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Motivated by recent density-matrix renormalization group (DMRG) calculations [Yan, Huse, and White,
Science 332, 1173 (2011)], which claimed that the ground state of the nearest-neighbor spin-1/2 Heisenberg
antiferromagnet on the kagome lattice geometry is a fully gapped spin liquid with numerical signatures of Z2

gauge structure, and a further theoretical work [Lu, Ran, and Lee, Phys. Rev. B 83, 224413 (2011)], which gave a
classification of all Schwinger-fermion mean-field fully symmetric Z2 spin liquids on the kagome lattice, we have
thoroughly studied Gutzwiller-projected fermionic wave functions by using quantum variational Monte Carlo
techniques, hence implementing exactly the constraint of one fermion per site. In particular, we investigated the
energetics of all Z2 candidates (gapped and gapless) that lie in the neighborhood of the energetically competitive
U(1) gapless spin liquids. By using a state-of-the-art optimization method, we were able to conclusively show
that the U(1) Dirac state is remarkably stable with respect to all Z2 spin liquids in its neighborhood, and in
particular for opening a gap toward the so-called Z2[0,π ]β state, which was conjectured to describe the ground
state obtained by the DMRG method. Finally, we also considered the addition of a small second nearest-neighbor
exchange coupling of both antiferromagnetic and ferromagnetic type, and obtained similar results, namely, a
U(1) Dirac spin-liquid ground state.
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Introduction. The nearest-neighbor (NN) spin-1/2 quantum
Heisenberg antiferromagnet (QHAF) on the kagome lattice
provides ideal conditions for the amplification of quantum
fluctuations and a consequent stabilization of an exotic
magnetically disordered ground state, which may be a valence-
bond crystal (VBC)1–5 or a spin liquid (SL) with fractionalized
excitations.6–8 Recent experiments have unanimously pointed
toward a SL behavior;9–16 in particular, Raman spectroscopic
data on a nearly perfect spin-1/2 kagome compound with
Heisenberg couplings (the so-called Herbertsmithite) sug-
gested a gapless (algebraic) SL.17 On the theoretical side,
the question is still wide open and intensely debated. On the
one hand, series expansion provided evidence that a VBC
with a 36-site unit cell has lower energy than other proposed
competing states.4 On the other hand, it was shown that within
the class of Gutzwiller-projected fermionic wave functions, a
particular algebraic SL, the so-called U(1) Dirac state, has a
competing energy.18 Its properties were studied in detail in
Ref. 19 and it was argued that it can be a stable SL state.
However, a recent DMRG study8 has challenged the above
results, and proposed that the ground state can be a fully gapped
Z2 SL with a substantially lower energy as compared to both
the above estimates.

TheZ2 SLs have the nice property that they are stable mean-
field states and can survive quantum fluctuations. Hence, they
are more likely to occur as real physical SLs, and one can safely
use the projective symmetry group classification of Z2 SLs
beyond mean-field level.20 This complete classification of fully
symmetric Z2 SLs on the kagome lattice was recently done in
Ref. 21 within the Schwinger-fermion mean-field theory, re-
sulting in an enumeration of a total of 20 Z2 mean-field states.
Their main result was the identification of a unique gapped
Z2 SL (called the Z2[0,π ]β state) in the neighborhood of the
U(1) Dirac state. Since the U(1) Dirac SL state has the best

variational energy among the class of U(1) gapless SLs, in
Ref. 21, it has been conjectured that the Z2[0,π ]β state may
describe the ground state that has been numerically observed
in the DMRG study.8

In this paper, we thoroughly investigate the possibility of
any of these Z2 SLs being stabilized as the ground state
of the NN spin-1/2 QHAF, with a particular emphasis on
the Z2[0,π ]β state. In practice, we compute the energy of
optimized variational wave functions that are constructed by
applying the Gutzwiller projector to different states obtained
from mean-field Hamiltonians of Schwinger fermions. In this
respect, by an exact treatment of the full projector that ensures
the one fermion per site constraint, we go much beyond
the simple mean-field approach of Ref. 21. We calculate the
energies of all Z2 SLs which can be realized up to 3rd NN in
mean-field Ansatz and have a nonvanishing 1st NN mean-field
bond. Only 12 of the 20 Z2 SLs satisfy these criteria, and all of
them are continuously connected to some U(1) gapless SL.21

Our main result is that, contrary to what has been proposed
in Ref. 21, the Z2[0,π ]β state has a higher energy than the
gapless U(1) Dirac SL, or in other words, the U(1) Dirac SL
is remarkably stable with respect to opening of a gap and
consequently destabilizing into the Z2[0,π ]β state. We also
find that all gapped Z2 SLs in the neighborhood of another
competing gapless state, the uniform resonating-valence bond
(RVB) state, have higher energies. Moreover, we find that all
Z2 SLs have higher energy than the gapless SL states in whose
neighborhoods they lie.

Model and wave function. The Hamiltonian for the NN
spin-1/2 Heisenberg model is

Ĥ = J
∑
〈ij〉

Ŝi · Ŝj , (1)
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where 〈ij 〉 denote sums over NN sites and Ŝi is the spin-1/2
operator at site i. All energies will be given in units of J .

The variational wave functions are defined by projecting
noncorrelated fermionic states:

|�VMC(χij ,�ij ,μ,ζ )〉 = PG|�MF(χij ,�ij ,μ,ζ )〉, (2)

where PG = ∏
i(1 − ni,↑ni,↓) is the full Gutzwiller projec-

tor enforcing the one fermion per site constraint. Here,
|�MF(χij ,�ij ,μ,ζ )〉 is the ground state of mean-field Hamil-
tonian containing chemical potential, hopping, and singlet
pairing terms:

HMF =
∑
i,j,α

(χij + μδij )c†i,αcj,α

+
∑
i,j

{(�ij + ζ δij )c†i,↑c
†
j,↓ + H.c.} , (3)

where χij = χ∗
ji and �ij = �ji . Besides the chemical poten-

tial μ, we will also consider real and imaginary components of
on-site pairing, which are absorbed in ζ . We briefly mention
that a somewhat similar approach, based upon a bosonic
representation of the spin operators (i.e., through Schwinger
bosons), has been also used recently.22 In the latter case,
however, the bosonic nature of quasiparticle operators implies
that one has to deal with permanents instead of determinants,
which makes the numerical calculations much heavier than in
our fermionic case.

Different SL phases correspond to different patterns of
distribution of χij and �ij on the lattice links, along with
the specification of the on-site terms μ and ζ . Then, a
complete specification of a SL state up to nth NN amounts to
specifying the SU(2) flux through closed loops along with the
optimized hopping and pairing parameters at each geometrical
distance.20,23 These parameters are the Ansätze of a given
state and serve as the variational parameters in the physical
wave function that are optimized within the variational Monte
Carlo scheme to find the energetically best state. It is worth
mentioning that we use a sophisticated implementation of
the stochastic reconfiguration (SR) optimization method,24,25

which allows us to obtain an extremely accurate determination
of variational parameters. Indeed, small energy differences are
effectively computed by using a correlated sampling, which
makes it possible to strongly reduce statistical fluctuations. The
current problem of the study of the instability of a U(1) Dirac
SL state toward the Z2[0,π ]β state will clearly demonstrate
the power of this method to capture the essential subtleties.

Results. We performed our variational calculations on a
432-site cluster with mixed periodic-antiperiodic boundary
conditions which ensures nondegenerate wave functions at
half-filling. The large size of the cluster ensures that the
spatial modulations induced in the observables by breaking
of rotational symmetry (due to mixed boundary conditions)
remain smaller than the uncertainty in the Monte Carlo
simulations.

Among the class of NN fully symmetric and gapless SLs,
the U(1) Dirac state has the lowest energy. Its energy per
site is E/J = −0.42863(2), and its Ansatz is given by the
sign convention for NN bonds in Fig. 1. Due to the U(1) flux
ϕ being 0 and π [exp (iϕ) = ∏

plaquette χij ] through triangles
and hexagons, respectively, it is denoted as [0,π ]. Another

FIG. 1. The Z2[0,π ]β SL Ansatz; black (grey) bonds denote 1st
NN real hopping (2nd NN real hopping and real spinon pairing) terms;
solid (dashed) black bonds have sij = 1 (−1), solid (dashed) grey
bonds have νij = 1 (−1), see Eq. (4). The 1st NN (2nd NN) mean-field
Ansatz is written as U〈ij 〉 = ±σ3 [U〈〈ij 〉〉 = ±(χ2σ3 + �2σ1)]. The
SU(2) flux P , through elementary triangles (e.g., 123) is P123 = σ3,
and that through triangles formed by two 1st NN and one 2nd NN
bonds (e.g., 234) is P234 = −(χ2σ3 + �2σ1). Their commutator is
nonzero, [P123,P234] = (−2iσ2)�2. Hence, a finite �2 breaks the
U(1) gauge structure down to Z2, and opens up an energy gap via the
Anderson-Higgs mechanism.20,23

competing state, the NN uniform RVB state has zero flux
through any plaquette and is therefore denoted as [0,0]; its
energy per site is E/J = −0.41216(1).18,19

The study in Ref. 21 identified four Z2 SLs in the
neighborhood of the [0,π ] state; only one of them, the
Z2[0,π ]β state, was found to be gapped (via the 2nd NN
spinon pairing term). Its Ansatz up to 2nd NN mean-field bond
is reproduced in Fig. 1.21 In a suitable gauge, its mean-field
Ansatz is specified by five real parameters. These parameters
are the 1st NN real hopping (χ1), 2nd NN real hopping
(χ2), 2nd NN real spinon pairing (�2), and two onsite terms,
one for the chemical potential μ and the other for the real
on-site pairing ζR. The mean-field Hamiltonian can be then
conveniently cast in the following form:

HMF{Z2[0,π ]β}=χ1

∑
〈ij〉,α

sij c
†
i,αcj,α+

∑
〈〈ij〉〉

νij

{
χ2

∑
α

c
†
i,αcj,α

+�2(c†i,↑c
†
j,↓+ H.c.)

}
+

∑
i

{
μ

∑
α

c
†
i,αci,α

+ ζR(c†i,↑c
†
i,↓ + H.c.)

}
, (4)

where 〈ij 〉 and 〈〈ij 〉〉 denote sums over 1st and 2nd NN sites,
respectively. sij and νij encode the sign structure of the 1st
and 2nd NN bonds, respectively, as shown in Fig. 1. The 1st
NN real hopping (χ1) will be taken as a reference, and hence
set to unity hereafter. The physical variational wave function
of this SL state then depends on four variational parameters,
|�VMC(χ2,�2,μ,ζR)〉 = PG|�MF(χ2,�2,μ,ζR)〉.

For a generic unbiased starting point in the four-
dimensional variational space, the variation of parameters and
energy in the SR optimization is shown in Fig. 2. As one
can clearly see, the energy converges neatly [see point B
in Fig. 2(b)] to the reference value of the suitably extended
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FIG. 2. (Color online) A typical variational
Monte Carlo optimization run for the Z2[0,π ]β
wave function: (a) variational parameters �2,
χ2, μ, and ζR and (b) energy, as a function of SR
iterations. In (a), the initialized parameter values
are �2 = χ2 = 1, μ = −0.8, and ζR = 0.3. The
U(1) 2nd NN [0,π ; 0,π ] Dirac SL corresponds
to �2 = 0, χ2 = −0.0186(2), ζR = 0, as found
in Ref. 26. The optimized parameter values
are obtained by averaging over a much larger
number of converged SR iterations than shown
above. In (c), the variation in energy upon
addition of a small �2 (both for ζR = 0, and
optimized ζR for each value of �2) upon the
[0,π ; 0,π ] Dirac SL is shown, the increase in
energy is apparent.

2nd NN U(1) Dirac SL, the [0,π ; 0,π ] state [see point A in
Fig. 2(b)], with small but finite χ2 [see Fig. 2(a)] previously
computed by us.26 For the present cluster, these values are
E/J = −0.42872(1) per site, and χ2 = −0.0186(2), μ =
−0.5124(5). Also, it is manifest that (�2, ζR) → 0, becoming
exactly zero (within the error bars) after averaging over a
sufficient number of converged Monte Carlo steps. Here, we
bring attention to the important fact that despite the energy
having converged after ≈400 iterations, the parameters did
not converge and were still varying, converging to their final
values much later than the energy (see Fig. 2). This fact
is possible because, in the energy minimization, forces are
calculated through the correlated sampling and not by energy
differences.24 Our result shows that the energy landscape along
the manifold connecting the U(1) Dirac SL to the Z2[0,π ]β
SL is very flat close to the U(1) Dirac SL [see Fig. 2(c) for
the case ζR{�2}]. Consequently, a small perturbation around
the U(1) Dirac SL, e.g., by setting �2 = 0.05 along with the
corresponding optimized value of ζR = 0.1780(2) will not
lead to any detectable change in energy. Hence, one cannot
unambiguously conclude anything about the stability of the
U(1) Dirac SL by solely computing the energy of the
perturbed wave function with fixed parameters, point by point
locally. Only by performing an accurate SR optimization
method24 can one successfully optimize the parameters and
transparently show that �2 = 0 corresponds to the actual
minimum of the variational energy. This fact implies that the
U(1) gauge structure is kept intact and the Dirac SL state
is locally and globally stable with respect to destabilizing
into the Z2[0,π ]β state. We verified this result by doing
many optimization runs starting from different random initial
values of the parameters in the four-dimensional variational
space.27

Regarding the remaining three gapless Z2 SLs in the
neighborhood of the U(1) Dirac SL, namely, the Z2[0,π ]α,
Z2[0,π ]γ , and Z2[0,π ]δ states of Ref. 21, our study reveals
the same result as for the Z2[0,π ]β state. That is, all three of
these SLs return back exactly to the gapless U(1) Dirac SL
state, with the value of the parameter responsible for breaking
the U(1) gauge structure down to Z2 exactly vanishing upon
optimization. Thus, we can convincingly conclude that the Z2

neighborhood of the U(1) Dirac state does not contain the
presumed fully gapped Z2 SL found by the DMRG study.

This conclusion forces us to shift our focus to the Z2

neighborhood of another fully symmetric (and energetically
competing) gapless SL, called the uniform RVB or the
[0,0] SL. Despite having a slightly higher energy, it has the
promising feature that all four Z2 SLs in its neighborhood are
gapped, thereby opening up the possibility, albeit a slim one,
that opening a gap might lead to a large gain in energy so as
to make one of these four states go lower than the U(1) Dirac
SL, near to the DMRG value of E/J = −0.4379(3) per site.
These gapped SLs are referred to in Ref. 21 as the Z2[0,0]A,
Z2[0,0]B, Z2[0,0]C and Z2[0,0]D states; for their Ansätze,
see Table I in Ref. 21 and also the supplementary material.
Our simulations show that all four of these SLs return upon
optimization to the gapless uniform RVB SL, with optimized
χn. In particular, case by case we see that for the Z2[0,0]A
SL, the 2nd NN spinon pairing term goes to zero along with
the on-site pairing term, thus returning back to the 2nd NN
uniform RVB SL, the [0,0; π,π ] state given by optimized
χ2 = −0.032(1);26 for theZ2[0,0]B SL, the NN spinon pairing
term goes to zero upon optimization, thus giving back the NN
uniform RVB SL; the Z2[0,0]C SL upon optimizing flows to
the 3rd NN uniform RVB SL with optimized χ2 and χ ′

3s, with
the spinon pairing term at 3rd NN becoming zero; and finally,
the Z2[0,0]D SL flows back to the 2nd NN uniform RVB
SL. The results showing how the energies of these extended
gapless uniform RVB SLs increase as the U(1) → Z2 gauge
breaking parameter is tuned on from zero to a small finite value
are reported in the supplementary material (see Ref. 28).

For reasons of completeness, we mention that there are
two more gapless U(1) SLs in whose neighborhoods the
remaining four Z2 SLs (all gapless) lie.21 However, these
U(1) SLs suffer from a macroscopic degeneracy at half-
filling which leads to an open shell. This degeneracy being
macroscopic cannot be removed by using any of the four
real boundary condition possibilities. Hence, their energy can
only be computed approximately in the limit by inserting an
additional θ flux through the triangle motifs and consequently
removing π − 2θ through hexagon motifs, and then taking
the limit θ → 0. The energy of the SL-[π,π ] computed in
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this way is E/J 
 −0.38372(1) per site, which is much
higher than those of other gapless U(1) states. Hence, we
did not carry out an analysis of Z2 SLs in these two
neighborhoods.

Finally, we also investigated the possibility of stabi-
lization of the Z2[0,π ]β state upon addition of a small
2nd NN exchange coupling (J ′) of both antiferromagnetic
and ferromagnetic type in the NN spin-1/2 QHAF. In
both cases, on optimization we found that (�2, ζR) → 0,
becoming exactly zero (within error bars) after averaging
over a sufficient number of converged Monte Carlo itera-
tions. Thus, we recover the suitably extended, gapless 2nd
NN U(1) Dirac SL. In particular, for J ′/J = 0.10, this
is the [0,π ; π,0] state with optimized χ2 = 0.0924(2), and
E/J = −0.43200(2) per site; for J ′/J = −0.10, this is
the [0,π ; 0,π ] state with optimized χ2 = −0.1066(2), and
E/J = −0.42898(2).26

In summary, we investigated the possibility of stabilizing
gapped Z2 SLs in the NN and next-nearest-neighbor (NNN)
spin-1/2 QHAF on a kagome lattice. We found that none of the
five gapped Z2 SLs [one connected to the U(1) Dirac state and
the other four connected to the uniform RVB state] can occur

as ground states. In particular, the most promising gapped
SL conjectured to describe the ground state, the Z2[0,π ]β
state, is always higher in energy than the U(1) Dirac SL. Our
systematic numerical results bring us to the conclusion that, at
least within the Schwinger fermion approach of the spin model,
the U(1) Dirac SL has the best variational energy for the NN
and NNN spin-1/2 QHAF on kagome lattice. The conflict of
our results, which point toward a gapless ground state, and the
ones by recent DMRG calculations, which instead suggested
the presence of a fully gapped spectrum, remains open and
deserves further investigations. One possible direction would
be to consider further improvements of our variational wave
functions, based upon the application of few Lanczos steps
or an approximated (fixed-node) projection technique, which,
e.g., gives an energy of E/J = −0.431453(2) per site for
the NN U(1) Dirac SL, and E/J = −0.431443(2) for the
NNN [0,π ; 0,π ] state. Another possible direction would be
to explore the energetics of gapped Z2 SLs which break
some symmetries such as time-reversal. The possibility that
the fully gapped SL found by the DMRG study possesses a
different low energy gauge structure other thanZ2 also remains
open.
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