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Superfluid turbulence: Nonthermal fixed point in an ultracold Bose gas
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Nonthermal fixed points of the dynamics of a dilute degenerate Bose gas are analyzed in two and three spatial
dimensions. For such systems, universal power-law distributions, previously found within a nonperturbative
quantum-field theoretic approach, are shown to be related to vortical dynamics and superfluid turbulence. The
results imply an interpretation of the momentum scaling at the nonthermal fixed points in terms of independent
vortex excitations of the superfluid. Long-wavelength acoustic excitations on the top of these are found to follow
a nonthermal power law. The results shed light on fundamental aspects of superfluid turbulence and have strong
potential implications for related phenomena, e.g., in early-universe inflation or quark-gluon plasma dynamics.
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From the formation of Bose-Einstein condensates in ul-
tracold gases to quark-gluon plasmas produced in heavy-ion
collisions, over a range of 24 orders of magnitude in tempera-
ture, nonequilibrium dynamics governs many interesting phe-
nomena. Turbulence is an outstanding and intricate example,
which can be described as an oriented stationary flow of energy
or particles between different scales. This idea of an energy
cascade goes back to the work of Richardson in the context of
atmospheric science.1 Kolmogorov, in his 1941 mathematical
discussion of turbulence in an incompressible fluid, added the
concept of universality and scaling.2 More recently, turbulence
has been studied in the context of the inflationary early universe
as well as of strongly correlated matter produced in heavy-ion
collisions.3–7 Dynamical critical phenomena, i.e., fixed points
of the evolution away from thermal equilibrium, have been
proposed. They potentially affect the equilibration process
by forcing the evolution to critically slow down before final
thermalization. Different scaling laws were found by analyzing
nonperturbative Kadanoff-Baym dynamic equations.4,5 Anal-
ogous predictions for a nonrelativistic Bose gas were given in
Ref. 6, proposing strong matter-wave turbulence in the regime
of long-range excitations.

Superfluid turbulence, also referred to as quantum tur-
bulence (QT), has been the subject of extensive studies in
the context of helium.8 In contrast to eddies in classical
fluids, vorticity in a superfluid is quantized,9,10 and the
creation and annihilation processes of quantized vortices are
distinctly different.8 The observation of a Kolmogorov 5/3
law2 in experiments with superfluid helium (cf. Ref. 11 for
a review) received much attention.12–16 In particular, the role
of the normal-fluid component as compared to the superfluid
component in the turbulent flow is under debate.8 In the
context of the kinetics of condensation and the development
of long-range order in a dilute Bose gas, the role of turbulence
in the superfluid and its acoustic excitations was discussed
in Refs. 17 and 18—see also Ref. 19 for a recent review. A
possible observation of QT in ultracold atomic gases presently
poses an exciting task for experiments.20,21

A satisfactory ab initio mathematical description of both
quantum and classical turbulence is inherently difficult due
to the generically strong correlations building up within the
system. Analytical results are known, however, in regimes
where kinetic theory applies: In a dilute, degenerate Bose gas

the normal-fluid component can vary at the expense or gain of
the superfluid part. As a consequence, the gas is compressible
and so-called weak-wave-turbulence phenomena can occur.
For these, scaling laws can be derived by analyzing kinetic
equations.22

Recent developments presented in Refs. 4–7 allow to set
up a unifying description of scaling, both in the ultraviolet
quantum-Boltzmann regime and in the infrared (IR) regime
of long wavelengths where perturbation theory fails. In
the IR, modified scaling laws were found4 by analyzing
nonperturbative Kadanoff-Baym equations with respect to
nonthermal stationary solutions.

Here, we study QT in two- and three-dimensional dilute
Bose gases by means of simulations in the classical-wave
limit of the underlying quantum-field theory. We compare
the scaling exponents of the single-particle momentum dis-
tribution and their analytical predictions.6 While we find
excellent agreement, our results provide an interpretation
of the dynamical fixed points proposed in Refs. 4 and 6
for the case of an ultracold Bose gas: The appearance of
nonperturbative infrared scaling reflects the presence of inde-
pendent vortices. Moreover, the power spectra of underlying
compressible excitations suggest an understanding in terms
of acoustic turbulence22 on the top of the vorticity-bearing
quasicondensate.

Scaling laws: Analytical predictions. Based on the concept
of universality, the turbulent single-particle spectrum n(k) is
assumed to scale as

n(sk) = s−ζ n(k), (1)

where s is some positive real number. This scaling law is
compatible with a more general scaling behavior assumed for
the full two-point correlation function of the bosonic quantum
field as discussed in Ref. 6.

To determine the positive exponent ζ in the infrared,
where n(k) ∼ |k|−ζ is large, an approach beyond kinetic
weak-wave-turbulence theory has been used. This is based on
analyzing fixed points of Kadanoff-Baym dynamic equations
derived from the two-particle irreducible (2PI) effective action
or � functional. While in the regime of large wave numbers
the approach goes over into the kinetic description of weak
wave turbulence, an effectively renormalized many-body
T matrix modifies the scaling law in the IR. This is a
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consequence of the resummation of a particular class of
Feynman diagrams contributing to the 2PI effective action,4,6

a formulation substantially beyond the low-order perturbative
expansion used for the kinetic quantum Boltzmann equation.
Physically, the renormalized T matrix implies a reduction
of the effective interaction strength in the IR regime of
strongly occupied modes.4 As a consequence, single-particle
occupation numbers rise, toward smaller k, in a steeper way
than in the weak-turbulence regime. The IR scaling exponent
for constant radial quasiparticle flow in d dimensions was
predicted in Ref. 6 as

ζ = ζ IR
Q = d + 2. (2)

Semiclassical field simulations. A dilute superfluid Bose
gas can be described, in the classical-wave limit, by the Gross-
Pitaevskii equation (GPE)

i∂tψ(x,t) =
[

− ∇2

2m
+ g|ψ(x,t)|2

]
ψ(x,t). (3)

(In our units h̄ = 1.) m is the boson mass, and g quantifies
the interaction strength. We consider a gas in a box of size
Ld , d = 2,3, with periodic boundary conditions. Diluteness
implies that a � l, the interparticle spacing l = n−1/d being
determined by the mean density n = N/Ld . The initial values
for the real and imaginary parts of the field ψ(k,0) were
randomly chosen from a Gaussian distribution with width
1/2, centered at approximately

√
n(k,0) exp{iφ(k,0)}, where

n(k,t) = 〈ψ†(k,t)ψ(k,t)〉 is the occupation number at time t

and φ(k,0) is a random-phase angle. Correlation functions,
including n(k,t), were obtained by averaging over many
trajectories. We have simulated the time evolution on a grid
with side length L = Nsas , lattice spacing as in d = 2,3. To
induce transport from small to large wave numbers, only
a few modes near k = 0 were chosen to be occupied at
the initial time with n(k,0) � 1. Such an initial state can
be prepared, e.g., by Bragg scattering of photons from a
Bose-Einstein condensate. During the evolution to a different
equilibrium state, energy is transported to modes with higher
wave number, and, given appropriate interaction strength, one
observes quasistationary momentum distributions to develop
prior to final thermalization.

During the intermediate stage of the equilibration quantized
vortices appear. To exhibit the vortical flow we use the
Madelung representation ψ(x,t) = √

n(x,t) exp{iφ(x,t)} of
the field in terms of the density n(x,t) and a phase angle φ(x,t).
This allows to express the particle current j = i(ψ∗∇ψ −
ψ∇ψ∗)/2 = nv in terms of the velocity field v = ∇φ.

In Fig. 1 we show the phase angle φ(x,t) during a single
run in d = 2 dimensions, while in Fig. 2 the evolution in
d = 3 is illustrated by the near-zero-density points. Many
singly quantized vortex-antivortex pairs (vortex rings) are
formed once the initial coherent wave has developed to form
shock-wave-like fronts. During the later evolution, the pairs
mutually annihilate at a substantially decreasing rate. After
the last pair has vanished, the gas thermalizes. In d = 3,
decreasingly tangled vortex lines are observed during the
near-stationary evolution. The initial conditions lead to a dense
chaotic tangle, as studied also in Refs. 18 and 19.

FIG. 1. (Color online) Phase angle φ(x,t) (color scale) at four
times during a single run of the simulations in d = 2. The white spots
mark vortex cores where the density falls below 5% of the mean
density n. Parameters are as follows: g = 2mga2−d

s = 3 × 10−5, N =
108, Ns = 256, and t = t/(2ma2

s ). Shown times are as follows: (1) t =
26 (top left-hand side): Ordered phase shortly after initial preparation.
(2) t = 820 (top right-hand side): After creation of vortex-antivortex
pairs. (3) t = 6550 (bottom left-hand side): Critical slowing down.
(4) t = 105 (bottom right-hand side): Low density of vortex pairs
before final thermalization.

Power-law behavior is found in the momentum distributions
of particles and energy, as we discuss in the following.
Figure 3 shows the distribution of occupation numbers n(k) =∫

d�d n(k) over the radial momentum k = |k|, for the four
snapshots of the two-dimensional system depicted in Fig. 1,

FIG. 2. Snapshots of a single run of the evolution in d = 3
dimensions. The points show where the density falls below 5%
of the mean density n. Parameters are as follows: g = 8 × 10−4,
N = 109, Ns = 128. (1) t = 0 (top left-hand side). (2) t = 103 (top
right-hand side). (3) t = 410 (bottom left-hand side). (4) t = 1640
(bottom right-hand side).
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FIG. 3. Single-particle mode occupation numbers as functions of
the radial momentum k = [

∑d

i=1 4 sin2(ki/2)]1/2,k = 2πn/Ns, n =
(n1, . . . ,nd ), ni = −Ns/2, . . . ,Ns/2, for the four different times of
the run in d = 2 dimensions shown in Fig. 1. Note the double-
logarithmic scale. An early development of a scaling n(k) ∼ k−4

is followed by a bimodal scaling with n(k) ∼ k−2 at larger wave
numbers.

on a double-logarithmic scale. (d�d denotes the angular
differential.) During the initial evolution the mode occupations
gradually spread to larger wave numbers. As soon as vortex-
antivortex pairs appear, a power-law regime n(k) = k−ζ is
observed. During the final stage of the vortex-bearing phase
two distinct power laws develop, which are found to be in
excellent agreement with the analytical prediction of Ref. 6.
While in the ultraviolet the exponent ζ UV = d = 2 exhibits
weak wave turbulence, in the infrared the exponent confirms
the result ζ = d + 2 = 4 [see Eq. (2)], corroborating results
for a relativistic model in Ref. 4. Note that in d = 2, the
weak-turbulence exponent ζ UV = 2 is identical to that in
thermal equilibrium in the Rayleigh-Jeans regime n(k) ∼
T/ω ∼ T/k2.22 The momentum distributions during this final
phase are shown again, for d = 2 and d = 3, in Figs. 4 and
5 (filled black circles), respectively, confirming the analytical
prediction of Eq. (2) also for d = 3. The scaling n(k) ∼ k−2

in the ultraviolet reflects that the corresponding modes are
already thermalized. We remark that, for weaker interaction
strengths, the weak-wave-turbulence scaling with ζ UV = d =
3 is also seen, at intermediate times.

To understand these findings in the context of QT, we
analyze kinetic-energy spectra as in Ref. 12. The total kinetic
energy Ekin = ∫

ddx 〈|∇ψ(x,t)|2〉/2 can be split, Ekin =
Ev + Eq, into a “classical” part Ev = ∫

ddx 〈|√nv|2〉/2 and
a “quantum-pressure” component Eq = ∫

ddx 〈|∇√
n|2〉/2.

The radial energy spectra for these fractions involve the
Fourier transform of the generalized velocities wv = √

nv and
wq = ∇√

n,

Eδ(k) = 1

2

∫
kd−1 d�d〈|wδ(k)|2〉, δ = v,q. (4)

Note that the superfluid velocity v = ∇φ of a single vortex
diverges as 1/r with the distance r from the vortex core.
Hence, the Fourier transform of v is ill defined and requires
regularization of |v(x)| in the vicinity of the core. In wv, this
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FIG. 4. (Color online) Single-particle occupation numbers of
different fractions of the system, at time t = 105 of the d = 2 run
shown in Fig. 3. The black points are the same as those shown in
the lower right-hand panel of Fig. 3. Colors distinguish the fractions
ni (red circles), i.e., the divergence-free part of the flow field wv =√

nv, nc (filled blue squares), i.e., the solenoidal part of wv, and
the quantum-pressure part nq (open gray squares). kξ = 2π/ξ , where
ξ = 1/

√
2mgn is the healing length.

is naturally achieved by the factor
√

n, which rises linearly
in r for small r . Following Ref. 12, the regularized velocity
wv is decomposed into “incompressible” (divergence-free)
and “compressible” (solenoidal) parts, wv = wi + wc, with
∇ · wi = 0, ∇ × wc = 0, to distinguish vortical and rotation-
less motion of the fluid.

For comparison of the kinetic-energy spectrum with the
single-particle spectra n(k), we determine occupation numbers
corresponding to the different energy fractions as nδ(k) =
k−d−1Eδ(k), δ ∈ {i,c,q}. The resulting spectra ni(k), nc(k),
and nq(k) add up to the single-particle spectrum n(k) =
ni(k) + nc(k) + nq(k) discussed before. The components are
shown separately, for d = 2 and d = 3, in Figs. 4 and 5,
respectively. Red circles denote ni, filled blue squares show
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FIG. 5. (Color online) Same as in Fig. 4, for the run in d = 3
dimensions shown in Fig. 2, at the time t = 1640 (lower right-hand
panel).
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the dependence of nc, and open gray squares that of nq.
Qualitatively, the results are the same for d = 2 and d = 3.
Excitations with large wave numbers are thermally distributed.
In this regime, the spectrum n(k) ∼ k−2 is dominated by the
compressible and quantum-pressure components. For smaller
wave numbers the scaling changes to n(k) ∼ k−d−2, being
dominated by the velocity wv. Moreover, we find that it is
this decomposition into ni and nc which, for intermediate
wave numbers, allows the incompressible part of the energy
to develop a Kolmogorov-like scaling ∼k−5/3−d−1 above
the scale kl ∼ 2π/l determined by the mean distance l

between vortex cores. While the scaling of the sum of these
components is predicted by the field-theoretic analysis in
Ref. 6, a rising compressible part allows the incompressible
contribution to deviate from the IR power law and to develop
the observed scaling. Toward the IR limit, the compressible
part becomes too weak such that the scaling of ni goes over to
ζ = d + 2.

One can show that the analytically predicted infrared
n(k) ∼ k−4 in d = 2 is consistent with a finite den-
sity of independent vortices and antivortices. The IR
scaling ∼k−d−1 of the compressible component suggests
an interpretation in terms of acoustic turbulence.17,19,22 Our
results show that this component survives for a limited period
beyond the time when all vortical excitations have mutually
annihilated. The observed scaling corroborates the numerical

findings of Ref. 23, whereby we refrain from sharing the
interpretation of the power law.

In summary, our results show a distinct power-law be-
havior k−ζ of the single-particle momentum spectrum n(k)
as well as of different components of the kinetic-energy
distribution over the radial wave number k. Scaling exponents
ζ of n(k) corroborate the analytical predictions of Ref. 6.
Our findings suggest that local field expectation values and
short- to intermediate-range coherence, including topological
excitations, are at the basis of the infrared power laws predicted
within nonperturbative dynamical field theory.4–6 For the
chosen generic initial conditions, excitations on the top of
this classical field background support an interpretation in
terms of acoustic wave turbulence. The connection of these
phenomena with ab initio dynamical field theoretic methods
points a way to unified analytical studies of turbulence and
gives hints how the proposed dynamical critical phenomena in
relativistic systems4,5,7 can be realized in nature.
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