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Pinning of charge and flux solitons in disordered Josephson junction arrays
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We study the depinning of flux and charge solitons in discrete Josephson junction arrays with magnetic and
charge inhomogeneities, respectively. The dependencies of soliton depinning force on the discreteness parameter
a of the system and on the magnitude of disorder are calculated numerically and analytically. We obtain that for
small values of discreteness (a < 1), magnetic (charge) inhomogeneities lead to a substantial increase of soliton
depinning force with increasing the soliton size. In the opposite limit of a � 1, the Peierls-Nabarro potential
induced by discreteness of array, results in a strong decrease of the depinning force with the size of soliton. Thus,
the dependence of pinning force on 1/a displays a pronounced minimum, and its position is determined by a
strength of disorder. We find the optimal charge soliton size, which is favorable for overcoming pinning induced
by disorder. In case of small but finite disorder, increase in the soliton size finally leads to a destruction of the
soliton by strong spatial fluctuations.
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I. INTRODUCTION

Josephson coupled systems as parallel and series Josephson
junction arrays meet with high interest due to their unique
properties. One of these properties is the existence of topolog-
ical flux solitons associated with vortices in long Josephson
junctions and parallel Josephson arrays. Such a soliton (also
called fluxon) carries a magnetic flux equal to the flux quantum
�0 = h/(2e) = 2.07 · 10−15 Wb.1,2 A single fluxon can travel
along the junction with a maximum velocity about 30 times
smaller than the speed of light in vacuum. Fluxons are used
in many applications such as flux-flow oscillators,3 frequency
clocks4 and qubit readout techniques.5

Due to the fundamental phase-charge duality in Josephson
systems, analogous topological excitations dual to fluxons
are assumed to exist in charge-governed series arrays of
small Josephson junctions. These excitations are thought to
be charge solitons, each of them carrying charge of a single
Cooper pair.6 Observation of such solitons might serve as
another beautiful proof of the duality principle, and help to
close the metrology triangle by implementing the charge-
frequency standard.

Experimental efforts to search for charge solitons in arrays
of Josephson junctions have not yet furnished direct evidence
of their existence.7–9 It is clear, that the interaction of a charge
propagating through an array with static parasitic background
charges is one of the major problems in such systems. This
problem is common to all single electron devices, such as e.g.
charge qubits and single electron transistors.10–12 Background
offset charges in the substrate induce randomly distributed
electrical polarization in single-electron devices. Due to their
extreme charge sensitivity spatial charge disorder results in a
loss of functionality. It is extremely difficult to protect circuits
against the influence of background charges in the substrate.
However, there is hope to find regimes where the influence of
parasitic disordered charges is negligible or, at least, minimal.
Parasitic background charges in the substrate could result
in strong pinning of charge solitons, which may effectively
prevent their observation. In this paper, we will focus on
the optimal range of parameters for making traveling charge

solitons in discrete arrays of Josephson junctions insensitive
to disorder. The main idea is that a Cooper pair charge
soliton spread over many array’s islands would not suffer from
the locally trapped background charges as much as compact
single-charge solitons do.

Flux solitons have less of a problem with pinning on
random trapped fluxes due to the absence of spread magnetic
monopoles. However, Abrikosov vortices, trapped in the
superconducting electrodes of the junctions, can create exactly
the same type of disorder for fluxons as background charges
do for charge solitons. The depinning problem will be first
discussed and solved for a well-known case of flux solitons
and then mapped to the charge case. This approach is possible
due to the duality principle between these two systems.

II. FLUX MODEL

One of the problems known to be associated with the prac-
tical use of fluxons in long junctions and parallel Josephson
arrays (see Fig. 1(a)) is their pinning on random trapped
magnetic fluxes. The random flux can be induced by e.g. by
Abrikosov vortices randomly trapped in superconducting elec-
trodes of the array (see Fig. 1(b)).13–16 The pinned fluxon is in
a metastable state until the bias current reaches a certain value
at which the potential barrier vanishes and the fluxon escapes,
switching a Josephson array from the superconducting to a
finite voltage state. Thus, we are considering the depinning of
a single fluxon in the presence of random fluxes spread along
the array. This situation is different from the disorder models
studied earlier, for instance,17,18 dealing with the spread of
local critical currents.

To describe the dynamics of magnetic flux in parallel
Josephson junction arrays in the presence of strong magnetic
inhomogeneities, the conventional perturbed sine-Gordon
model is used, which take the presence of random trapped
fluxes into account:

∂2φi

∂t2
+α

∂φi

∂t
− φi+1−2φi +φi−1

a2
= η − sin(φi) + θi − θi−1,

(1)
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here φi is the superconducting phase difference on the
i-th junction, η is the bias current normalized to the crit-
ical current, α is the damping, a = d/λJ is the discrete-
ness parameter, given by the distance between neighboring
Josephson junctions d, normalized to the mean Josephson
length λJ , θi = Ii/Ic is the screening current created by
the random flux �i pinned in between the i-th and the
(i-1)-th junction, normalized to the critical current Ic of the
junction.

We take here an assumption that the maximum amplitude
of possible random flux is equal to the half-flux quantum �i =
�0/2. The reason for this constraint is that larger random fluxes
would be accompanied by emerging fluxons propagating along
the array.19,20 These random fluxes �i are homogeneously
distributed in the range −�A � �i � �A with the maximum
possible disorder amplitude �A = �0/2. Let us now consider
the case when both the amplitude of flux disorder �A and
critical current density per unit length jc are independent of the
discreteness parameter a = d/λJ of the array. This somewhat
artificial condition allows to directly map the flux case to the
charge system considered below.

A random current Ii is linked to a trapped flux �i through
�i = LIi , where L is the inductance of a single array cell and
the screening current Ii flows around it, as shown in Fig. 1.
This can be rewritten as �i = Lθijcd. We notice that the
inductance L is approximately proportional to the distance
between junctions d. The deviation from this dependence
is logarithmically small. Taking into account this functional
dependence,

�i

�0
= k · θia

2, (2)

results, where constant k is determined by the geometry of
the array cells. Hence, keeping the flux disorder amplitude

(a)

(b)

FIG. 1. (Color online) a) Schematic cross section of a discrete
Josephson array with a fluxon inside. b) Schematic cross section of a
discrete Josephson array with a trapped Abrikosov vortex creating a
parasitic random current Ii .

independent of the discreteness leads to the scaling of the
respective screening currents θi inversely proportional to a2.
The same result is obtained in a more formal way when
introducing a random flux in the perturbed sine-Gordon model
by modifying the second order spatial finite difference as
follows:

φi+1 − 2φi + φi−1

a2

−→ φi+1 − 2φi + φi−1 + 2π (�i − �i−1)/�0

a2
. (3)

We choose the constant k in (2) to be 1/2π . The chosen
particular value of k does not restrict any dynamics, but just
makes it easier to compare the flux and charge cases, as will
be shown below. Thus, the normalized screening current θi

inducing flux �i is determined by the following expression:

θi = 2π�i

a2�0
. (4)

In the absence of flux disorder, a fundamental pinning force
of a soliton in a Josephson parallel array emerges from the
so-called Peierls-Nabarro (PN) potential.21 This potential is
due to the restriction of arbitrary soliton translations along
the array, i.e. shifts on a lattice spacing a and its integer
multipliers are allowed only. The smallest energy barrier that
soliton should overcome in order to start moving along the
discrete array is the PN barrier, EPN ≈ A exp(−B/a) (which
is correct for a < 1), where A and B are constants and a is the
discreteness parameter.21 For the case of large discreteness
the potential changes its form and in the limit of a � 1
becomes EPN = 2 − π2

a2 .21 Consequently, the energy barrier
EPN increases monotonically with a and becomes negligible
in the limit of dense arrays, i.e. a � 1.

III. CHARGE MODEL

In the dual case, we consider a series array of small
Josephson junctions with randomly distributed trapped charges
on the islands. The theoretical model of a charge-governed
dynamics of this system has been developed in Refs. 6, 22,
23, 24, 25. In order to describe the dynamics of the Cooper-
pair charge solitons in the array we employ the perturbed
sine-Gordon equation with soliton mass determined by the
Bloch-inductance LB

24:

LB(qi)
∂2qi

∂t2
+ 1

2

∂LB(qi)

∂q

(
∂qi

∂t

)2

+ R
∂qi

∂t

− qi+1 − 2qi + qi−1

C0
= V − 2e

C
sin

(πqi

e

)
, (5)

where qi is the charge variable (its physical meaning is
the charge propagating through the i-th superconducting
island24), V denotes the bias voltage, C is the capacitance
of a single junction, C0 is the capacitance of a super-
conducting grain to the ground (see Fig. 2), and R is
the dissipative term responsible for the damping in charge
arrays.

The static part of equations describing charge motion (5)
in series arrays of superconducting grains can be mapped
exactly to the static part of sine-Gordon equation (1), which
describes the phase-governed junction array. The Josephson
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FIG. 2. (Color online) a) Schematic cross section of a series
Josephson array with a presumable charge soliton inside. The
soliton’s charge distribution over several superconducting grains
is colored red. b) Schematic cross section of the discrete junction
array with a background charge inducing a parasitic charge on the
superconducting island itself.

energy EJ = Ic�0
2π

here is considered to be equal to or larger

than the charge energy Ec = (2e)2

2C
, i.e. EJ � EC . Under this

condition, the Bloch inductance LB(q) is almost constant.
Hence, mathematical descriptions for charge and flux sine-
Gordon models fully coincide in this regime. This allows
one to establish a direct mapping between the dynamics of
Cooper-pair solitons in series arrays of superconducting grains
and the dynamics of fluxons in parallel Josephson junction
arrays.

In charge-governed series Josephson junction arrays, in-
homogeneities are created by randomly trapped background
charges in the substrate. These charges act through the
capacitance of superconducting islands to the ground C0

and induce parasitic polarization charges Qi on the islands
(see Fig. 2,b). These randomly distributed parasitic charges
are obstacles for Cooper-pair tunneling. We take here an
assumption that these charge offsets are randomly distributed
in the range between −QA and +QA, with the maximum
possible amplitude equaling the single electron charge QA =
e. The reason for this assumption is that charges higher than
|e| would be screened by single electrons tunneling across
the junctions. In terms of Eq. (5), these polarization charges
generate voltage drops Vi = Qi/C0 in the right part of the
equation:

LB(qi)
∂2qi

∂t2
+ 1

2

∂LB(qi)

∂q

(
∂qi

∂t

)2

+ R
∂qi

∂t

− qi+1 − 2qi + qi−1

C0
= V − 2e

C
sin

(
πqi

e

)
+Vi −Vi−1,

(6)

In order to bring Eq. (6) to the same view as Eq. (1), the
charge variable qi → 2πqi/(2e):

L∗
B(qi)

∂2qi

∂t2
+ 1

2

∂L∗
B(qi)

∂q

(
∂qi

∂t

)2

+ R∗ ∂qi

∂t

− qi+1 − 2qi + qi−1

a2
= ν − sin(qi) + μi − μi−1, (7)

where

μi = 2πQi

a22e
(8)

is the normalized random voltage on the i-th island and
ν = V C/(2e). Usually, the voltage drop V (and, hence,
ν) is strongly non-uniform along the system due to the
screening of the external field applied at the array’s boundaries.
Nevertheless, ν is considered to be constant along the array
to facilitate the mapping to Eq. (1). In an experiment such
homogeneous voltage biasing can be achieved by a parallel
chain of capacitors. Note, that the discreteness parameter a for
charge junction arrays is given not just by the physical distance
d (see Fig. 2) between the single junctions, but determined by
the ratio of capacitances a = √

C0/C. The Peierls-Nabarro
potential would occur in charge-governed arrays in same way
it does in flux systems.

IV. NUMERICAL SIMULATIONS

We simulate the depinning of a single fluxon in a discrete
Josephson array using Eq. (1) with the following constraints.
The amplitude of random fluxes trapped between every pair
of junctions is fixed. Fluxes are assumed to be uniformly
distributed within the range −�A � �i � �A, where �A

is the maximum amplitude of a random flux. We define
the disorder strength as γ = 2�A/�0. The corresponding
constraint on random currents θi reads as −γπ/a2 < θi <

γπ/a2. Here, the case γ = 1 corresponds to the maximal
random flux per cell equaling �0/2. The same condition
applies to the charge case (8), with: −γπ/a2 < μi < γπ/a2,
where the case γ = 1 corresponds to the maximum possible
induced charge equaling the single electron charge e.

In order not to confuse the reader by switching our
presentation backwards and forwards between the two models,
the setting will be explained below using the terms of the
flux model, rather than the charge one. The results of the
simulations, however, will be applicable to both the charge
and the flux cases.

We calculate the depinning current using numerical simula-
tions of the discrete sine-Gordon model (1) in the underdamped
regime with α = 0.05 and random currents induced by trapped
fluxes. The numerical solution of Eq. (1) under the open
boundary conditions is computed on the basis of the implicit
finite-difference scheme. Typical values of the time discretiza-
tion step are �t = 0.05 − 0.01, the number of averaging over
different random flux configurations is N = 104.

The simulations run as follows. First, the sine-Gordon
equation is solved to yield a statically stable configuration
with a single fluxon placed in the middle of Josephson junction
array. Then, the bias current is increased step by step until the
fluxon starts to move at a certain current Idep and eventually
reaches the boundary of system. At this moment, the fluxon is
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FIG. 3. (Color online) Fluxon (2π -kink) in the Josephson junc-
tion array with a = 0.5 at different disorder values γ . The same
picture applies to 2e-solitons with the charge disorder. The black
color here indicates the phase difference across the i-th junction
φi , red - the spatial derivative over the phase difference, blue - the
resulting random current εi = θi − θi−1.

completely depinned. To check the outcome, this simulation
is repeated with a slower bias current ramping rate and for
arrays of larger lengths. Once the depinning force obtained
converges, we take the depinning bias value as the final result.

Fig. 3 shows the snapshots of the initial phase distribution
with a soliton inside the array for weak and strong disorders of
random flux γ . It is found that even a relatively large disorder
does not alter the form of the soliton significantly.

Figure 4 shows the calculation results of the depinning
current. The solid line with γ = 0 corresponds to the pinning
force in a discrete system without disorder. This non-zero
pinning force has a fundamental origin in the discrete system
and is due to the Peierls-Nabarro potential which vanishes for
a → 0.21 The curves with higher values of γ correspond to the
non-zero random fluxes ranging from small amplitude disorder
γ = 0.05 to the maximum disorder at γ = 1.

Two regimes of soliton depinning can be distinguished
depending on the discreteness value a. If the parameter a is
rather large, i.e. a > 1, the depinning force is determined by a
Peierls-Nabarro potential and the influence of the randomly
trapped fluxes is negligible. In this regime, the depinning
current decreases with 1/a. Arrays of the smaller discreteness
or, more precisely, a � 0.3, however, exhibit an interesting
regime where the depinning current Idep increases as a function
of 1/a. Here, the Peierls-Nabarro potential is negligible and
the pinning potential for the fluxon is due to the randomly
trapped magnetic fluxes.

FIG. 4. (Color online) Dependence of depinning currents (volt-
ages for charge case) on the inverse discreteness parameter 1/a for
diverse strengths of disorder. The red line for γ = 0 shows the de-
pinning current caused by the Pierles-Nabarro potential α exp(−β/a)
only, with α = 6, β = 5.6.

It is interesting that the behavior of depinning force is a
non-monotonic function of the discreteness a. Below a certain
value of a (which varies with the amplitude of the disorder),
the depinning force increases with 1/a. This is explained by
the fact that �i and Qi remain independent of the discreteness
of the array a. In this case, the standard deviations of the phase
φi and the charge variable qi increase according to (4) and (8),
leading to an increase of the potential barrier for the pinned
soliton. Hence, a non-monotonic behavior of depinning force
is a fingerprint of the kind of the disorder considered, e.g. static
random “topological charges”.

V. THEORY

Next, we provide the quantitative analysis of the soliton
pinning as a function of its size and the magnitude of spatial
disorder. The following analysis is valid for both dual charge
and flux limits discussed above. Here, it will be applied to
a parallel Josephson junction array in the presence of strong
magnetic inhomogeneities, i.e. random magnetic fluxes. Since
the most interesting regime is characterized by the condition
a � 1, we consider the depinning of a single fluxon in a long
Josephson junction, i.e. in the continuous limit of a Josephson
parallel array. In this limit the long Josephson junction is
equivalent to a Josephson parallel array. The total magnetic
energy of the junction subject to an external bias current I can
be expressed as:

E = EJ

∫
dx

{
1

2

[
dϕ(x)

dx

]2

− cos

[
ϕ(x)

+
∫ x

0

dy

a

π�(y)

�0

]
− I

Ic

ϕ(x)

}
, (9)

where EJ is the Josephson energy of the junction, Ic is the
critical current in the absence of inhomogeneities, and the
coordinate x is normalized to λJ . In our particular model,
the random magnetic flux distribution is characterized by a
random function �(x) correlated to a small distance a. As the
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inhomogeneities are considered to be not too strong (a more
precise condition will be obtained later), a standard expression
for the shape of a soliton can be used:

ϕ0(x − x0) = 4 arctan e−(x−x0), (10)

where x0 is the position of its center. Substituting Eq. (10) into
Eq. (9) the soliton pinning force F (x0) = −∂E/∂x0 results as

F (x0) = Ic

2π

∫
dx

dϕ0(x − x0)

dx
sin

[
ϕ0(x − x0)

+
∫ x

x0

dy

a

π�(y)

�0

]
. (11)

Since the average value of F (x0) is zero, we define the
average depinning current as 〈Idep〉 =

√
〈F 2〉, where the sign

〈...〉 means the averaging over the inhomogeneities. A similar
procedure was used in Ref. 18 to analyze the depinning current
in long Josephson junctions with weak inhomogeneities. Thus,
we obtain

F 2(x0) =
(

Ic

2π

)2 ∫
dxdy

2

dϕ0(x − x0)

dx

dϕ0(y − x0)

dy

× cos

[
ϕ0(x − x0)−ϕ0(y − x0)+

∫ y

x

dz

a

π�(z)

�0

]
.

(12)

The random function appearing in Eq. (12) is averaged as
follows:〈

cos

[ ∫ y

x

dz

a

π�(z)

�0

]〉
=

L/a∏
n=1


e

∫ γπ

−γπ

dξn

2γπ
exp

[
i

y/a∑
k=x/a

ξk

]
.

(13)

Here, we assume that the normalized random fluxes ξi =
π�i/�0 are uniformly distributed within the range −γπ and
γπ . Calculating the integrals over ξn yields〈

cos

[ ∫ y

x

dz

a

π�(z)

�0

]〉
= exp

[
− η|x − y|

a

]
, (14)

where the parameter η is determined by the strength of the
inhomogeneities γ :

η =
∣∣∣∣ ln

sin πγ

γπ

∣∣∣∣ � π2γ 2

6
. (15)

Thus, we finally obtain the average value of 〈F 2〉 as

〈F 2〉 =
(

Ic

2π

)2 ∫
dxdy

2

dϕ0(x)

dx

dϕ0(y)

dy
cos[ϕ0(x) − ϕ0(y)]

× exp

[
− η|x − y|

a

]
. (16)

An explicit expression of 〈F 2〉 can be found by the Fourier
transformation of Eq. (16)

〈F 2〉 =
(

Ic

2π

)2 2πη

a

∫ ∞

−∞
dp

[
sech2

(
pπ

2

)

+ cosech2

(
pπ

2

)]
p4

p2 + (η/a)2
. (17)

FIG. 5. (Color online) Comparison between numerical calcula-
tions of depinning currents and analysis, using formula (18) for
different amplitudes of disorder. The Peierls-Nabarro potential is not
taken into account.

Taking into account that all calculations are valid within the
limit of η/a � 1 where the fluxon does not change its form, the
integral over p in Eq. (17) can be calculated and the depinning
current is obtained as follows:

Idep/Ic = 1

π

√
2η

a

[
1 − η

a

]
, η � a � 1. (18)

The dependence of the depinning current on the soliton size
1/a shows an increase that is similar to that previously
obtained in numerics. The numerics and basic formula (18) are
compared in Fig. 5. As expected, the analysis works well only
for small discreteness values a. An agreement with numerical
simulations is rather good for large 1/a.

In order to improve the analysis, the discreteness-induced
Peierls-Nabarro’s pinning force in the form of α exp(−β/a)
(where α and β are numerical parameters, obtained through
the fitting procedure) could be added to the disorder-induced
depinning part with the fitting coefficient f in (18) to make
the analysis work also in the area of large discreteness:

Idep/Ic = f

π

√
2η

a

[
1 − η

a

]
+ α exp(−β/a) (19)

As can be seen from the fit made in Fig. 6, formula (19)
with α = 6, β = 5.6, and f ∼ 0.8 qualitatively describes the
behavior of the depinning force in the range of discreteness
parameter a � 1. It is necessary to mention that this formula
with the corresponding fitting coefficients deviates from the
limit expression Idep/Ic = 1 − π2

2a2 ,21 which is valid for the
case a � 1. This is due to the initial restriction of our analysis
to the regime of medium-to-small discreteness.

There is another intriguing and important fact character-
izing the soliton’s behavior in the junction array with static
inhomogeneities. Some depinning curves in Fig. 4 end earlier
than others. This corresponds to the situation when the disorder
becomes so strong that a single soliton cannot exist inside the
array. In the numerical calculations, this situation manifests
itself by multiple solitons emerging inside the array. The spatial
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FIG. 6. (Color online) Comparison between numerical calcula-
tions of depinning currents and analytics, using formula (19) for
different amplitudes of disorder. The Peierls-Nabarro potential is
taken into account.

dependence of phase (charge variable) becomes extremely
irregular and the ansatz of single soliton depinning is irrelevant.
This gives the lower limit of the discreteness value a, which
depends on the strength of disorder γ . This threshold can
be estimated roughly by the condition of strong fluctuations
athr = η and (15), which yields:

athr = π2γ 2

6
. (20)

One of the important assumptions for the above results is the
absence of correlations of random fluxes (Abrikosov vortices)
or background charges in the neighboring cells. This means

that all results obtained are valid only when the distance
between junctions d is larger than the London penetration
depth (for the flux case) or, for the charge case, than the
charge screening length in a substrate. In the latter case,
the charge screening length distance is roughly of the order
of 10 nm for a weakly doped semiconductor substrate. The
presence of non-local correlations would lead to a smoother
spatial disorder in the array and facilitates depinning of
solitons.

VI. CONCLUSIONS

We have studied the depinning of solitons in the discrete
sine-Gordon system with spatial disorder. The results obtained
apply to both fluxons in parallel arrays of Josephson junctions
and Cooper pair solitons in series arrays of small Josephson
junctions. The dependence of depinning force on both the
discreteness parameter a and the disorder strength γ was
investigated. The considered disorder corresponds to randomly
trapped fluxes in a parallel Josephson array and background
charges in a series array. It was found that for a fixed
magnitude of disorder increase of the soliton size first leads
to a decrease of the pinning force, but then starts to grow as
shown in Fig. 4. Moreover, for arrays close to the continuous
limit, single solitons become unstable under the influence of
disorder.
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