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d3z2−r2 orbital in high-Tc cuprates: Excitonic spectrum, metal-insulator phase diagram, optical
conductivity, and orbital character of doped holes
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The single-site dynamical mean-field approximation is used to solve a model of high-Tc cuprate supercon-
ductors, which includes both dx2−y2 and d3z2−r2 orbitals on the Cu as well as the relevant oxygen states. Both T

(with apical oxygen) and T ′ (without apical oxygen) crystal structures are considered. In both phases, inclusion
of the d3z2−r2 orbital is found to broaden the range of stability of the charge-transfer insulating phase. For
equal charge-transfer energies and interaction strengths, the T ′ phase is found to be less strongly correlated
than the T phase. For both structures, d-d excitons are found within the charge-transfer gap. However, for all
physically relevant dopings, the Fermi surface is found to have only one sheet and the admixture of d3z2−r2 into
the ground-state wave function remains negligible (<5%). Inclusion of the extra orbitals is found not to resolve
the discrepancy between computed and observed conductivity in the insulating state.
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I. INTRODUCTION

More than 25 years after their discovery,1 many aspects
of the physics of the high-Tc cuprate superconductors remain
unclear.2,3 For a long period, researchers attempted to discuss
the physics in terms of single-band models, including the t-J
model and the one-band Hubbard model.4–6 While much of the
low-energy physics can be explained by single-band models
with appropriately chosen parameters,6–12 many properties of
the cuprates and other transition-metal oxides require consid-
eration of more realistic models.4,13–16 The importance of the
oxygen bands was stressed early on by Emery and Reiter,17

and their ideas were encoded in the “three-band” model,18–22

which retains the Cu 3dx2−y2 and O 2px,y orbitals on the
CuO2 plane. Early qualitative studies of this model13,23–26 have
been followed by recent quantitative studies27–33 using the
dynamical mean-field theory34,35 (DMFT) and sometimes in
conjunction with density functional theory calculations.36–38 A
very recent paper has argued that even the low-energy physics
may reveal signatures of non-Hubbard or non–t-J physics.39

Although the three-band model helps us in understanding
various features of cuprates, it has its limitations. For example,
the three-band model has been shown to provide an inadequate
description of the optical absorption at frequencies ω �
2 eV.32,33

A natural question is whether other Cu orbitals, in partic-
ular the Cu 3d3z2−r2 , play an important role. Higher-energy
spectroscopies40,41 have detected these states, which may lead
in particular to excitonic states in the spectrum.42–46 An early
theoretical study,47 based on the slave boson approximation,
argued that the d3z2−r2 orbitals are not just admixed into
the conduction band, but can give rise to another sheet of
the Fermi surface at reasonable doping levels. Variations
between material families in the energy and mixing of the
d3z2−r2 orbital were recently argued to affect the value of
the second neighbor hopping, thereby explaining the material
dependence of Tc.48 The comparison of theoretical and exper-
imental optical absorption was argued to be at least partially
resolved by consideration of the Cu d3z2−r2 and apical oxygen
orbitals.38

These and many other observations motivate this paper, in
which we study a six-band model that includes, in addition to
the three bands included before, the Cu 3d3z2−r2 orbital and
(depending on crystal structure) apical oxygen 2pz orbitals
above and below the CuO2 plane. We shall present the
DMFT calculation of the phase diagram, spectral functions,
d-d exciton spectrum, optical conductivity, and the effect of
doping into the d3z2−r2/pz complex. We also study the possible
importance of apical oxygen orbitals by comparing the result
of the T -phase (with apical oxygen) and T ′-phase (without
apical oxygen) crystal structures.49

The remainder of the paper is organized as follows. In
Sec. II, we present the model and the method we employed.
Section III gives the numerical results of the phase diagram
and the spectral functions. Section IV discusses the d-d
exciton spectrum. Section V shows in-plane and c-axis optical
conductivities, and in Sec. VI we discuss the distribution of
hole doping on various orbitals and its consequence on Fermi
surfaces. We conclude in Sec. VII.

II. MODEL AND METHOD

The three-band model previously considered21,31–33 in-
volves the Cu 3dx2−y2 and O 2px,y orbitals pointing to the Cu
site in each unit cell. In this paper, we consider the six-band
model, which in addition to the Cu 3dx2−y2 and planar O
2px,y orbitals also includes the Cu 3d3z2−r2 orbital and two
apical oxygen sites (above and below the plane) with one pz

orbital on each site hybridizing with the Cu 3d3z2−r2 orbital. A
schematic illustration of orbitals retained in the six-band model
is shown in Fig. 1 with panel (a) showing orbitals relevant to the
Cu 3dx2−y2 orbital (which are essentially what is included in
the three-band model) and panel (b) showing orbitals relevant
to the Cu 3d3z2−r2 orbital.

The resulting model involves six bands, and we restrict
attention here to paramagnetic phases, so it is not necessary to
write the spin dependence of the band structure explicitly. The
band-theory part of the Hamiltonian is thus a 6 × 6 matrix
in k space. We neglect the periodicity in the z direction,
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thus, the Hamiltonian only has kx and ky dependences. The
hopping integrals between Cu and O are also labeled on
Fig. 1: we use tpd to denote the hopping integral between px,y

and dx2−y2 , tpdz
between px,y and d3z2−r2 , and tpzdz

between
pz and d3z2−r2 . Our previous studies of three-band models
shows that the precise value and form of the oxygen-oxygen
hopping do not affect the results in any important way.33

For definiteness, here we obtain estimates for the form and
magnitude of the oxygen-oxygen hopping following Ref. 21,
which argues that the oxygen-oxygen hopping is the result
of a virtual process involving hopping on and off the Cu 4s

orbital. Therefore, we derive the six-band model by applying
the Löwdin downfolding procedure50 to a model involving the

six bands considered here plus a Cu 4s band (see Appendix
for details).

We use d‖ to denote the dx2−y2 orbital, dz the d3z2−r2 orbital,
take the basis |ψ〉 = (d‖k,dzk,pxk,pyk,p

above
zk ,pbelow

zk ), and
write the resulting band-theoretic part of the Hamiltonian as

H6-band =
⎛
⎝ HCu

6-band Hhyb
6-band(

Hhyb
6-band

)†
HO

6-band

⎞
⎠ , (1)

where

HCu
6-band =

(
εd 0
0 εdz

)
, (2)

HO
6-band =

⎛
⎜⎜⎜⎜⎝

εp + 2tpp(cos kx − 1) −4tpp sin kx

2 sin ky

2 2itppz
sin kx

2 −2itppz
sin kx

2

−4tpp sin kx

2 sin ky

2 εp + 2tpp(cos ky − 1) 2itppz
sin ky

2 −2itppz
sin ky

2

−2itppz
sin kx

2 −2itppz
sin ky

2 εpz
− tpzpz

tpzpz

2itppz
sin kx

2 2itppz
sin ky

2 tpzpz
εpz

− tpzpz

⎞
⎟⎟⎟⎟⎠ , (3)

and the hybridization between Cu and O orbitals:

Hhyb
6-band =

(
2itpd sin kx

2 −2itpd sin ky

2 0 0

−2itpdz
sin kx

2 −2itpdz
sin ky

2 tpzdz
−tpzdz

)
.

(4)

We note that a linear combination of the two apical oxygen
operators decouples from the problem; however, for the ease
of calculating the c-axis conductivity (Sec. V), we leave it as
it is here, explicitly keeping the two apical oxygen orbitals
separately.

We choose tpd = 1.6 eV.21 If there is cubic symmetry,
tpdz

= 1/
√

3tpd and tpzdz
= 2/

√
3tpd , but in the T phase, the

Cu–O bond length is longer along the z axis than x,y axes,
resulting in a smaller value of tpdz

and tpzdz
. We follow Ref. 51

and use tpdz
= 0.5 eV, tpzdz

= 0.8 eV, tpp = 0.6 eV, and tppz
=

0.4 eV. These values are consistent with other estimates found
in the literature.52–55 The value of tpzpz

has not been considered
in Ref. 51, but since the downfolding procedure implies that
tpzpz

/tppz
= tppz

/tpp (see Appendix), we set tpzpz
= 0.27 eV.

We note that the effect of oxygen-oxygen hopping has been
studied in detail in Ref. 33 and it has been shown that the
precise values and form of oxygen-oxygen hopping does not
change the physics in any important way. To model the T ′
phase, in which the apical oxygen states are absent, we set
tpzdz

= tpzp = tpzpz
= 0.

We next turn to the interaction part of the Hamiltonian.
When more than one Cu orbital is important, interactions
beyond the Hubbard U must be considered. We adopt the
standard Slater-Kanamori form56,57 for the interacting part of
the Hamiltonian Hint:

Hint = U
(
nd‖,↑nd‖,↓ + ndz,↑ndz,↓

) + U ′(nd‖,↑ndz,↓ + nd‖,↓ndz,↑
)

+ (U ′ − J )
(
nd‖,↑ndz,↑ + nd‖,↓ndz,↓

)
− J (d†

‖↓d
†
z↑dz↓d‖↑ + d

†
z↑d

†
z↓d‖↑d‖↓ + H.c.). (5)

Here we have used d
†
‖ (d‖) as the creation (annihilation)

operator for the planar dx2−y2 orbital, and d
†
z (dz) as the

creation (annihilation) operator for the d3z2−r2 orbital. All the
interactions are on site so we have not written the site indices
explicitly. We follow the conventional choice of U ′ = U − 2J ,
which comes from symmetry arguments of d orbitals. Note
that, in keeping with the common practice in modeling
cuprates, we do not consider interactions on the oxygen sites.
At the parameter values, we consider the density of holes on
the oxygen sites small enough that these interactions are not
expected to be important.

Except in the construction of the phase diagram, we will
choose the value U = 9 eV (Refs. 58 and 59) believed to be
representative of cuprates, and set the bare p and d energies
equal: εd = εdz

and εp = εpz
(where there are pz orbitals). We

define the bare charge-transfer energy

� = εp − εd . (6)

As will be seen, a large difference in d occupancy and other
aspects of the physics arises from difference in in-plane and
c-axis hopping implied by the crystal structure. We study
J = 0, 0.5, and 1 eV.

We solve the model using the single-site dynamical mean-
field approximation34,35 with the continuous-time quantum
Monte Carlo impurity solver in its hybridization-expansion
(CT-HYB) form.60–62 To obtain real-frequency information,
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FIG. 1. (Color online) Illustration of orbitals in the six-band
model for the T -phase crystal structure. (a) Cu dx2−y2 orbital and
planar O2pσ orbitals that couple to it; (b) Cu d3z2−r2 orbital and planar
and apical orbitals that couple to it. The different colors (red and blue
online) indicate the relative sign of the wave function. In the T ′ phase,
the apical oxygens are absent.

we perform analytic continuation of the imaginary-axis
self-energies using the method of Ref. 63. The specifics are
described in Refs. 32 and 33. The key approximation is
assuming that the lattice self-energy is momentum independent
�(ω,k) → �(ω). The self-energy is a matrix in the space of
orbitals. Because the interaction is local, which involves only
the d electrons, all entries of � except the d-d components
vanish.

III. PHASE DIAGRAM AND SPECTRAL FUNCTIONS

In this section, we present the metal-insulator phase
diagram and electron spectral functions for the six-band model
for varying choices of Hund interaction J and compare the
results to the phase diagram and spectra previously published
for the three-band model.32 To facilitate the comparison, we
remove the Hartree energy by shifting the x axis of the six-band
model by −2U + 5J relative to the three-band model. The
magnitude of the Hartree shift can be understood as follows.
In the three-band model, the undoped compound is the d9

state with the energy εd + 2εp; adding one electron leads to
the d10 state with the energy 2εd + 2εp + U ; the two-hole state
nearest in energy is d9L with energy εd + εp. Therefore, the
physical charge-transfer energy is (note that we use electron
notation; in some of the literature the charge-transfer energy
is defined in hole notation, without the U and with εd and εp

reversed)

E(d10) + E(d9L) − 2E(d9) = U − (εp − εd ). (7)

However, in the six-band model, there is an additional
Hartree shift arising from the 3d3z2−r2 orbital. In this case,
the d9 state has energy εd + 2εdz

+ 2εp + 2εpz
+ 3U − 5J

(see, e.g., Table II of Ref. 60); the d10 state has energy
2εd + 2εdz

+ 2εp + 2εpz
+ 6U − 10J and the two-hole state

nearest in energy is the d9L state, the energy of which
is εd + 2εdz

+ εp + 2εpz
+ 3U − 5J . The physical charge-

transfer energy is thus

E(d10) + E(d9L) − 2E(d9) = 3U − 5J − (εp − εd )

= U − (εp − εd − 2U + 5J )

(8)

shifted by 2U − 5J relative to the three-band model. The
spectra presented below show that six-band models with
the same value of εp − εd − 2U + 5J have the same energy
splitting between the nonbonding oxygen band and the upper
Hubbard band, and that this splitting is also the same as would
be found in a three-band model with charge-transfer energy
εp − εd .

The solid, dashed, and dashed-dotted lines in Fig. 2 show
the phase boundaries calculated from the T -phase six-band

7

7.5

8

8.5

9

9.5

10

0 1 2 3 4 5 6 7
εp-εd-2U+5J [eV] (6-band model)

εp-εd [eV] (3-band model)

U
 [e

V
]

Insulator

Metal

J=0
J=0.5eV

J=1eV

FIG. 2. (Color online) Metal-insulator phase diagram calculated
in space of interaction strength U and p − d energy splitting
εp − εd at carrier density of one hole per unit cell for the
six-band model in the T phase at J values indicated (lower
x axis, solid, dashed, and dashed-dotted lines) and compared to
the previously published (Ref. 32) phase diagram for the three-band
model (shaded area, green online; upper x axis). The metal-insulator
phase transition is first order, with a region of metastability. The
phase diagram shows the limit of stability of the metallic phase �c2

as the left-hand lines (six-band case) or left boundary of shaded region
(three-band case) and the limit of stability of the insulating phase �c1

as the right-hand lines (six-band case) or right boundary of shaded
area (three-band case).
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model for three different values of J . The metal-insulator phase
transition is first order32–34 with a coexistence region. �c2, the
limit of stability of the metallic phase, is indicated by the
left-hand lines in Fig. 2. The limit of stability of the insulating
phase is denoted by �c1 and is indicated by the right-hand
lines. Once the Hartree shift is removed, the Hunds coupling
J is seen to have a minor effect on the location of the phase
boundary and the width of the crossover regions, although the
crossover region is slightly narrower for larger J .

The shaded area (green online) shows previously
published32 results for the coexistence region of the three-band
model: the left boundary is �c2 and the right boundary is �c1.
Even after the Hartree shift is removed, the phase boundaries
are displaced significantly, and the coexistence regime is wider.
Some of the difference in width arises because the three-band
model could be studied to lower temperature (0.025 eV) than
the six-band model, but the difference is larger than the thermal
effect. While a small portion of the difference in location of
the phase boundary arises from the difference in Hartree shift
arising from small differences in the occupancy of the dx2−y2

orbitals, the majority of the change is due to non-Hartree
many-body effects. In essence, in the six-band model, the
insulating phase remains stable down to weaker values of
the effective correlation strength than in the three-band model.
We do not have a definitive explanation of this finding at this
stage; further clarification of this issue is important.

This physics is also seen in the spectral functions, presented
in Fig. 3 for the six-band model in the undoped case for
the T [panel (a)] and T ′ [panel (b)] structures at parameters
corresponding to the charge-transfer insulator (upper panels)
and paramagnetic metal (lower panels) phases. The results
are obtained by maximum-entropy analytic continuation of
the self-energies, following Ref. 63. We note that analytic
continuation produces very wide tail down from −10 eV, which

we do not present since it is subject to large uncertainties while
being unimportant for our discussion.

The spectra of the dx2−y2 and the px,y orbitals are
similar to those of the three-band model with comparable
parameters.32,33 The new features are the d3z2−r2 and (for
the T structure) the apical oxygen pz orbital. The spectrum
of the pz orbital includes a δ function centered at ω = εpz

because, as noted above, one linear combination of the pz

orbital decouples. The two sidebands in the pz spectrum are
the bonding and antibonding portions of the orbital that couple.
Inclusion of oxygen-oxygen hopping between different unit
cells in the z direction would broaden the δ function, however,
this effect is not important for our considerations.

The hybridization to the pz orbitals is evident in the
spectrum of the d3z2−r2 orbital: it has mainly a two-peak
feature, which both locate at around the same place as the
sidebands of the pz orbitals, although their strengths are quite
different. The onset of the d3z2−r2 spectrum is at a lower energy
(around 1 eV) than that of the dx2−y2 , which is due to the
fact that the lattice is distorted in the c direction away from
the octahedron. The lower part of panel (a) shows the result
calculated at � = �c1. The ground state is marginally metallic
and one can see that a narrow quasiparticle peak appears at the
Fermi energy.

Panel (b) of Fig. 3 shows the result in the T ′ phase, where
the apical oxygen orbitals are absent. We see similarities in
the lineshape of the dx2−y2 and px,y orbitals. However, the
d3z2−r2 spectrum is quite different: it now has a single peak
centered at an energy slightly above εp, with its onset similar
to panel (a). This is a main change induced by the absence of
apical oxygen sites. The quasiparticle peak in the lower part
of panel (b) is more broad than that of panel (a), indicating
that in this case the system is less strongly correlated. Further
support for this notion comes from the values of the imaginary
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FIG. 3. (Color online) Momentum-integrated spectral functions of the six-band model in the undoped case (one hole per unit cell) for (a) the
T phase and (b) T ′ phase. The Fermi energy is at zero. Panel (a): upper part shows the � = 21.6 eV (<�c2) result and the lower part shows the
� = 22.8 eV (=�c1) result. Panel (b): upper part shows the � = 21.8 eV (<�c2) result and the lower part shows the � = 22.8 eV (=�c1) result.
Parameters: U = 9 eV, J = 0, T = 0.1 eV. Panel (a) upper part: εd = εdz

= −26.3 eV, εp = εpz
= −4.7 eV; lower part εd = εdz

= −26.9 eV,
εp = εpz

= −4.1 eV. Panel (b) upper part: εd = εdz
= −26.2 eV, εp = −4.4 eV; lower part εd = εdz

= −27.1 eV, εp = −4.3 eV.
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part of Matsubara-axis self-energy; here, larger magnitudes
correspond to larger values of the effective correlation strength.
We find, for example, that at a doping of around x = 0.1, Im�

at the lowest Matsubara frequency is 1.6 eV for the T phase
and 1.3 eV for the T ′ phase.

In constructing the figures, we selected values of � such that
� − �c2 was the same for the T and T ′ phase calculations.
We can define the charge-transfer energy empirically as the
energy difference between the nonbonding oxygen peak and
the lowest peak in the upper Hubbard band and the splittings
in panels (a) and (b) are seen to be very similar. Comparison
of the upper panels of figures (a) and (b) shows that the gap in
the T ′-phase calculation is smaller than the gap in the T -phase
calculation, indicating that for comparable parameters, the T ′
phase is less strongly correlated than the T phase. Comparison
of the upper panels of Figs. 3(a) and 3(b) here to Fig. 2(a) of
Ref. 32 shows that a separation of 7 eV leads to metallic
behavior in the three-band model, but insulating behavior in
the six-band model. Examination of data at a distance from
the phase boundary in the insulating regime shows that the
insulating gap is generically smaller in the six-band case than
it is in the three-band case.

IV. d-d EXCITON SPECTRUM

In this section, we discuss the d-d exciton spectrum. The
corresponding correlation function is defined as

D(τ ) = 〈Tτ [Ô(τ )Ô†(0)]〉, (9)

where the operator Ô is either the singlet exciton operator

1√
2

(d†
‖↑dz↑ + d

†
‖↓dz↓), (10)

or one of the triplet exciton operators

d
†
‖↑dz↓, (11)

1√
2

(d†
‖↑dz↑ − d

†
‖↓dz↓), (12)

d
†
‖↓dz↑. (13)

Here, the d‖ and dz operators have the same meaning as in
Eq. (5).

We have used the CT-HYB procedure to measure D(τ )
[Eq. (9)] in imaginary time. We note that, at J = 0, the
singlet and triplet do not split, as expected. However, since
we are primarily concerned with the one-hole state, even at
nonzero J (up to 1 eV), the difference between the singlet
and triplet is negligible. Moreover, we have found (not shown)
that J induces a very small effect on the exciton correlation
function. We have cross-checked the lack of J dependence
by exactly diagonalizing an isolated CuO6 octahedron. We
therefore focus on the J = 0 results only. Figure 4 shows
the results of excitonic correlation functions for the T (upper
panel) and T ′ (lower panel) structures, on the imaginary-time
axis on a semilog scale for metallic (blue traces) and insulating
(red traces) situations.

D(τ ) is related to the real-axis spectral function D(ω) by

D(τ ) =
∫

dω
D(ω)e−τω

1 − e−βω
. (14)

In the regime near τ = β, D(τ ) drops exponentially, as
expected if the real-axis exciton spectrum includes a δ-
function-like peak. To find the energy of the peak, we perform a
fit of D(τ ) to D(β) exp(−δωτ ), where δω indicates the binding
energy of the peak. The results are shown on Fig. 4 with
the fitting parameter δω indicated. We note that, although for
insulating cases the exciton spectra peaks inside the optical
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FIG. 4. (Color online) Excitonic correlation functions on imaginary-time axis D(τ ) of the six-band model in the undoped case for
(a) the T phase and (b) T ′ phase. Note the semilog scale. Two different � values with a � < �c2 (empty square with lines, red online) and a
� = �c1 (filled circle with lines, blue online) are shown in each panel. The parameters are the same as in Fig. 3. Lines without symbols: a fit
to D(β) exp(−δωτ ). The fitted δω is indicated on the figure.
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gap, in the metallic cases, the exciton has a peak with an even
larger gap, meaning that it moves to a slightly higher binding
energy.

The correlation function D(τ ) calculated from CT-HYB
is essentially exact: it includes all quantum fluctuations. It is
interesting to view this correlation function in diagrammatic
terms as a combination of bubble diagram (convolution
of interacting Green’s function) and vertex correction. The
exciton corresponds to moving an electron from a d3z2−r2

orbital to a dx2−y2 orbital. The corresponding bubble diagram
is

Bd (i�n) = − 1

β

∑
ωn

Gd‖ (iωn)Gdz
(iωn + i�n) (15)

or, on the real-frequency axis,

Bd (ω) =
∫

dω′Ad‖(ω
′)Adz

(ω + ω′)[f (ω + ω′) − f (ω′)],

(16)

where f (ω) is the Fermi function. Bd (ω) is the joint d density
of states of the dx2−y2 and d3z2−r2 orbitals.

It will be useful in our subsequent discussion to define the
total joint density of states as

Btot(ω) =
∫

dω′Atot(ω
′)Atot(ω + ω′)[f (ω + ω′) − f (ω′)],

(17)

where Atot(ω) is the total spectral function.
In order to compare with these real-frequency functions,

we have analytically continued the D(τ ) data using the
maximum entropy method.64 Results are presented in Fig. 5.
The broadening of D(ω) is due to the uncertainty of the analytic
continuation procedure, but the center of the peak is consistent

with the exponential fit shown in Fig. 4. It is clear from Fig. 5
that, in the insulating case, the exciton spectrum has a peak
inside the optical gap, while in the metallic case where the
optical gap is closed, the exciton spectrum peak continues to
exist as a reasonably well-defined excitation at a slightly higher
binding energy.

The exciton energy we find is not consistent with the 0.5-eV
scale proposed in Ref. 42 but is reasonably consistent with the
discussion in Refs. 40,41,43 and 44.

V. OPTICAL CONDUCTIVITY

In this section, we discuss the optical conductivities in
order to determine which features in the optical spectrum
may relate to the d orbitals of interest here. Also, previous
calculations32,33 based on the three-band model revealed a
strong discrepancy between theory and experiment, with the
theoretically calculated conductivity much smaller than the
measured one in the region of the charge-transfer gap edge.
Reference 38 argued that inclusion of the d3z2−r2 orbital could
resolve this discrepancy.

The in-plane optical conductivities can be calculated from65

σ (�) = 2e2

h̄c0

∫ ∞

−∞

dω

π

∫
d2k

(2π )2

f (ω) − f (ω + �)

�

× Tr[j(k)A(ω + �,k)j(k)A(ω,k)], (18)

where c0 is the c-axis lattice parameter, f (ω) is the Fermi
function, the k integral is over the full Brillouin zone with k
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FIG. 5. (Color online) Exciton spectrum (dashed line, blue online) calculated for six-band model at carrier concentration of one hole per
unit cell for (a) the T structure (b) and T ′ structure and compared to d3z2−r2/dx2−y2 joint density of states Bd (solid line, red online) and total
joint density of states Btot (dashed-dotted line, magenta online). The parameters are indicated on the figure and are the same as in Fig. 3. Note
that the spectra have been rescaled to facilitate comparison of structures.
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scaled to π divided by the in-plane lattice parameter a, and
A(ω,k) = [

G(ω,k) − G†(ω,k)
]
/(2i) is the electron spectral

function, a matrix in orbital space. We have chosen our Fourier
transform so that the in-plane current operator is simply a k

derivative of the Hamiltonian matrix j = ∂H/∂kx .33 The extra
terms discussed by Ref. 66 are not needed.

The c-axis optical conductivity can be calculated in a similar
manner using the current operator

jc =
(

c0

a

)2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 − i
2 tpzdz

− i
2 tpzdz

0 0 0 0 tppz
sin kx

2 tppz
sin kx

2

0 0 0 0 tppz
sin ky

2 tppz
sin ky

2

0 i
2 tpzdz

tppz
sin kx

2 tppz
sin ky

2 0 itpzpz

0 i
2 tpzdz

tppz
sin kx

2 tppz
sin ky

2 −itpzpz
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

and in La2CuO4, c0/a ∼ 1.3.
Figure 6 shows the calculated in-plane optical conductivity

for the T and T ′ phases. In the two calculations, the �

values are chosen to be at approximately the same distance
from the insulating phase boundary �c2 so the gap sizes
are quite similar. The two systems give very similar in-
plane conductivities. Further, the results are very similar to
those obtained from the three-band model:32,33 an onset
of absorption above around 1.8 eV and a strong absorp-
tion at energy between 6 and 8 eV. The rise in the 3–5
eV range is due to the effect of the d3z2−r2 orbital. The
introduction of additional orbitals does not increase the
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FIG. 6. (Color online) In-plane optical conductivities calculated
for the T and T ′ phases in the undoped case at � values with
similar distances below the insulating boundary �c2. U = 9 eV and
T = 0.1 eV. Parameters: T phase: J = 0 (red solid line), � = 21.6
eV, εd = εdz

= −26.3 eV, εp = εpz
= −4.7 eV. J = 0.5 eV (blue

dashed line), � = 19.2 eV, εd = εdz
= −23.8 eV, εp = εpz

= −4.6
eV. J = 1 eV (magenta dashed-dotted line), � = 16.8 eV, εd = εdz

=
−21.3 eV, εp = εpz

= −4.5 eV. T ′ phase (black dotted line): J = 0,
� = 21.8 eV, εd = εdz

= −26.2 eV, εp = −4.4 eV.

conductivity magnitude in the frequency range immediately
above the gap (� ∼ 2–3 eV) significantly: the disagreement
with experiment previously noted in the three-band model32,33

remains. These results do not agree with results presented in
Ref. 38.

Figure 7 shows the results of the c-axis optical conductivity
calculated in the T phase. The overall magnitude is at least
an order of magnitude smaller than that of the in-plane
conductivity, which is a consequence of a much smaller
hybridization strength and smaller number of relevant orbitals
in the c direction. In the 2–4 eV range, the conductivity is
nonzero but very small. At 4 eV, the conductivity starts to rise,
signaling the onset of transitions involving the d3z2−r2 orbitals.
Between 6 and 8 eV, there are two strong peaks, which we
consider to be the transition between the upper Hubbard band
(which has a double peak structure) and the nonbonding pz

band.
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FIG. 7. (Color online) c-axis optical conductivities calculated for
the T phase in the undoped case at � values with similar distances
below the insulating boundary �c2. Parameters are the same as in
Fig. 6.
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FIG. 8. (Color online) Number of holes on each orbital as a
function of the total hole doping per unit cell, calculated for the
six-band model in the T phase. Upper panel: � = 21.6 eV (<�c2).
Lower panel: � = 22.8 eV (=�c1). Note that the number of holes
on the px and py orbitals of the in-plane oxygen sites are combined
as px + py (shown as blue squares with long dashed lines), and the
number of holes on the pz orbital of the above- and below-plane
apical oxygen sites are similarly combined as 2 ∗ pz (shown as green
diamonds with short dashed lines). Therefore, at a given doping value,
the sum over the value at the four curves gives the correct total hole
doping per unit cell.

VI. ORBITAL CHARACTER OF DOPED HOLES AND
SHAPE OF FERMI SURFACES

In this section, we consider the variation with doping of
the orbital character of the low-lying states. This section is
motivated by the possibility that, above a critical doping, the
d3z2−r2 band begins to become occupied.

Figure 8 shows the doping dependence of the number of
holes on each orbital per unit cell. From the spectral functions
shown in Fig. 3, one would expect that the number of holes on
the d3z2−r2 orbital will dramatically increase when the chemical
potential is reduced below a certain point. The theoretical
arguments of Ref. 47 also suggest that this will occur. However,
the actual DMFT calculation is inconsistent with the rigid
band picture. We see that while the total number of holes in
the d band increases linearly with doping, the hole density
on the d3z2−r2/pz complex remains very small, even at very
high doping levels. Thus, the spectra deform as the chemical
potential is reduced, in such a way that the d3z2−r2 orbital
remains far below the Fermi level.

To gain further insight into the doping dependence, we plot
the Fermi surfaces of the six-band model in the T phase in
Fig. 9. Panels (a) and (b) shows results obtained for parameters
such that at half-filling, the model is in its paramagnetic
insulating phase, while panels (c) and (d) show results obtained
for parameters such that at half-filling, the model is in the
paramagnetic metallic phase. The hole-doping values of panels
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FIG. 9. (Color online) Fermi surfaces of the six-band model
in the T phase. Panel (a): � = 21.6 eV (<�c2), hole doping x =
0.10. Panel (b): � = 21.6 eV, x = 0.35. Panel (c): � = 22.8 eV
(=�c1), x = 0.08. Panel (d): � = 22.8 eV, x = 0.32. Parameters:
U = 9 eV, T = 0.1 eV. Panel (a): εd = εdz

= −25.3 eV, εp = εpz
=

−3.7 eV. Panel (b): εd = εdz
= −24.5 eV, εp = εpz

= −2.9 eV. Panel
(c): εd = εdz

= −26.3 eV, εp = εpz
= −3.5 eV. Panel (d): εd = εdz

=
−25.5 eV, εp = εpz
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(a) and (c) are selected around 0.1 and panels (b) and (d)
around 0.35. We see that the Fermi surface includes only
one sheet in all cases, consistent with the discussion above
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Lower panel: � = 22.8 eV (=�c1). Note that the number of holes
on px and py orbital of the in-plane oxygen sites are combined as
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014530-8



d3z2−r2 ORBITAL IN HIGH-Tc CUPRATES: . . . PHYSICAL REVIEW B 84, 014530 (2011)

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

kx

k y

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

kx
k y

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

kx

k y

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

kx

k y

ππ

π π
π

π

π
π

(a) (b)

(c) (d)

FIG. 11. (Color online) Fermi surfaces of the six-band model
in the T ′ phase. Panel (a): � = 21.8 eV (<�c2), hole doping
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= −25.3 eV, εp =
−3.5 eV. Panel (b): εd = εdz

= −24.5 eV, εp = −2.7 eV. Panel
(c): εd = εdz

= −26.1 eV, εp = −3.3 eV. Panel (d): εd = εdz
=
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that the crossing of the Fermi energy into the d3z2−r2 band
is avoided. For the smaller doping value, the Fermi surface
is approximately a circle enclosing (π,π ), and for the larger
doping, the Fermi surface is star shaped enclosing the (0,0)
point. Thus, in disagreement with early slave boson studies,47

we find that in the six-band model, there is no physically
relevant doping at which holes occupy d3z2−r2/pz orbitals as
separate bands, and the Fermi surface remains one sheeted.
However, we do note that the van Hove singularity happens
at around hole doping value x ≈ 0.28, an intermediate value
between what is shown in Figs. 9(a)–9(d).

We have repeated the entire analysis for the T ′ structure,
finding very similar results but with even smaller occupancy
of the d3z2−r2 orbitals (see the results shown in Fig. 10). This
is understandable as the hybridization to the d3z2−r2 orbital is
much weaker once pz orbitals are removed. We also plot the
Fermi surface in Fig. 11. As for the T phase, the Fermi surface
has only one sheet, and the d3z2−r2 orbitals are not populated as
separate bands. We note that the van Hove singularity happens
at around hole doping value x ≈ 0.37, which is approximately
a 0.1 shift in doping compared to the T phase.

VII. CONCLUSION

In this paper, we have employed the single-site DMFT
method to study a six-band model, which includes copper
dx2−y2 , d3z2−r2 , in-plane oxygen px,y , and (in the T -phase
structure) the apical oxygen pz orbitals. This model is more
chemically realistic than the three-band or one-band models

frequently considered. We considered two structures: the T

phase, appropriate to La2CuO4, and the T ′ phase, appropri-
ate to the infinite-layer cuprates and to the electron-doped
materials such as Nd2CuO4. From the model point of view,
these structures differ in whether or not apical oxygen pz

orbitals are incluced. We have mapped out the metal- and
charge-transfer-insulator phase diagram, finding that after
the atomic-limit Hartree shift is accounted for, the phase
boundaries are systematically shifted to the metallic regime
compared to that of the three-band model. Thus, we conclude
that incorporating the d3z2−r2 orbital expands the insulating
regime of the system.

The spectral functions are calculated by analytic continua-
tion. The dx2−y2 and px,y spectra are observed to be similar to
that of the three-band model. In the T phase, the nonbonding pz

band appears as a δ function and two sidebands corresponds
to the bonding apical oxygen bands. Hybridization to these
orbitals means that the d3z2−r2 has a double-peak structure. In
contrast, in the T ′ phase, the spectrum of d3z2−r2 orbital has a
single peak. In the insulating regime, we have found that the
insulating gap is generically smaller in the six-band model
than in the three-band model, for comparable correlation
parameters.

We have calculated the d-d exciton spectrum, finding a
sharp exciton line, which should be visible in experiments. In
the insulating phase, the exciton states are inside the charge-
transfer gap. In the metallic phase, the exciton states are at
slightly higher binding energy, but although they overlap in
energy with the tails of the Hubbard bands, the broadening is
small.

Both in-plane and c-axis optical conductivity are calculated.
We have found, in disagreement with previous publication,38

that inclusion of the additional d3z2−r2 and apical oxygen bands
does not fix the problem of the near-gap magnitude. The c-axis
conductivity is much weaker and the absorption is very small in
the frequency range 2–4 eV. Above 4 eV, there is a relatively
noticeable absorption due to transition from the decoupled
apical oxygen bands to the upper Hubbard band.

We have studied the distribution of doped holes onto
different orbitals. We have shown that under no physically
relevant doping values that the d3z2−r2 orbitals (and pz orbitals
in the T phase) are populated as a separate band. The Fermi
surface only contains one sheet. This is in disagreement with
previous slave boson studies.47
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APPENDIX

In this Appendix, we present the “six-band+s” model
involving an additional Cu 4s orbital in each unit cell. We take
the basis as |ψ〉 = (

d‖k,dzk,sk,pxk,pyk,p
above
zk ,pbelow

zk

)
. Then,

the Hamiltonian is a 7 × 7 matrix, which may be separated to
Cu and O parts as

H6-band+s =
⎛
⎝ HCu

6-band+s Hhyb
6-band+s(

Hhyb
6-band+s

)†
HO

6-band+s

⎞
⎠ , (A1)

where

HCu
6-band+s =

⎛
⎜⎝

εd 0 0

0 εdz
0

0 0 εs

⎞
⎟⎠ , (A2)

HO
6-band+s =

⎛
⎜⎜⎜⎝

εp 0 0 0

0 εp 0 0

0 0 εpz
0

0 0 0 εpz

⎞
⎟⎟⎟⎠ , (A3)

and the hybridization between Cu and O orbitals:

Hhyb
6-band+s

=

⎛
⎜⎝

2itpd sin kx

2 −2itpd sin ky

2 0 0

−2itpdz
sin kx

2 −2itpdz
sin ky

2 tpzdz
−tpzdz

2itps sin kx

2 2itps sin ky

2 tpzs −tpzs

⎞
⎟⎠ .

(A4)

The downfolding50 of Eq. (A1) leads to the Hamiltonian
considered in the main text. The effective oxygen-oxygen
hopping amplitudes are

tpp = t2
ps

εs − εF

, (A5)

tppz
= tps · tpzs

εs − εF

, (A6)

tpzpz
= t2

pzs

εs − εF

. (A7)

Note that this implies that tppz
/tpp = tpzpz

/tppz
, which has

been used in obtaining the value of tpzpz
in the main text.
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