 2C12)/3. (3)

The bulk modulus for each alloy was evaluated using the
calculated total energies as a function of Wigner-Seitz radius in
the interval between 2.58 and 2.70 Bohr. The energy minimum
was located using a fit to the Murnaghan equation of state43,44

E(V ) = E(V0) + B0V

B ′
0

(
(V0/V )B

′
0

B ′
0 − 1

+ 1

)
− B0V0

B ′
0 − 1

, (4)

where V is the volume, B0 and B ′
0 are the bulk modulus and

its pressure derivative, respectively, at the equilibrium volume
V0.

In order to find all three cubic elastic constants, two more
types of lattice strain should be considered. Following the
procedure proposed by Mehl et al.,45 we considered a volume-
conserving orthorhombic strain

ε =
⎛
⎝x 0 0

0 −x 0
0 0 x2

1−x2

⎞
⎠ (5)

for which the total energy is an even function of distortion x:

�E(x) = �E(−x) = V (C11 − C12)x2 + O[x4]. (6)

The C44 elastic constant was calculated using a monoclinic
volume-conserving strain

ε =
⎛
⎝ 0 x

2 0
x
2 0 0
0 0 x2

4−x2

⎞
⎠ (7)

for which the total energy dependence has the form

�E(x) = �E(−x) = 1
2V C44x

2 + O[x4]. (8)

The value of distortion x was varied from zero (for the
equilibrium state) to ±0.05, in accordance with Mehl’s
prescription.46 For each type of volume-conserving distortion,
the calculated total energies were fitted by a parabola using x2

as the variable. The values of elastic constants were obtained
from the derivatives of �E with respect to x2.

Once the single-crystal elastic constants are known, related
properties of polycrystalline alloys may also be evaluated. A
complication here is that, because of the elastic anisotropy,
the Young modulus E and the shear modulus G of a cubic
single crystal may depend on direction. The shear modulus
anisotropy is usually expressed as the ratio between two elastic
constants C44 and C ′ = (C11 − C12)/2:

AG = 2C44

C11 − C12
. (9)

There is no exact expression for the polycrystal-averaged shear
modulus in terms of the Cij , but one can evaluate approximate
averages of the lower and upper bounds given by various
theories.

The upper bound due to Voight47 is calculated as

GV = C11 − C12 + 3C44

5
, (10)

and the lower bound due to Reuss48 reads as

GR = 5(C11 − C12)C44

4C44 + 3(C11 − C12)
. (11)

According to Hill,49 the arithmetic average of the Voight and
Reuss values can be used as an estimate of the average shear
modulus

G = GV + GR

2
. (12)

Hashin and Shtrikman50 have found that tighter bounds for G

exist in the case of cubic crystals, namely,

G1 = G∗
1 + 3

/ (
5

G∗
2 − G∗

1

− 4β1

)
(13)

and

G2 = G∗
2 + 2

/ (
5

G∗
1 − G∗

2

− 6β2

)
. (14)

Here,

β1 = − 3(B + 2G∗
1)

5G∗
1(3B + 4G∗

1)
, (15)

β2 = − 3(B + 2G∗
2)

5G∗
2(3B + 4G∗

2)
, (16)

G∗
1 = C11 − C12

2
, G∗

2 = C44, (17)

and B is given by Eq. (3). The terms Hashin modulus
(GH ) and Shtrikman modulus (GS) are used, respectively, to
denote the larger and the smaller of G1 and G2. By analogy
with Eq. (12), we also made another estimate, the so-called
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FIG. 1. (Color online) Lattice parameters of random bcc Fe-Cr
alloys: Filled circles are the present EMTO-CPA results, an open
square is the result of paramagnetic VASP-PAW calculations made
in Ref. 56, a filled square is the low-temperature (LT) experimental
lattice parameter used in the elastic constant calculations of Ref. 56
(the elastic constants are presented in Table I), and filled triangles are
the experimental data from Ref. 8.

Hashin-Shtrikman average of the polycrystalline-averaged
shear modulus, as

G = GS + GH

2
. (18)

Using either estimate of G,51 one may evaluate the polycrystal-
averaged Young’s modulus

E = (9BG)/(3B + G)

and Poisson’s ratio

ν = (3B − E)/(6B).

III. RESULTS AND DISCUSSION

A. Elastic properties of Cr-rich alloys

Pure chromium and Cr-rich Fe-Cr alloys (with the iron
content below 20 at.%) form different types of spin density
wave (SDW) structures below the Néel temperature TN , which
has a maximum for pure Cr at 310 K. The magnetic phase
transition has pronounced effects upon the elastic and other
properties of Cr and its alloys.4–7 However, this study is mostly
concerned with the elastic properties in the paramagnetic
state, which is modeled here using the DLM approach. Let
us note that, according to the EMTO-CPA calculations in the
paramagnetic DLM state, sizable magnetic moments remain
on the Fe atoms, but disappear on the Cr atoms. As a result,
DLM calculations for pure Cr in the paramagnetic state reduce
to a nonmagnetic solution.52,53

For each alloy, we have calculated the elastic properties
at the zero-Kelvin theoretical (GGA) equilibrium lattice
parameter, as well as at the room-temperature experimental

TABLE I. Theoretical and experimental single-crystal elastic
constants Cij (GPa), anisotropy constant AG (dimensionless), and
bulk modulus B (GPa) for pure Cr. The theoretical values have been
obtained using nonmagnetic calculations employed to describe the
paramagnetic state of pure Cr. The present EMTO calculations have
been performed at the calculated theoretical lattice parameter, as well
as at two experimental (Refs. 8 and 9) values of the lattice parameter
corresponding to room temperature and 500 K. The paramagnetic
VASP-PAW calculations Ref. 56 were done at a low-temperature
lattice parameter value of 2.8792 Å (see text). The room-temperature
experimental elastic constants reported in Ref. 7 were obtained by
extrapolation of the elastic constants measured at high temperatures
in order to exclude the contribution due to antiferromagnetic ordering.
A similar extrapolation procedure was was carried out by Lenkkeri
(Ref. 4) for the bulk modulus, and its result is shown in the last row (in
parentheses), next to the directly measured room-temperature value.

Condition C11 C12 C44 C ′ AG B

Calculated at acalc = 2.8492 Åa 484 140 105 172 0.61 255
Calculated at a298

exp = 2.8844 Åa 444 93 108 176 0.61 210
Calculated at a500

exp = 2.8935 Åa 431 83 89 174 0.51 199
Calculated at aLT = 2.8792 Åb 446 117 101 165 0.62 226
Measured at T = 77 Kc 391 90 103 151 0.68 190
Measured at T = 298 Kc 350 69 101 141 0.71 162
Measured at T = 500 Kc 346 76 99 135 0.73 166
Measured at T = 150 Kd 375 85 101 145 0.69 182
Extrapolated to T = 298 Kd 388 103 101 143 0.70 198
Measured at T = 500 Kd 373 103 98 135 0.73 193
Measured at T = 295 Ke 166(201)

aEMTO calculations (this paper).
bVASP-PAW calculations (Ref. 56).
cExperiment, ultrasonic resonance technique (Ref. 6).
dExperiment, ultrasonic phase comparison method (Ref. 7).
eExperiment, ultrasonic pulse-echo overlap method (Ref. 4).

lattice parameter.8,52,53 The experimental and theoretical lattice
parameters used in the calculations are shown in Fig. 1.
Although the lattice parameters calculated for the DLM
state are lower than the experimental ones, the slope of
concentration dependence is reproduced correctly by the
EMTO-CPA calculations. In order to compare with the elastic
constants that have been measured directly at 500 K,7 we
also calculate the elastic properties of Cr at the experimental
lattice constant a500

exp = 2.8935 Å corresponding to that
temperature.8,9

Let us note that the elastic moduli of pure Cr have been
experimentally found to exhibit a pronounced nonmonotonic
variation (a 30% drop in bulk modulus, for example) in a
range of temperatures (±100 K) around the Néel temperature.5

Such an extreme temperature dependence is a consequence of
both the gradual and abrupt changes in the magnetic state
of Cr, which can not be fully described using the theoretical
techniques available to us. This circumstance should be kept
in mind when making comparison between theoretical and
experimental results for pure Cr or Cr-rich alloys.

Table I shows theoretically derived elastic properties of Cr
in the paramagnetic state, calculated using several ab initio
methods and at different lattice parameters, together with
the experimental data from several sources.4,6,7 In spite of
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the difficulty mentioned above, one can see that agreement
between theoretical and experimental data is fair for most of
the elastic properties, except the elastic constants C ′ and C11,
the theoretical values of which seem to be a bit higher than the
measured or extrapolated experimental values corresponding
to the paramagnetic state. Although we do not exactly know
the cause of this discrepancy, most probably it indicates that
our theoretical treatment of the paramagnetic state of Cr is too
simple.

Let us note that even experimental results are quite
scattered. In particular, the data by Bolef and de Klerk6 show
the largest deviation from our theoretical results, as well as
from the rest of experimental data. As discussed by Katahara
et al.,7 the deviation could be related to the preparation
details of the specimens. Another source of confusion has
been the experimental room-temperature value of the lattice
parameter of chromium reported by Straumanis and Weng to
be 2.87918 kX units,54 but quoted and used by Bolef and
de Klerk6 as if it were expressed in angstrom units, without
actually applying the conversion factor 1.00202 Å/kX.55 The
same numerical value of experimental lattice parameter was
then erroneously used in the elastic constant calculations of
Ref. 56. Nevertheless, since that value of the lattice parameter
is rather close to the true experimental value for pure Cr at
very low temperatures, one can interpret the results of Ref. 56
as corresponding to low-temperature paramagnetic chromium.
Hereafter (e.g., in Table I), this value of lattice parameter is
referred to as aLT.

We have investigated the elastic properties of Cr-rich Fe-Cr
alloys, using the EMTO-CPA calculations described above,
at the 0-K calculated lattice parameter acalc as well as at the
room-temperature experimental8 lattice parameter a298

exp (see
Table I for numerical values for pure Cr). The dependence of
the elastic properties on the lattice parameter is calculated to be
rather weak. Therefore, the results obtained at the theoretical
0-K lattice parameter acalc are shown in Fig. 2 (empty symbols
connected by dashed lines) only for the bulk and the shear
moduli, as well as for Poisson’s ratio, the values of which are
found to be most sensitive to the lattice parameter. The rest of
the theoretical data shown in Fig. 2 (filled symbols connected
by solid lines) have been calculated at the experimental lattice
parameter a298

exp .
In Fig. 2(a), the calculated elastic (bulk, Young’s, and shear)

moduli of paramagnetic Cr-rich Fe-Cr alloys are compared
with the room-temperature experimental values from Refs. 4
and 5. Let us note that directly measured experimental data are
plotted for the alloys, whereas the experimental data shown
for pure chromium have been obtained by extrapolation from
high temperatures to room temperature, as discussed above
and described in Refs. 4 and 7. This is so because the addition
of Fe to Cr very efficiently suppresses the critical temperature
of magnetic ordering, so the alloys are in the paramagnetic
state already at room temperature.

As one can see from Fig. 2(a), the concentration dependence
of the bulk modulus is almost linear. The Young’s and the shear
moduli also exhibit linear dependencies on concentration,
deflecting slightly from a straight line only very close to pure
Cr. The bulk modulus is very sensitive to the lattice expansion:
it changes by about 45 GPa between the 0-K calculated and the
room-temperature experimental lattice parameters, whereas

FIG. 2. (Color online) Calculated and experimental elastic prop-
erties of Cr-rich Fe-Cr alloys: (a) bulk modulus B, Young’s modulus
E, and shear modulus G (GPa); (b) Poisson’s rato ν, anisotropy
constant AG, and G/B ratio (dimensionless); (c) calculated single-
crystal elastic constants C44 and C ′ (GPa). The elastic properties
have been calculated, using the DLM model of paramagnetic state of
the alloys, at the room-temperature experimental lattice parameters
(Ref. 8) (filled symbols connected by solid lines) and, for the
properties sensitive to volume, also at the theoretical equilibrium
lattice parameter acalc (empty symbols connected by dashed lines).
Experimental data from Refs. 4 and 6 for paramagnetic Cr and Fe-Cr
alloys are shown for comparison (black symbols).

the E and G remain practically the same in this interval of
lattice parameters. The best agreement with experimental data
for the bulk modulus is obtained when it is calculated at the
lattice parameter of the experiment.

Figure 2(b) shows Poisson’s ratio ν, anisotropy constant
AG, and G/B ratio as a function of composition for Cr-rich
Fe-Cr alloys. A difference of about 0.05 is obtained between
the values of Poisson’s ratio calculated at the 0-K theoretical
and the room-temperature experimental lattice parameters.
Figure 2(c) shows the calculated shear elastic constants C44

and C ′ as functions of concentration. The two concentration
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dependencies are linear but have different slopes, so that
they cross at a concentration of about 30 at.% Fe. At the
same alloy composition, the anisotropy constant AG becomes
equal to one, indicating that elastic properties of the alloy
are isotropic. The anisotropy constant in the Cr-rich alloys
changes nonlinearly close to pure Cr and exhibits a minimum
at 5 at.% Fe. A strong concentration dependence of elastic
anisotropy, as well a difference in elastic properties between
the matrix and the precipitate phases (formed, for instance,
as a result of spinodal decomposition), may cause changes in
strain contrast from the precipitates, which may be utilized
in transmission electron microscopy studies for identifica-
tion and discrimination of Cr-rich areas having different
Fe content.

In order to evaluate the expected brittleness or ductility of
Fe-Cr alloys, we have also calculated the ratio of shear modulus
to bulk modulus G/B, as proposed by Pugh.57 For ductile
materials, this ratio is typically smaller than 0.5; materials
having higher values of the ratio tend to exhibit brittle behavior.
The calculated G/B ratio for Fe-Cr alloys is found to vary from
0.61 for pure Cr to 0.59 for Cr70Fe30. Thus, according to this
criterion, Fe-Cr alloys are expected to exhibit brittle behavior
in the investigated compositional range of Cr-rich Fe-Cr alloys
(0–30 at.% Fe).

B. Elastic properties of Fe-rich alloys

In contrast to the Cr-rich Fe-Cr alloys, the Fe-rich alloys
(0–20 at.% Cr) are in the ferromagnetic state at temperatures
below 800–1000 K. Therefore, thermal magnetic excitations
do not make a significant contribution to the elastic properties
of the alloys at room temperature. Thus, in this case, our
calculations have been carried out for the ferromagnetic state
and at two different sets of lattice parameters: (i) room-
temperature experimental lattice parameters from Refs. 8
and 9, and (ii) theoretical equilibrium lattice parameters as
obtained from the present EMTO-CPA calculations. The main
reason for presenting here these two sets of results is to
illustrate the sensitivity of some elastic moduli (bulk modulus,
for example) to lattice parameter. In addition, as will be
discussed below, there exists an unresolved issue about the
difference between theoretical and experimental concentration
dependencies of the lattice parameter in Fe-rich Fe-Cr alloys.

The calculated and experimental lattice parameters are
shown in Fig. 3. First, the upper panel of the figure shows
that the room-temperature experimental lattice parameters are
noticeably higher than the theoretical ones calculated at zero
Kelvin. Let us note that this difference is mainly due to the
errors in the description of the exchange correlation part of
the GGA total energy functional rather than due to thermal
expansion. Indeed, a zero-temperature limit (zero-point vibra-
tions removed) of the experimental lattice parameter for pure
Fe is 2.853 Å,58 while the corresponding theoretical values are
noticeably smaller: 2.837 Å (EMTO), 2.833 Å [full-potential
linearized augmented plane-wave plus local-orbitals method
(Ref. 58)], and 2.832 Å [VASP-PAW (this paper)].

Second, one can see from the lower panel of Fig. 3 (where
the difference between the lattice spacing in the alloy and that
in pure Fe is plotted) that the zero-temperature theoretical and
the room-temperature experimental lattice parameters exhibit

FIG. 3. (Color online) Lattice parameter of disordered bcc Fe-Cr
alloys (upper panel) and that relative to the lattice parameter of pure
Fe (lower panel). The EMTO-CPA and VASP-PAW results are shown
by filled circles and squares, respectively. Empty circles denote the
theoretical EMTO-CPA results of Ref. 13. The experimental data
from Refs. 10 and 8 are given by filled diamonds and triangles,
respectively.

substantially different concentration dependencies. In partic-
ular, the theory (0 K) predicts the existence of a pronounced
maximum at about 7 at.% Cr. The maximum has also been ob-
tained in previous theoretical investigations.13,20,21 Although
this and the previous calculations have been performed using
the CPA, their results are in very good agreement with the
present VASP-PAW calculations using supercells in which the
local-relaxation and the local-environment effects (that are
neglected in the CPA) have been taken into consideration.
The origin of the lattice parameter anomaly obtained in all
the calculations (but absent in the experimental data) is still
unclear and deserves a separate investigation.

In order to demonstrate the volume dependence of the
elastic properties, we show in Fig. 4 the concentration
dependencies of the bulk modulus B and elastic constants
C44 and C ′, calculated at the experimental and theoretical
equilibrium lattice parameters that are shown in Fig. 3. One
can clearly see the difference between two sets of results for
the bulk modulus, while the effect of lattice spacing on the C44

and C ′ elastic constants is rather modest. It is also clear that
the use of experimental lattice parameter in the calculations
provides good agreement between theory and experiment for
the bulk modulus.
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FIG. 4. (Color online) (a) Bulk modulus B, and shear elastic
constants (b) C44 and (c) C ′ calculated using EMTO-CPA and VASP-
PAW methods at experimental and theoretical lattice parameters.
Experimental data are from Refs. 3 and 11. The results are also
compared with previous EMTO-CPA calculations of Ref. 13. The
legend applies to all panels.

Another important point is to compare the results of
the present and previous EMTO-CPA calculations of elastic
properties with the results of VASP-PAW calculations of elastic
properties for pure Fe as well as for Fe-Cr alloys. We note,
in passing, that substitutionally disordered alloys are treated
completely differently by these two methods. If the EMTO-
CPA is a single-site mean-field theory of electronic structure
of random alloys, where the so-called local-environment

effects are neglected, the VASP-PAW calculations employ large
supercells in order to model the distribution of atoms in random
alloys. The supercell approach is supposed to be more accurate,
provided that the results have been converged with respect
to supercell size and other parameters of the method such
as the number of k points. Since such calculations are too
cumbersome, we can only conclude that there is reasonable
qualitative agreement between the two approaches.

Quantitatively, the results obtained using the two methods
differ as much as by 20% for C44. The best agreement between
the two methods is obtained for the bulk modulus, which is
quite expectable, since the EMTO is supposed to be very
accurate in the case of a homogeneous lattice distortion. In
Fig. 5, we show the calculated and experimentally measured
values of Young’s modulus E, shear modulus G, anisotropy
constant AG, and G/B ratio. It is clear that the VASP-PAW
results are in much better agreement with experimental data
than the EMTO-CPA results. The averaged absolute difference
between the elastic constants calculated using VASP-PAW and
EMTO-CPA is 8 GPa for pure Fe or for the Fe 6.25 at.% Cr
alloy, and 9 GPa for the alloy with 12.5 at.% Cr. Apparently,
more tests should be done, but this goes beyond the scope of
this paper.

Let us now turn to concentration dependencies of the elastic
properties. As Fig. 4 clearly shows, the calculated concentra-
tion dependence of the bulk modulus and that of the C44 elastic
constant exhibit peculiarities in a narrow concentration range
between 8 and 12 at.% Cr. The experimental data by Speich
et al.3 seem to indicate a similar behavior of the bulk modulus
to the one calculated in this paper, although the amount of
experimental information is insufficient for a detailed descrip-
tion of the concentration dependence in the region of interest.
The peculiarity in the calculated properties may be ascribed to
the so-called electronic topological transition (ETT), caused
by the changes of the Fermi surface topology near this
concentration, as reported in Ref. 21. According to the theory
of ETT,59–64 higher-order derivatives of the thermodynamic
potential, such as the elastic properties (second derivatives),
may exhibit anomalies (kinks) near the concentrations where
the topology of the Fermi surface of alloys undergoes an
abrupt change. The ETT reported for several systems was
reviewed in Ref. 63. For instance, Abrikosov et al.61 and
Korzhavyi et al.64 predicted such anomalies in the bulk
modulus and in the Grüneisen constant of Li-Mg and Al-Li
alloys near the ETT concentrations; Hacinskaya et al.63 found
a prominent peak in the computed bulk modulus as well as in
the thermal expansion coefficient of Ni-W alloys at the ETT
concentration.

In Figs. 4 and 5, we also show (open symbols connected by
dashed lines) the elastic properties of Fe-Cr alloys calculated
recently by Zhang et al.13 By using a similar EMTO-CPA tech-
nique, they found a shallow local minimum in the bulk modulus
at about 5 at.% Cr. As discussed in this paper, this minimum
may be traced back to the excess lattice expansion (caused
by the maximum in the calculated concentration dependence
of the lattice parameter) at these alloy concentrations. The
results reported by Zhang et al. are in close agreement with
ours. However, Zhang et al. did not find the peculiarities in
the elastic properties close near 10 at.% Cr. This is, most
probably, due to the large step of the concentration grid used
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FIG. 5. (Color online) Young’s modulus E, shear modulus G,
anisotropy constant AG, and G/B ratio calculated for the experi-
mental and theoretical lattice parameters by the EMTO-CPA and
VASP-PAW methods. Experimental data are from Ref. 3. The results
are also compared with previous EMTO-CPA calculations of Ref. 13.
The legend applies to all panels.

in their study. Also, for the kind of anomalies dealt with in
the present study, the density of k-point mesh is a crucial
parameter.
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FIG. 6. (Color online) Bulk modulus B, elastic constants C44

and C ′ calculated in the FM state for the experimental lattice
parameters by the EMTO-CPA and VASP-PAW methods for the whole
compositional range. Experimental data are from Refs. 3 and 11.

Finally, Fig. 6 presents the calculated and experimental
elastic properties of random Fe-Cr alloys (in the FM state)
for the whole range of alloy compositions. One can see
that the properties exhibit nonmonotonic behavior around
a composition of 40 at.% Cr. One possible reason for this
peculiar behavior is the disappearance of local magnetic
moments on Cr atoms near this composition (see Ref. 21).

IV. CONCLUSIONS

Elastic properties of disordered Cr- and Fe-rich Fe-Cr
binary alloys have been calculated by the EMTO-CPA and
supercell VASP-PAW method. Good agreement with available
experimental data is found for all calculations. A peculiarity
in the elastic properties is found and related to the changes of
Fermi surface topology occurring in the Fe-rich region at 8–12
at.% Cr according to our calculations. The calculations predict
rather high values for the elastic moduli of Cr-rich alloys
containing up to 30 at.% of Fe, without any peculiarities in
their almost linear concentration dependencies in that region.
However, these alloys may be expected to be rather brittle
according to the Pugh criterion (G/B ratio).
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