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High-field studies of superconducting fluctuations in high-Tc cuprates:
Evidence for a small gap distinct from the large pseudogap
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We have used large pulsed magnetic fields up to 60 T to suppress the contribution of superconducting
fluctuations (SCFs) to the ab-plane conductivity above Tc in a series of YBa2Cu3O6+x from the deep pseudogapped
state to slight overdoping. Accurate determinations of the SCF contribution to the conductivity versus temperature
and magnetic field have been achieved. Their joint quantitative analyses with respect to Nernst data allow us
to establish that thermal fluctuations following the Ginzburg-Landau scheme are dominant for nearly optimally
doped samples. The deduced coherence length ξ (T ) is in perfect agreement with a Gaussian (Aslamazov-Larkin)
contribution for 1.01Tc � T � 1.2Tc. A phase-fluctuation contribution might be invoked for the most underdoped
samples in a T range which increases when controlled disorder is introduced by electron irradiation. For all
dopings we evidence that the fluctuations are highly damped when increasing T or H . This behavior does
not follow the Ginzburg-Landau approach, which should be independent of the microscopic specificities of the
superconducting state. The data permits us to define a field H ′

c(T ) and a temperature T ′
c above which the SCFs are

fully suppressed. The analysis of the fluctuation magnetoconductance in the Ginzburg-Landau approach allows
us to determine the critical field Hc2(0). The actual values of H ′

c(0) and Hc2(0) are found to be quite similar
and both increase with hole doping. These depairing fields, which are directly connected to the magnitude of
the superconducting gap, do therefore follow the Tc variation which is at odds with the sharp decrease of the
pseudogap T ∗ with increasing hole doping. This is on line with our previous evidence that T ∗ is not the onset
of pairing. So the large gap seen by spectroscopic experiments in the underdoped regime has to be associated
with the pseudogap. We finally propose here a three-dimensional phase diagram including a disorder axis, which
makes it possible to explain most peculiar observations done so far on the diverse cuprate families.
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I. INTRODUCTION

The occurrence of a pseudogap1 in the phase diagram
of high-Tc cuprates has raised many questions which are
still intensely debated. Immediately after its discovery, the
important issue was to know whether it might be connected
to superconductivity (SC). The fact that the onset temperature
T ∗ of the pseudogap has been found quite robust with disorder
contrary to Tc has been a strong indication that the two
phenomena are not directly related.2

While this mainly resulted from quasistatic nuclear mag-
netic resonance (NMR) measurements in the 1990s, a large
amount of new data using energy and/or wave-vector-resolved
spectroscopies have followed during the last 10 years. Scan-
ning tunneling microscopy (STM) experiments revealed first
that the gap structure detected below Tc in underdoped samples
of Bi2Sr2CaCu2O8 (Bi2212) did not totally disappear above,
and transforms into a dip in the density of states.3 From angle-
resolved photoemission spectroscopy (ARPES) experiments,
it was found as well that a gap structure is observed in the
normal state of underdoped samples.4 The energy gap detected
at low T was found to match the Tc variation in overdoped
samples, that is, to increase continuously with decreasing
doping but to continue to increase in the pseudogap state, when
Tc decreases.3 So putting all these observations in perspective
has justified the idea that the pseudogap could be a precursor
pairing state and not an independent crossover or ordering
occurring in the normal state.

This preformed pair scenario has been strengthened by the
observations in the underdoped cuprates of a large positive

Nernst heat transport coefficient well above Tc up to an onset
temperature Tν .5–7 This was attributed to vortices and/or phase
fluctuations of the superconducting order parameter, along
a line suggested initially from finite-frequency conductivity
data.8 Indeed, in these compounds with small superfluid
density ns , it has been proposed that Tc is determined by the
phase stiffness of the superconducting order parameter and
can be much lower than the mean-field critical temperature
T MF

c (Ref. 9). These experiments, together with the observed
diamagnetism above Tc (Refs. 10 and 11) have entertained
the idea that a precursor pairing model could be viable to
explain the pseudogap. However, others suggest that it could
be due to a magnetic order, such as stripes, nematic order, or
orbital currents, which could compete or at least interfere with
SC.12–15

In a previous report, based on the experimental approach
using high magnetic fields to suppress the superconducting
fluctuations (SCFs), which is described in great detail here, we
could determine precisely altogether the onset temperatures T ′

c

of the SCFs and of the pseudogap T ∗within the same set of
transport experiments.16 We have shown there that T ∗ occurs
below the onset of SCF at optimal doping, demonstrating
unambiguously that the pseudogap cannot be a precursor state
for superconducting pairing and has then to be related to a
distinct magnetic order.

This pseudogap issue being settled, it remains that these
Nernst experiments evidence that SC pairing extends above
Tc, which raises important questions about the nature and high
T extension of the SCFs. Indeed, as for thin superconducting
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films the SCFs are expected to extend well above Tc in
two-dimensional (2D) systems as compared to the case of
classical 3D BCS superconductors, where they disappear in a
vanishingly small T range.17 This has initiated a large effort to
study the extension of SCFs in thin metallic films. In particular,
it has been demonstrated that a large Nernst signal remains as
well above Tc (Ref. 18), displaying strong similarities on the
qualitative aspects with what is observed in the cuprates.19

Therefore, a detailed quantitative study of the SCFs in these
systems with short coherence length ξ is highly desirable as
it might help as well to clear some issues concerning the SC
state in high-Tc cuprates.

Since the early days of SC, one of the simplest ways
to study SCFs has been to determine their effect on the
electrical conductivity.17 The fluctuation excess conductivity
has been usually well interpreted in the Ginzburg-Landau (GL)
formalism in terms of Gaussian amplitude fluctuations of the
order parameter.20 Among the different contributions which
can be at play, the Aslamazov-Larkin (AL) term either in 2D
or 3D appear to be the most relevant in high-Tc cuprates.21–24

However, in the majority of experiments reported to date, anal-
yses of the excess conductivity—denoted as paraconductivity
in the AL framework—have been limited to optimally doped
compounds. Indeed, in this case it has been postulated that
the linear T dependence of the resistivity observed in the
normal state can be extrapolated down to low T . The SCF
contribution to the conductivity has been then estimated by
the deviation from this linear behavior. As we demonstrate in
this work such an assumption unavoidably introduces large
errors if the normal-state resistivity deviates from T linear.
Also it is unable to give a reliable estimate of the highest
temperature at which SCFs can be detected as this temperature
is a priori imposed by the analysis. Such a criticism is also valid
for the magnetoconductance studies in which the normal-state
contribution is either totally neglected25–28 or accounted for by
an approximative extrapolation from the high-T normal-state
behavior.29,30

Recently, we have proposed an original method based on the
behavior of the magnetoresistance in high magnetic fields to
determine the field H ′

c and the temperature T ′
c above which the

normal state is completely restored.31 We have insisted on the
fact that T ′

c was indeed a reliable determination of the onset of
SCF. In the present paper we have been able to improve the data
accuracy and to extend the measurements for different hole
dopings. This allowed us to perform a quantitative analysis of
the SCF contribution to the conductivity, and of its T and H

dependence.
After describing the experimental details in Sec. II, we com-

pletely determine the normal-state variations of the transport
properties in Sec. III. We obtain then accurate determinations
of the SCF contribution to the conductivity versus T and
H (Sec. IV) both for slightly overdoped and underdoped
compounds. The incidence on the SCFs of extrinsic controlled
disorder introduced by low-T electron irradiation is studied as
well.

In Sec. V we give evidence that T ′
c is slightly larger than

the onset Tν of Nernst effect we have taken before on the same
samples7 and that H ′

c is comparable to the onset field of SCFs
deduced from Nernst signal or diamagnetic contributions to
the magnetization.11

We then take advantage of this unique set of accurate data
to perform a quantitative analysis of the SCF conductivity
(Sec. VI). By confronting these results to Nernst measure-
ments, we do establish then (Sec. VI B) that, up to 1.1Tc, the
Gaussian AL contribution which is inversely proportional to
ε = ln(T/Tc) explains quantitatively both data around optimal
doping. This approach fails in the case of the most underdoped
sample so that contributions of phase fluctuations might be
invoked there in a small range of temperatures above Tc

(Sec. VI C). Above this range, which increases markedly in
presence of disorder, Gaussian amplitude fluctuations of the
order parameter again dominate. In any case, for all the samples
studied, we obtain an accurate determination of the T depen-
dence of the coherence length ξ (T ) and of its T = 0 limit.

In Sec. VII, we show that the analysis of the excess mag-
netoconductivity in the GL regime allows us to estimate the
upper-critical fields Hc2(0) which are found to increase with
doping, similarly to the H ′

c(0) values. From this observation,
we can conclude that the superconducting gap increases with
doping contrary to the pseudogap which decreases.

In Sec. VIII, we study how the SCFs vanish with increasing
temperature and magnetic field. We find for all our samples that
the SCF magnitude drops sharply at high T to vanish near T ′

c .
We point out that the cutoff which must be invoked to explain
that behavior implies that the density of fluctuating pairs
vanishes at T ′

c . Moreover, (Sec. VIII B) the field dependence
of the SCF conductivity displays a similar and quite robust
exponential dependence in H 2, whatever the hole doping or
the quantity of disorder. This behavior again suggests that T ′

c

and H ′
c(T ) are upper limits fixed by the vanishing of the pair

formation energy.
We then discuss in Sec. IX the results obtained in the present

paper in the context of the large set of data accumulated on
the cuprates in the last decade. We draw there conclusions
on various important aspects of the normal-state and SC
properties and on the incidence of disorder. We confirm the
independence of the pseudogap from the pair formation and
give some clues which might help to clarify the one-gap–two-
gaps dichotomy in these materials.

II. SAMPLES AND MEASUREMENTS

YBa2Cu3O6+x (YBCO) single crystals were grown using
the flux method. Low-resistance contacts were achieved by
evaporating gold pads in a standard four-probe geometry. Sub-
sequent annealings in different atmospheres were performed
in order to get samples with various oxygen contents. We have
studied four different samples labeled following the values
of their critical temperatures Tc taken at the midpoint of the
resistive transition: two underdoped samples UD57 and UD85,
an optimally doped sample OPT93.6, and a slightly overdoped
one OD92.5. The estimate of the hole doping p has been done
using the parabolic relationship between Tc and p (Ref. 32).
This yields oxygen contents of 6.54, 6.8, 6.91, and 6.95,
respectively. Although this is not a totally secure method,33 it
helps at least to proceed comparisons between data on similar
samples. The resistivity curves of the four different samples
are displayed in Fig. 1.

The magnetoresistance (MR) measurements were per-
formed at the LNCMI-Toulouse in a pulsed field magnet up
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FIG. 1. (Color online) Temperature dependences of the resis-
tivites of the four different pure YBCO6+x samples studied.

to 55–60 T. The magnetic field was applied along the c axis
in order to better suppress SC and its polarity was reversed
to eliminate by summation any Hall effect contribution to the
MR determination.

Controlled disorder was introduced by electron irradiation
at low T in optimally doped or underdoped samples with Tc ∼
57 K. This type of irradiation provides an efficient way to
create point defects, copper and oxygen vacancies, in the CuO2

planes, uniformly distributed throughout the samples.34 Their
effect on the transport and superconducting properties have
been extensively studied previously.35–37 Whatever the hole
doping, we have shown that Matthiessen’s rule is well verified
at high temperature, as the high-T parts of the ρ(T ) curves
shift parallel to each other. This confirms that the hole doping
is not significantly modified. This type of irradiation results in
modifications of the superconducting properties very similar
to those obtained with Zn substitution.33 In particular, the rate
of Tc decrease which is around—10 K per defect %—in the
CuO2 plane (Zn impurities or Cu vacancies) in optimally doped
YBCO7 becomes twice larger in underdoped YBCO6.6 (Refs. 2
and 35).

III. HIGH-FIELD MAGNETORESISTANCE:
NORMAL-STATE AND SC CONTRIBUTIONS

Figure 2 shows the tranverse MR curves measured on the
OPT93.6 sample for T ranging from above Tc to 150 K.
Similar curves are obtained for all the samples studied. At
high T , the transverse MR increases as H 2, as better seen in
Fig. 3. Such a magnetic-field dependence has been previously
observed in different cuprates for H � 14 T (Refs. 38–40).
More precisely, in YBCO, Harris et al.39 have shown that
the weak field MR δρn/ρn0 = [ρn(H ) − ρn(0)]/ρn(0) can be
expressed as

δρn(H )/ρn(0) = atransH
2 � (ωcτH )2 (1)

where ωc = eH/m∗ is the cyclotron frequency and τH is a
transverse relaxation time inferred from the Hall angle as
tan(	H ) = ωcτH . Let us notice here that Eq. (1) refers to
the orbital MR coefficient aorb = atrans − along, which would
require the knowledge of along, the longitudinal MR. As this

FIG. 2. (Color online) Resistivity increase normalized to its zero-
field value plotted versus (a) H and (b) H 2 for temperatures above
Tc in the optimally doped sample OPT93.6. For T � 140 K, a H 2

dependence of the MR, represented as dashed lines in (b), is observed
for all values of field. For lower T , it is only seen above a given
magnetic field H ′

c (arrows), which is taken as the threshold field
necessary to completely restore the normal state.

latter has been shown to be negligible by Harris et al.,39

we have assumed here that aorb � atrans. As Hall constant
measurements show that cot(	H ) has a quadratic temperature
dependence, this explains the T −4 behavior of atrans observed
in Ref. 39. The data obtained there in weak magnetic fields
are displayed as open symbols in Fig. 4, for optimally doped
and underdoped YBCO. At sufficiently high temperature, we

FIG. 3. (Color online) Enlarged view of the variation of the MR in
optimally doped sample OPT93.6 which makes it possible to better
visualize the deviations from the H 2 normal-state dependence for
T � 130 K.

014522-3



F. RULLIER-ALBENQUE, H. ALLOUL, AND G. RIKKEN PHYSICAL REVIEW B 84, 014522 (2011)

FIG. 4. (Color online) The MR coefficient atrans measured at 55 T
(solid symbols) is plotted versus T in logarithmic scales and compared
to that obtained at low field and higher T (open symbols), for both
optimally doped OPT93.6 and underdoped UD57. Low-field data in
this latter case are taken from Ref. 39. In both cases the continuity of
the data emphasizes that the magnitude of H has been sufficient to
restore the normal state.

also observe a H 2 variation under high magnetic field in
our samples. This is illustrated by the H 2 fitting curves in
Fig. 2(b) or in Fig. 3 for the OPT93.6 sample. This indicates
that the weak field limit still applies in OPT93.6 up to
55 T.

However, large departures with respect to this quadratic
behavior appear when T is lowered toward Tc. The MR steadily
evolves from a quadratic to a nearly linear field dependence.
As stated in Ref. 31, this evolution can be better viewed in
the plots versus H 2 of Fig. 2(b) or Fig. 3. There it can be
seen that the H 2 variation is still visible for fields exceeding
a T -dependent threshold field H ′

c(T ), which progressively
increases with decreasing T . We attribute the initial faster
increase of δρ/ρ with H to the destruction of the fluctuating
contribution to the conductivity by the applied magnetic field.
In such a case the normal-state MR coefficient atrans can then
be estimated from the slope of δρ/ρ versus H 2 at our highest
available field (55 T). These values of atrans are reported in
Fig. 4 together with the values determined at low field (<8 T)
on the same sample for T � 140 K. We can see there that
the data obtained in high field at low T are in continuity with
those obtained at higher T , which emphasizes the validity of
our analysis and ensures us that we have effectively completely
restored the normal state in high fields for 100 K � T � 140 K
for the optimally doped sample. However, one can notice in
Fig. 4 a small upturn of atrans(T ) for T < 100 K (crossed
squares) which signals that it is no longer possible to totally
suppress the superconducting fluctuations even with 55 T at
97 K, that is, 4 K above Tc.

Similar analyses have been done for the OD92.5 and UD85
samples. The δρ/ρ data obtained for the UD57 sample are
plotted in Fig. 5 versus H or H 2 in a more limited T range. One
can see in Fig. 5(a) the same evolution of the MR as observed
for the OPT92.5 sample, from a quadratic to a nearly linear
field dependence. However, at ∼3 K above Tc, the magnitude
of the MR is about a factor three larger in the UD57 sample
than in the OPT93.6 one. This comes not only from the larger

FIG. 5. (Color online) (a) Field variation of the resistivity for
decreasing temperatures down to 60 K in UD57. (b) The MR is
plotted versus H 2 for 80 K � T � 117 K. The full lines are fitting
curves using Eq. (2) in the high-field range.

transverse MR in the normal state but also from an enhanced
contribution of the SCFs, as we see below.

In such a case one might expect a small saturation of the
normal-state MR at large field which can be expressed as41

δρn/ρn = (ωcτH )2

1 + (ωcτH )2
. (2)

Equation (2) gives better fits to the normal-state data
displayed as full lines in Fig. 5(b) for magnetic fields larger
than H ′

c. From these fits one can deduce the values for
atrans(T ) = (ωcτH/H )2, which are reported in Fig. 4.42 They
are found here again to be in very good agreement with those
obtained in low fields and at higher T by Harris et al.39 The
low-T values of atrans(T ), slightly larger than in our previous
report,31 are indeed consistent with this small saturation of the
MR in the UD57 sample. This analysis improves the accuracy
of the determination of H ′

c(T ) without modifying its magnitude
compared to our former data.31

Let us finally point out that the behavior of the normal-
state MR shown in Fig. 4 is quite similar in the optimal and
underdoped case nearly down to Tc and exhibits no sign of the
reconstruction of Fermi surface which is observed at lower T

for the YBCO6.6 (Refs. 43 and 44). This point is discussed in
more detail in Sec. IX.

014522-4



HIGH-FIELD STUDIES OF SUPERCONDUCTING . . . PHYSICAL REVIEW B 84, 014522 (2011)

IV. SCF CONTRIBUTION TO THE CONDUCTIVITY

We have shown here above that it is possible to fully recover
the normal-state conductivity at temperatures slightly above
Tc when the pulsed field exceeds H ′

c(T ). By extrapolating
the normal-state variations of the resistivity ρn(T ,H ) down
to zero field, one can thus determine the normal-state value of
the resistivity ρn(T ,H ) at each temperature and magnetic field.
Consequently, assuming only that a two fluid model applies, it
is straightforward to extract the zero-field excess conductivity
due to SCFs from


σSF (T ,0) = σ (T ,0) − σn(T ,0) = ρ−1(T ,0) − ρ−1
n (T ,0).

(3)

In the main studies of superconducting fluctuations in
high-Tc cuprates performed up to date, the determination of
the fluctuation excess conductivity has been done in optimally
doped samples by assuming that the linear T dependence
of the normal-state resistivity observed at high T can be
extrapolated down to low temperature. As this assumption can
introduce some controversies in the analysis of SCFs—and we
show below that it is effectively not correct—the study of the
fluctuation magnetoconductivity defined as


σ (T ,H ) = ρ−1(T ,H ) − ρ−1(T ,0) (4)

has been often preferred since no assumption on the T

dependence of the normal-state transport properties is required
in this case.25 Nevertheless, as the corresponding studies
have been performed in rather weak magnetic fields, it
has been always admitted that the normal-state MR can be
neglected,25–28 that is, σn(T ,0) � σn(T ,H ).

However, for the high magnetic fields used in this study, this
assumption is not valid and the normal-state magnetoconduc-
tivity has to be taken into account to deduce the field variation
of the SCF contribution.29,30 Within a two-fluid model, we
simply write


σSF (T ,H ) = σ (T ,H ) − σn(T ,H )

= ρ−1(T ,H ) − ρ−1
n (T ,H ). (5)

From the relations above the measured total variation of the
conductivity is therefore


σSF (T ,H ) = 
σ (T ,H ) + 
σSF (T ,0) − 
σn(T ,H ), (6)

where the normal-state conductivity is


σn(T ,H ) = ρ−1
n (T ,H ) − ρ−1

n (T ,0). (7)

This decomposition, which allows us to obtain 
σSF (T ,H ),
is illustrated in Fig. 6 for MR data taken at a fixed temperature
T = 85 K in UD57.

It is worth emphasizing here that the method developed
in the present work allows us to determine unambiguously
the normal-state contribution in the presence or absence of
magnetic field. We have thus been able to analyze separately
the variation of 
σSF (T ,0) with T and that of 
σSF (T ,H )
with H at each T for different hole dopings.

FIG. 6. (Color online) Decomposition of the magnetoconductiv-
ity −
σ (H ) measured at 85 K for the UD57 sample in a normal-state
contribution and a superconducting contribution. The zero-field value
of 
σSF (H ) gives the value of the paraconductivity at 85 K.

A. Zero-field excess conductivity versus T :
Onset temperature T ′

c

Let us first consider the T dependences of the zero-field
excess conductivities 
SF (T ,0) which are reported in Fig. 7
for the four pure samples considered here. One can notice
that this quantity dies out very fast with increasing T , which
allows us to define an onset temperature T ′

c . Given the noise
level of the experiments, we have chosen as in Ref. 16 to
define T ′

c as the temperature where 
σSF (0) is lower than
1 × 103(� m)−1, as indicated in the inset of Fig. 7. Let us
note that the decrease in 
SF (T ,0) with temperature is much
slower for the most underdoped sample than for the other ones,
so that the extension in temperature of the SCFs is larger in
this sample than for the other ones.

The variation of T ′
c with doping is reported in Fig. 8.

The interesting point is that T ′
c is only sightly dependent

on hole doping and is maximal for optimal doping. We
have also reported in this figure the dependence of the

FIG. 7. (Color online) SC fluctuation contribution to the zero-
field conductivity 
σSF (T ,0) for the four YBCO samples studied
here (Ref. 45). The enlargement of the high-T range shown in the
inset gives an estimate of the accuracy on the determination of T ′

c ,
the onset of SC fluctuations. Lines are guides for the eyes.
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FIG. 8. (Color online) The values of T ′
c (squares) and T  (circles)

are plotted versus the hole doping for the four samples studied. The
solid line indicates the superconducting dome. Contrary to T ′

c that
is rather insensitive to hole doping, T  is found to increase with
decreasing doping and crosses the T ′

c line near optimal doping.16

pseudogap temperature T  whose determination has been done
simultaneously using the same series of experimental data.16

The fact that the T ′
c line crosses the pseudogap line near optimal

doping shows unambiguously that the pseudogap phase cannot
be a precursor state for the superconducting phase.

The quasi-insensitivity of T ′
c to doping observed here

appears very different from what is observed by Nernst or
magnetization measurements in single-layer materials such as
La1−xSrxCuO4 (LSCO) or La-doped Bi2201 for which the
onset temperature of SCFs is strongly dependent on hole
doping with a sharp maximum in the underdoped region.11

We discuss this point in the discussion Sec. IX in conjunction
with the effect of controlled disorder.

B. Field variation of the SF conductivity: Onset field H ′
c

In the same way the variation of 
σSF (T ,H ) with magnetic
field allows us to analyze how the excess conductivity is
destroyed by the applied field. This is exemplified in Fig. 9
for UD85 at 90 K � T � 120 K. We can see that 
σSF (T ,H )
starts to decrease quadratically with H whatever T . This H 2

dependence is clearly visible at the highest T for fields up to
30 T. The same behavior is observed for all the samples studied
in the small temperature range which can be explored by our
method. One can also notice that the accuracy on 
σSF (T ,H )
decreases with increasing field. This is due both to an increase
of the noise induced by the stresses on the magnet at the
highest field values and a much reduced data-acquisition time
in the high-field range. This fixes our noise level at about
1 × 103(� m)−1 at high fields.

We can thus determine the fields H ′
c(T ) at which 
σ

becomes smaller than this value. As T decreases, it becomes
difficult to ascertain that the normal state is fully reached when
H ′

c(T ) becomes comparable to the highest available field. This
makes it difficult to deduce precise values of H ′

c(T ) when they
become larger than ∼45 T.

One can see in Fig. 10 that H ′
c(T ) drops rapidly with

increasing T . For all the samples the variation of H ′
c(T )

appears linear near T ′
c . It is then tempting to use a parabolic

FIG. 9. (Color online) SC fluctuation contribution to the con-
ductivity 
σSF (T ,H ) in UD85 plotted versus H 2. The initial
linear decays displayed as dashed lines visualize the quadratic field
dependence observed for low magnetic fields. The arrows indicate
the threshold fields H ′

c(T ) taken at 
σSF (T ,H ) = 1 × 103(� m)−1.
The plotted curves correspond to increasing temperatures from top to
bottom.

T variation to fit the data as applied for the critical field of
classical superconductors:

H ′
c(T ) = H ′

c(0)[1 − (T/T ′
c )2]. (8)

The fitting curves displayed as dashed lines in Fig. 10 give
correspondingly an indication of the field H ′

c(0) required to
completely suppress the SC fluctuation contribution down to
0 K. It is clear that H ′

c(0) increases with hole doping and
reaches a value as high as ∼150 T at optimal doping.

C. Influence of disorder

In cuprates it is now well established that nonmagnetic
impurity substitutions or in-plane disorder are detrimental to

FIG. 10. (Color online) The field H ′
c at which SC fluctuations

disappear and normal state is fully restored is reported versus T for
the four pure samples studied. Dashed lines represent the fitting curves
to Eq. (8) using data with solid symbols. When H ′

c(T ) � 40T (open
symbols), the data are somewhat underestimated as the maximum
applied field is not sufficient.
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FIG. 11. (Color online) Magnetoresistivity δρ/ρ0 plotted versus
H (a) or H 2 (b) for a UD57 irradiated sample with Tc = 5 K. Dotted
lines give the normal-state behavior restored in high fields. They
parallel each other, which points out that the MR and the scattering
time τ are nearly T independent for strong disorder.

SC and strongly depress Tc, the temperature of establishment
of 3D SC.33 However, it has been shown as well that the SCFs,
as seen by Nernst effect, remain at temperatures much higher
than the 3D Tc in disordered samples.7 So, we expect to detect
paraconductivity contributions well above Tc in the presence of
disorder. Let us also notice that increasing disorder decreases
markedly ωcτH , which ensures that a H 2 dependence up to
55 T is now perfectly verified for the normal-state MR of
irradiated underdoped samples. The magnetoresistivity curves
obtained in a UD57 sample in which Tc has been decreased
down to 5 K are reported in Fig. 11 versus H or H 2.

It is striking to see that even in this low-Tc sample, a
magnetic field larger than 40 T is still necessary to totally sup-
press the superconducting fluctuations at 21 K, that is, 16 K
above Tc. Moreover, we observe that the H 2 term is nearly T

independent, which might be quite reasonable in this highly
disordered sample for which the relaxation time is expected to
become rather T independent. This confirms that the normal-
state behavior is totally restored above the threshold field H ′

c.
The values of 
σ (T ,0) are reported in Fig. 12(a) for

OPT and UD57 samples either pure or irradiated by electron
irradiation at low temperature. We notice that the measured
SC fluctuation conductivity 
σ remains of the same order of
magnitude as that of the pure samples in both cases. Using
the same procedure as described above, we can also determine

FIG. 12. (Color online) Comparison of the SCF conductivity

σSF (T ,0) in (a) and onset field H ′

c(T ) in (b) for pure (solid symbols)
and disordered (open symbols) samples of OPT93.6 (diamonds,
triangles) and UD57 (squares), with the reduced Tc values as indicated
in (a). In (b) dashed lines are the fitting curves using Eq. (8). Data
corresponding to an irradiated OPT sample with Tc = 30 K (open
triangles) have been added (Ref. 46).

H ′
c(T ) for the different samples. The corresponding values

as well as the fitting curves using Eq. (8) are displayed in
Fig. 12(b).

In the case of the most irradiated UD sample with Tc = 5 K,
we have been able to nearly completely suppress SC with
55 T. The fact that H ′

c(T ) can be rather well fitted by Eq. (8)
somehow validates the use of this equation to fit our other
data. In Fig. 13 where the variations of T ′

c and H ′
c(0) are

plotted versus Tc, one can see that both quantities decrease
with increasing disorder. The reduction in T ′

c nearly follows
that in Tc for the underdoped sample while it is slightly larger
for the OPT sample. Consequently, when Tc is decreased
by disorder, the relative range of SCFs with respect to the
value of Tc expands considerably. We also observe that H ′

c(0)
decreases linearly with decreasing Tc, but more rapidly for the
OPT samples than for the UD57 ones. In both cases, even for
samples with very low Tc, magnetic fields as large as 30–60 T
are still necessary to reach H ′

c(0), as can be seen in Fig. 13(b).

V. COMPARISON WITH RESULTS OBTAINED
BY DIFFERENT EXPERIMENTS

We have shown that high field resistivity measurements
above Tc allow us to determine the temperature range as
well as the extension in magnetic field of the fluctuation
excess conductivity. It is thus very interesting to compare our
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FIG. 13. (Color online) Variations of (a) T ′
c and (b) H ′

c(0) for OPT
(diamonds) and UD (squares) pure and disordered samples versus Tc.
Here the Tc value is used to monitor the disorder. The full line in
(a) corresponds to a slope unity which parallels the Tc variation.
Data from Ref. 46 corresponding to irradiated OPT samples with
Tc = 30 K and 1.9 K have been added.

results with those obtained by Nernst effect or magnetic torque
measurements that have been developed for more than 10 years
to probe the presence of SCFs above Tc in high-Tc cuprates.11

A. Onset temperature for SCFs

The temperature ranges of SCFs found here are analogous
to those measured in pure high-Tc cuprates by these other
techniques. For optimally doped YBCO, T ′

c = 135(5) K found
here is in remarkable agreement with the onset obtained from
the diamagnetic response in high fields.11 The variation with
doping is also very similar to that observed in Bi2212 by
Nernst effect or diamagnetic measurements.10 Even though a
very small increase of the onset temperature (from 125 K to
130 K) is found upon underdoping in this latter case, contrary
to our results, which show a small decrease (from 135 K to
120 K) in the same doping range, the important point is that
T ′

c is not found to vary much with doping, contrary to the
pseudogap temperature T ∗.

It is worth noting that the values of T ′
c found here for the

pure compounds are larger than the onsets of Nernst signal
measured previously on the same samples.7 However, one
can see in Fig. 14, where the determinations of Tν and T ′

c

are compared for the OPT93.6 and UD57 samples, that the
criterion used to deduce T ′

c is much more precise than that
for Tν . Indeed, a negative T -dependent contribution of the
normal-state Nernst signal yields a minimum in αxy/B and
hides the real onset of SCFs. It thus appears that the Nernst
effect is not the best probe to detect SCFs in the case of YBCO.

In a general way, the measured onset marks the point at
which instruments lose sensitivity to detect superconducting

FIG. 14. (Color online) Comparison of the onset temperature for
SCFs extracted from Nernst measurements (Tν) and from this work
(T ′

c ) in the same OPT93.6 and UD57 samples. The solid symbols are
for the off-diagonal Peltier conductivity deduced from the analysis of
the Nernst coefficient (Ref. 7) while the open ones are the values of

σSF (T ,0) obtained in this work. The values of Tν (vertical arrows)
had been estimated at temperatures corresponding to the minimal
values of αxy/B.

fluctuations. This can explain results of a recent report in which
the fluctuation excess conductivity measured by the Josephson
effect between an optimally doped YBCO and an underdoped
one with Tc = 61 K, drops very fast and is found to vanish at
�15 K above Tc (Ref. 47). In our case, the excess conductivity
of the UD57 sample is still 5% of its normal-state contribution
at 85 K, that is, 23 K above Tc. Such an explanation might also
account for the much smaller fluctuation range determined
recently by microwave absorption measurements in YBCO or
mercury compounds.48,49

We observe that the gap between Tν and T ′
c is progressively

reduced when disorder is introduced in the samples. This is
due to the fact that the Nernst signal of normal quasiparticles
scales inversely with the scattering rate and thus progressively
vanishes with disorder, which permits a more accurate deter-
mination of Tν . This results in similar values of Tν and T ′

c in
the most irradiated samples.

B. Magnetic field

It is also interesting to compare the H ′
c values found

here to the maximum magnetic field H max necessary to
completely suppress the Nernst or the diamagnetic signals.6,10

Although early reports have argued that H max inferred from
Nernst measurements steeply increases with underdoping in
Bi2212,50 more recent studies have shown that this field
rather increases with doping, in agreement with what we
find here for H ′

c(0). In particular, very large values of H max

have been estimated from torque magnetometry in optimally
doped Bi2212.10 At Tc, H max is equal to 90 T and is thus
quite comparable to the value H ′

c(Tc) = 87 T deduced here
for the OPT93.6 sample from the fitting curve displayed in
Fig. 10.

One can point out that both values of H ′
c(0) and H max are

not determined directly by experiments. Here the H ′
c(T ) line

is only accessible above Tc and the value of H ′
c(0) is obtained

using Eq. (8). For the Nernst (or magnetization) measurements,
the H max values can be only deduced below Tc by taking the
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FIG. 15. (Color online) The maximum fields required to com-
pletely suppress SC at T = 0, as inferred from Nernst, diamagnetism
or transport measurements, are plotted versus the onset of super-
conducting fluctuations for LSCO samples [open diamonds (Ref. 6),
open squares (Ref. 51)], La-Bi2201 [open circles (Ref. 51)], and
YBCO pure or irradiated crystals (this work). While the results for
LSCO, La-Bi2201, and irradiated YBCO samples follow more or less
the same linear dependence (dashed line), the H ′

c(0) values for the
pure UD85, OPT93.6, and OD92.7 are much larger with respect to
their T ′

c .

extrapolated field at which the Nernst (or diamagnetic) signal
should vanish. The fact that similar values of H max and H ′

c(0)
are observed in optimally doped Bi2212 and YBCO gives
some support to these two determinations.

More generally, a linear variation of these field values
versus Tc or T ′

c is found when comparing results obtained in
low Tc materials like LSCO or La-Bi2201 and our irradiated
optimally doped or underdoped YBCO samples as illustrated
in Fig. 15. As already proposed,7,31 this relationship between
Tonset(or T ′

c ) and H max(or H ′
c) leads us to speculate that the

presence of defects, either intrinsically present or intentionally
introduced by irradiation will play here a significant role. It
is worth noting that the parameters found for the pure UD57
sample obey the same quasilinear relationship. However, the
results obtained for our other pure samples differ markedly
from this behavior as larger values of H ′

c with respect to their
T ′

c are found, in agreement with reported H max value for OP
Bi2212.10 This is of course directly evidenced in Figs. 8 and
10, which show that H ′

c increases with hole doping while T ′
c

remains essentially the same.
The observation of very large values of H max well above Tc

has been taken as the sign that superconducting fluctuations
in all high-Tc cuprates originate from vortexlike excitations
in a phase-disordered superconductor, rather than fluctuating
Cooper pairs.11 This appears today to be an overstatement.
Indeed, recent experiments have evidenced that the Nernst
signal in NbSi films can be explained solely in terms of
Gaussian fluctuations even in magnetic fields much larger than
the orbital upper critical field Hc2.18,52 Moreover, it has been
suggested that the Nernst signal of these films could share
some resemblances with those seen in cuprates.19 It is thus
very interesting to compare more quantitatively the evolution

of the excess fluctuation conductivity with temperature and
magnetic field.

VI. QUANTITATIVE ANALYSIS OF THE
SUPERCONDUCTING FLUCTUATIONS

As already pointed out, a lot of studies have been dealing
with the T dependence of the para conductivity in optimally
doped high-Tc cuprates . However, in most experiments the
magnitude of 
σSF deduced from the data is critically de-
pendent on the behavior taken for the normal-state resistivity,
which has been most often taken as linear in T . So, we first
emphasize here that our method is particularly adapted to
perform a precise quantitative analysis of the excess conduc-
tivity since our experimental approach allows us to deduce
σN (T ) reliably. We have, for instance, shown in our previous
work16 that the normal-state resistivity of the OPT93.6 sample
deviates from the linear T dependence at T ∗ � 120 K due
to the opening of the pseudogap. Consequently, the use of a
linear extrapolation for the normal-state resistivity would lead
to a large overestimate of 
σSF (0). To illustrate that, we have
therefore mimicked in Fig. 16 the difference generated by such
an analysis with respect to our reliable determination using MR
data. It is clear that for such a sample the overestimate of 
σSF

can be quite important. The reliability of the determinations
done so far using linear extrapolations of the normal-state
conductivity can then be put into question in many cases.

FIG. 16. (Color online) (a) T variations of the zero-field
resistivity (solid line) and the normal-state values (symbols) deduced
from high-field data for OPT93.6. The colored area corresponds to
the range where superconducting fluctuations are effectively present
while the hatched area is the extra range found by neglecting the decay
of normal-state resistivity due to the pseudogap. (b) The variation

σSF (T ) deduced assuming a linear fit would appear more accurate
though it overestimates the actual value by at least a factor 3.
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A. Contribution of Gaussian fluctuations to paraconductivity

The excess fluctuating conductivity is usually analyzed in
the framework of Gaussian fluctuations using the AL theory.
As for the Maki-Thompson contribution, which is an indirect
contribution arising from the decay of superconducting pairs
into quasiparticles and vice versa, it can be neglected in high-Tc

cuprates due to strong pair-breaking effects.53 In the GL
theory, the Gaussian fluctuations come from the temporal and
spatial fluctuations of the superconducting order parameter.
The corresponding paraconductivity is directly related to
the temperature dependence of ξ (T ), the superconducting
correlation length of the short-lived Cooper pairs. Upon
cooling down to Tc, ξ is expected to diverge with a power-law
dependence given by

ξ (T ) = ξ (0)/
√

ε, (9)

where ξ (0) is the zero-temperature coherence length and
ε = ln(T/Tc) � (T − Tc)/Tc for T � Tc. Depending on the
relative values of the temperature-dependent perpendicular
coherence length ξc(T ) and of the layer spacing s, the
paraconductivity can evolve from a 3D behavior in the
immediate vicinity of Tc toward a 2D behavior at larger
temperatures.21 The paraconductivity can be expressed more
generally by using the Lawrence-Doniach (LD) theory of
layered superconductors as54


σLD(T ) = e2

16h̄s

1

ε
√

1 + 2α
, (10)

where the coupling parameter α = 2[ξc(T )/s]2, with ξc(T ) =
ξc(0)/

√
ε. Sufficiently far from Tc, one expects ξc(T ) � s and

Eq. (10) reduces to the well-known 2D AL expression:


σAL(T ) = e2

16h̄s
ε−1 = e2

16h̄s

ξ 2(T )

ξ 2(0)
. (11)

The only parameters in this expression are the value of the
interlayer distance s and the value taken for Tc which can
have a huge incidence on the shape of the curve especially for
(T − Tc)/Tc < 0.01.

We have plotted the variation of 
σSF (T ) for the four
different hole contents as a function of ε in Fig. 17. For
all the samples except UD57, it is striking to see that our
experimental data collapse on a single curve. Moreover, we
can see that the data can be fitted reasonably well by the
LD expression [Eq. (10)] in the small temperature range
0.03 � ε � 0.1 if one takes ξc(0) � 0.9 Å. We have assumed
here, as usually done, that the CuO2 bilayer constitutes the
basic 2D unit, and s is then taken as the unit-cell size in the c

direction: s = 11.7 Å. This is a strong indication that the excess
fluctuation conductivity is mainly due to Gaussian fluctuations
in these different compounds. One can see that all the curves in
Fig. 17 bend downward very rapidly for ε � 0.1. This behavior
has been pointed out earlier in different fluctuation studies on
YBCO.55–57 It has been proposed that this could be due to the
limitations of the GL theory in these compounds with very
short coherence lengths. We discuss this point in more detail
in Sec. VIII A.

It is clear that the situation is completely different for the
UD57 sample for which 
σSF is found to be about a factor four

FIG. 17. (Color online) Superconducting fluctuation conductivity

σSF for the four pure samples considered here plotted versus
ε = ln(T/Tc). Values of Tc have been taken here at the midpoint of
the resistive transition, and error bars for ε using the onset and offset
values of Tc are indicated. The dashed line represents the expression
of Eq. (10) with s = 11.7 Å. and ξc(0) � 0.9 Å. Full lines are guides
for the eye.

larger than for the other dopings. This points to an additional
origin of SCFs in this underdoped sample. In fact, we find
that the data for this sample can be reconciled with the unique
curve found for the other samples by using an effective value
Tc0 different from the actual Tc. This is illustrated in Fig. 17
in which the 
σSF data of UD57 are also reported versus
ε = lnT/Tc0 using Tc0 = 72 K, which is much larger than the
actual Tc = 57.1 K.

The same conclusion has been proposed in Ref. 58 to
account for the Nernst signal at high T in underdoped
LSCO, which was found to be too large to be explained only
by Gaussian fluctuations. In the phase-fluctuations scenario
proposed by Emery and Kivelson,9 this would mean that
the actual Tc is suppressed from the mean-field transition
temperature T MF

c by phase fluctuations. However, Gaussian
fluctuations are still expected above this temperature. Thus,
it appears reasonable here to assimilate our effective Tc0 to
T MF

c . Let us notice that this conclusion is in contrast with that
argued from paraconductivity measurements in underdoped
LSCO samples, in which a description in terms of a 2D AL
approach has been proposed to completely account for the
experimental data.59

It is also interesting to consider the effect of disorder on
the paraconductivity. As seen in Fig. 18, the curve found for
the disordered optimally doped sample with Tc = 70 K nearly
falls on that of the pure sample, indicating that here again
it is possible to explain the SCFs in the framework of the
AL theory. However, this is not the case for the underdoped
samples, since their curves are shifted toward larger values
of ε with increasing disorder. So the introduction of disorder
appears to accentuate the difference with the behavior expected
from a GL approach. This appears more clearly in the next
paragraph.
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FIG. 18. (Color online) Same as Fig. 17 for the pure and irradiated
optimally doped and underdoped YBCO6.6 crystals. Solid symbols
are for the pure samples while empty ones are for the irradiated ones.
The shift to the right observed for the UD57 samples with increasing
disorder is shown in Sec. VI C to result from the reduction in Tc with
respect to the mean-field temperature Tc0.

B. Nernst effect

In view of the results found above for the paraconductivity,
we have found important to analyze as well our Nernst results
taken on similar samples7 along the same lines. The evolution
of the off-diagonal Peltier term αxy

60 has already been
recalled in Fig. 14 for the pure OPT and UD57 samples. In
the 2D GL approach, αxy has been found to follow the simple
expression58

αxy

B
= kBe2

6πh̄2s
ξ (T )2, (12)

which shows that αxy is related to the spacing between the
layers s and the GL coherence length in the ab plane ξ (T ).
Consequently, according to Eq. (11), there is a simple linear
relationship between αxy and 
σSF (T ):

αxy

B
= 8kB

3πh̄
ξ (0)2
σSF (T ), (13)

whose slope provides a direct determination of the zero
temperature coherence length ξ (0). Let us point out that, had
we taken the LD term in Eq. (12), it would have been eliminated
as the spacing s between layers in this expression (13).

We have tested this relationship first for the optimally doped
case and the data are plotted in Fig. 19(a). At high T a negative
normal-state contribution to the Nernst signal,7 apparent in
Fig. 14 (similar to that seen by Daou et al.61), dominates that
due to SCFs. Nevertheless, near Tc, this negative counterpart
is overcome by the sharp increase of the positive SCF
contribution so that the linear relation of Eq. (13) is reliably
verified, as can be seen in Fig. 19(a). The linear slope found
there near Tc results in a value ξ (0) � 1.4 nm after correction
for the estimated small negative Nernst contribution.

Using the relationship between Hc2(0) and ξ (0),

Hc2(0) = �0/2πξ (0)2, (14)

FIG. 19. (Color online) The values of αxy/B taken from Ref. 7
are plotted versus the values of 
σSF (T ) determined in this work
for (a) the pure OPT sample and (b) two UD57 samples pure and
irradiated. The values of 
σSF (T ) reported here have been obtained
by interpolation between the data reported in Fig. 17. Solid lines are
linear fits for the high T values while the dashed line is guide for the
eye for the data near Tc.

this would lead Hc2(0) � 160 T, a value which resembles that
of H ′

c(0) determined above. Consequently, we can conclude
that, in optimally doped YBCO, the paraconductivity and the
Nernst signal above Tc are consistent with each other and can
be interpreted in terms of Gaussian fluctuations only, with
ξ (0) � 1.4 nm.

For the UD57 samples, pure and irradiated with Tc � 30 K,
the corresponding data are plotted in Fig. 19(b). The same
analysis can be done for the pure UD57 sample in the
high-T range (above Tc0, that is, low values of 
σSF ), where
a Gaussian regime is expected to be restored. As can be seen
in Fig. 14, the normal-state contribution of the off-Peltier term
is positive in this case, so the linear fit of the raw data will
give a slightly overestimated value ξ (0) = 2.0 ± 0.2 nm. This
would correspond to Hc2(0) � 80 ± 20 T, similar here again
to H ′

c � 80 T estimated for this compound.
This conclusion is clearly no longer valid at lower temper-

atures, near Tc, as the SCF contribution of the off-diagonal
Peltier term αxy/B markedly increases with respect to this
linear relation. This confirms our previous conclusion that the
Nernst data in the pure UD57 sample are not consistent with
Gaussian fluctuations for Tc < T < Tc + 15 K. We further-
more evidence that, in this range, the positive contributions to
the Nernst signal are greatly enhanced with respect to the SCF
paraconductivity.

For the irradiated UD57 sample, the quite good linear
relationship between αxy/B and 
σSF in Fig. 19(b) would
correspond to ξ (0) � 4.3 nm, hence to a value of Hc2(0) as
low as 17 T while H ′

c(0) � 60 T for this compound. This
unrealistic value of Hc2(0) implies that Eq. (13) does not apply
in this case.

This demonstrates that the enhancement of the positive
Nernst signal by disorder we evidenced in Ref. 7 is much larger
than that of the paraconductivity. This result contradicts the
analysis done in Ref. 62 of the Nernst signals in Zn-substituted
YBCO thin films.
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C. Contribution of phase fluctuations

As an explanation in terms of Gaussian fluctuations is
not sufficient to account for the excess conductivity in the
UD57 samples, either pure or disordered, it is natural to
address the possible role of phase fluctuations. Indeed, in
these systems with low carrier density and/or high level of
disorder,9 the low superfluid density is expected to lead to
phase fluctuations below the mean-field transition temperature
T MF

c . It has been proposed that the superconducting transition
is caused by the proliferation of vortices which destroy
long-range phase coherence similarly to that predicted for the
Kosterlitz-Thouless transition (KT).63 This would result in a
phase-incoherent state with a finite pairing amplitude between
Tc and T MF

c . In the framework of the 2D KT transition, the
excess conductivity is expressed as


σ

σn

≡
(

ξ (T )

ξ (0)

)2

, (15)

where the coherence length ξ (T ) is now related to the
vortex density nv through 2πnv ≡ 1/ξ 2. It turns out that
a similar relation holds also in the AL regime as shown
above [see Eq. (11)], but here ξ (T ) is expected to diverge
exponentially at TKT . An interpolation formula between these
two regimes has been proposed initially by Halperin and
Nelson.64 More recently, Benfatto et al.65 have revisited this
problem by means of a renormalization group (RG) approach
and have established a direct correspondence between the
parameter values used to describe the KT (Kosterlitz-Thouless)
fluctuation regime and the reduced temperature τc between
TKT and T MF

c defined by

τ ≡ T − TKT

TKT

τc ≡ T MF
c − TKT

TKT

. (16)

They propose an interpolation formula for T � TKT which is
formally similar to that of Halperin and Nelson:


σSF /σn =
(

2

A

)2

sinh2

(
b√
τ

)
, (17)

but where the parameters A and b are now obtained from
the numerical RG calculations of the correlation length near
the transition, so that A is close to unity and b given by b ∼
2α′√τc, where α′ measures the deviation of the vortex core
energy with respect to the conventional value in the XY model.

We have thus tried to fit the data obtained for the SCF
conductivity in the pure and irradiated UD57 samples in
Fig. 20, where 
σSF /σn are plotted versus T in a semilog
scale. Only the very small number of data between TKT ∼ Tc

and the sharp downturn of 
σSF are pertinent in such fits. In
the pure UD57 sample, within the foregoing analysis, a natural
upper limit for the fit would be Tc0 � 72 K, which could be
assimilated to T MF

c . We indeed find that the three significant
data make it possible to obtain values for A and b for which
the fitted function deviates from the data above Tc0. If we take
the same criterion to estimate T MF

c in the other samples, we
get the values for τc reported in Table I. As expected, we find
that τc increases with disorder, more than a factor 10 between
the pure and the most irradiated sample.

It is clear that the limited analysis done above is not
sufficient to prove per se that the increased magnitude of

FIG. 20. (Color online) The SCF conductivity normalized to the
value in the normal state is plotted versus T for the UD57 samples
either pure (circles) or irradiated with Tc values decreased down to
26.8 K (squares) and 11 K (triangles). The vertical bars indicate the
estimated values of TKT which are slightly lower than the values
of Tc (taken at the midpoint of the superconducting transition). The
arrows are for the mean-field temperature T MF

c estimated here from
the deviation to the fitting curves using Eq. (17) (solid lines).

the SCFs can be attributed to phase fluctuations. Both phase
fluctuations and amplitude fluctuations could be emphasized
altogether, as claimed by some authors.66 Hopefully, with
the larger pulse fields which become available now, more
data points between TKT and T MF

c could become accessible
and would make it possible to better test the applicability
of Eq. (17) and to get reliable determinations of the different
parameters. The fast suppression of the SCFs at high T , similar
to that found for the optimally doped samples, is discussed in
Sec. VIII A.

VII. FLUCTUATION MAGNETOCONDUCTIVITY

It is also interesting to look more carefully at the way the
SCFs are suppressed by the magnetic field. Let us recall here
that the dependence of the magnetoconductivity with H and
T has been extensively studied in high-Tc cuprates.25–30 This
has been often preferred to the study of paraconductivity as its
value is often considered as weakly dependent on the normal-
state magnetoconductivity. In fact, this is not really correct
even at low magnetic fields since both quantities display inital
H 2 variations as shown in Fig. 6. It is thus necessary to subtract
the normal-state contribution as expressed in Eq. (6) and to
consider the difference


σH (T ,H ) = 
σ (T ,H ) − 
σn(T ,H )

= 
σSF (T ,H ) − 
σSF (T ,0). (18)

TABLE I. Parameters extracted from the fits of the low-T data of
Fig. 20 for the different UD57 samples.

Samples Pure irr1 irr2

TKT (K) 56 26.5 4
T MF

c (K) 72 39 30
τc 0.22 0.5 2.6
2α′ �0.5 �1 �2
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Within the GL theory, the evolution of the fluctuating mag-
netoconductivity with H comes from the pair-breaking effect
which leads to a Tc suppression. Different contributions must
be taken into account to completely explicit the effect of a mag-
netic field on the excess conductivity.26–29,67,68 Nevertheless, it
seems legitimate to neglect the Maki-Thompson contribution
which already does not contribute to the paraconductivity in
zero field. The AL contribution is the sum of two different
contributions resulting from interactions of the magnetic field
with the carrier orbital (ALO) and spin (Zeeman) degrees of
freedom. The former vanishes for applied fields in the ab

plane, and the remaining Zeeman term is usually found much
smaller than the ALO term for H//c and low-enough magnetic
fields.27,29

In the layered superconductor model the ALO fluctuation
magnetoconductivity can then be written as27,29


σALO
H (T ,H ) = e2

8h̄

1

h2

∫ 2π/s

0
εk

[
�

(
1

2
+ εk

2h

)

−�

(
εk

2h

)
− h

εk

]
dk

2π
− 
σLD. (19)

Here εk = ε[1 + α(1 − cosks)], where α is the coupling
parameter defined in Sec. VI A and k is the momentum
parallel to the magnetic field H . � is the di-γ function, and
h ≡ H/Hc2(0). This expression assumes that the temperature
dependence of Hc2(T ) is simply given by

Hc2(T ) = �0/2πξ (T )2 = εHc2(0). (20)

This holds as long as the magnetic field variation is set by the
size of ξ (T ). However, when the magnetic field becomes large
enough, the magnetic length lB = (h̄/2eH )1/2 enters into play
and overcomes the variation of ξ (T ). The crossover between
these two regimes occurs for a field H ∗ such as

H � εHc2(0). (21)

This magnetic field H ∗(T ) defined above Tc has been called
the “ghost critical field” by Kapitulnik et al.69 as it mirrors
the upper critical field defined below Tc. For H > H ∗(T ), the
variation with H is governed by the magnetic length lB as
recently evidenced by Nernst measurements in SC disordered
films.52

In order to analyze the experimental data, we use the
procedure described in Ref. 69. We first determine the only
adjustable parameter Hc2(0) by matching the low-field part of
the data for all values of ε. We then introduce the higher field
values of −
σH (T ,H ) computed from Eq. (19), which allows
us to define the ghost field H above which a deviation from
the experimental data occurs.

This is illustrated for the OPT93.6 sample in Fig. 21
where the evolution of −
σH = 
σSF (T ,0) − 
σSF (T ,H )
is plotted versus H at different temperatures ranging from
94.4 K to 103.4 K, corresponding to ε values from 0.0085
to ∼0.1. In this temperature range, good fits of the low-field
data can be achieved with Hc2(0) = 180(10) T. One can also
see that the agreement deteriorates at larger fields H ∗ with
increasing temperatures. This is in reasonable agreement with
what is expected from Eq. (21), as can be seen in Fig. 22. So,
the data follow unambiguously the GL analysis and enable us
to determine Hc2(0) reliably.

FIG. 21. (Color online) Evolution of the fluctuation magnetocon-
ductivity −
σH (T ,H ) = 
σSF (T ,0) − 
σSF (T ,H ) as a function of
H for the OPT93.6 sample at different temperatures, 94.4, 97, 100,
and 103.4 K. The dotted lines represent the computed results from
Eq. (19) with Hc2(0) = 180(10) T. They deviate from the data beyond
the H field values shown by arrows and reported in Fig. 22.

At higher T , beyond the GL range deduced from the
zero-field SCF conductivity data, the low-field data cannot
be matched with Eq. (19) with the same value of Hc2(0).
One may artificially find a better agreement by increasing
Hc2(0) with increasing temperature, but this is meaningless
and only confirms that Eq. (19) is no longer valid beyond the
GL region. So the choice of temperature range used to fit the
data can severely affect the deduced value of Hc2(0). This
might explain why previous attempts to deduce Hc2(0) from
magnetoconductivity data give contrasting results for optimal
doping (those of Ref. 29 are in better agreement with ours than
those of Ref. 30).

We could repeat the same procedure for all the dopings
studied here, which leads to values of Hc2(0) indicated in
Table II. In the case of the UD57 sample, the analysis has
been performed by assuming that the mean-field temperature
is 72 K, as indicated above. As seen in Fig. 23, it is still possible
to fit the low-field data reasonably well using Eq. (19) in a T

range which is found to slightly exceed the GL regime.

FIG. 22. (Color online) Values of H ∗ at which Eq. (19) deviates
from the experimental results. Those are compared to the expected
linear dependence of Eq. (21) using the determined value of
Hc2(0) = 180(10) T.
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FIG. 23. (Color online) Evolution of the fluctuation magnetocon-
ductivity −
σH (T ,H ) = 
σSF (T ,0) − 
σSF (T ,H ) as a function of
H for the UD57 sample at different temperatures, 82.4, 84.2, and
91.8 K. The dotted lines represent the computed results using Eq. (19)
with Tc0 = 72 K and Hc2(0) = 90 ± 10 T.

We notice that the Hc2(0) values determined in this way
are surprisingly close to those obtained for H ′

c(0) in a totally
different way in Sec. IV B, which are reported as well in
Table II.

The very important result of this analysis is to unambigu-
ously show that Hc2(0) increases and thus ξ (0) decreases with
increasing doping in YBCO.

The coherence length is related to the superconducting gap

SC through

ξ (0) = β

(
h̄vF

π
SC

)
, (22)

with β = 1 for s-wave superconductors. By assuming that the
Fermi velocity vF is weakly dependent on doping as found
in different cuprates70 and equal to71 vF � 2.2 105 m s−1, we
obtain the values of 2
SC/β indicated in Table II. Indepen-
dently of the precise value of β, our results demonstrate that
the superconducting gap is closely related to Tc in the doping
range ∼0.09 to ∼0.17 considered here.

Recent STM measurements have shown that 
SC �
20 meV for an overdoped Bi2212 sample with Tc = 63 K,72

yielding a ratio 2
SC/kBTc = 7.4. A similar ratio is also found
for the “small” gap 
 = 6.7 ± 1.6 meV identified in the STM
spectra of an underdoped Bi2201 sample with Tc = 15 K.73 We
notice that for β = 1 in Eq. (22), the data of Table II would

TABLE II. Values of Hc2(0) extracted from the fluctuation
magnetoconductivity. They are very close to the values of H ′

c(0)
determined in Sec. IV B. The values of ξ (0) are calculated from
Hc2(0) using Eq. (14). The respective values of the superconducting
gap 
SC are estimated from Eq. (22).

Samples UD57 UD85 OPT93.6 OD92.5

Hc2(0) (T) 90(10) 125(5) 180(10) 200(10)
H ′

c(0) (T) 86(10) 115(15) 155(10) 207(10)
ξ (0) (nm) 1.9 1.60 1.33 1.26
2
SC/β (meV) 46 50 66 69.5

also correspond to a similar gap magnitude 2
SC � 8kBTc

whatever the doping. This is a strong indication that the gap
determined here can thus be assimilated to the “small” gap
detected recently by different techniques.74

VIII. SUPPRESSION OF SC FLUCTUATIONS
BY TEMPERATURE OR MAGNETIC FIELD

We shall consider now more specifically the sharp decrease
of SCFs found versus temperature in Fig. 17 and the onset of
SCFs at T ′

c and H ′
c.

A. Temperature

Within the GL description, there is a priori no upper
temperature limit for the existence of fluctuations, which are
expected to survive far above Tc in the normal state. However,
it has been pointed out very early that a rapid attenuation of the
fluctuations may occur for T 	 Tc in short coherence-length
systems, as the GL theory can be put into question when
ξ (T ) becomes comparable to the zero-temperature in-plane
coherence length ξ (0).55–57 It has been first argued that a
short-wavelength cutoff should be taken into account in the
fluctuation spectrum. An extension of the AL theory in the 2D
case taking this cutoff into account75 gives a T dependence of
the superconducting fluctuation conductivity as


σSF (T ) = e2

16h̄s
f (ε) = σ0f (ε), (23)

where the function f (ε) matches the 1/ε first-order expression
up to ε � 0.18 but deviates then to reach the asymptotic limit76

f (ε) ∝ 1/ε3. Our data can be fitted using the function f (ε) up
to ε � 0.15. However, as shown in Fig. 24, it then drops much
faster well below the expected ε−3 dependence, above temper-
atures corresponding to coherence lengths ξ (T ) � 3ξ (0).

Other authors have proposed that a “total-energy”
cutoff77,78 should be more appropriate to describe the evolution

FIG. 24. (Color online) Comparison of the temperature depen-
dence of 
σSF for the OD92.5, OPT93.6, and UD85 samples with
Eq. (23) (solid line) that takes into account short-wavelength cutoff in
the fluctuation spectrum.75,76 The dashed line is for the LD expression
[Eq. (10)].
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FIG. 25. (Color online) The ratio 
σSF (T )/
σLD(T ) is plotted
versus T − Tc in a semilogarithmic scale for all the pure samples
studied. 
σLD(T ) is calculated from Eq. (10) using the value of
ξc = 0.89 Å determined in Sec. VI A. TGL indicates the upper bound
for the GL regime. In the case of the most underdoped UD57 sample,
we have assumed that the phase-fluctuation regime disappears at
Tc0 = 72K (see Sec. VI). The full lines are exponential fits of the data
above TGL.

of the paraconductivity in the high-ε region. They assigned
its origin to the intrinsic constraint that SCFs cannot survive
when the coherence length ξ (T ) becomes comparable to the
superconducting coherence length ξ0. They proposed then to
mimic this effect using a phenomenological expression which
can be transformed into


σSF (T ) � 
σLD

(
1 − ε

√
1 + 2α

εC

)2

, (24)

where εC = ln(T C/Tc). Our data in YBCO unambiguously
allowed us to demonstrate that SCFs are heavily, if not totally,
suppressed at high T , which allowed us to define a temperature
T ′

c above which their detection becomes nearly impossible.
This T ′

c value could, in principle, be obtained as well using the
phenomenological Eq. (24). However, this equation privileges
the cutoff behavior and does not reproduce the low-T regime
where we have established the validity of the GL approach.

In order to analyze more precisely the attenuation of
the superconducting fluctuations with temperature, we have
therefore plotted in Fig. 25 the values of 
σSF (T ) normalized
to those expected from the LD formula versus T − Tc in a
semilogarithmic scale. For all the samples, we observe that the
SCF conductivity vanishes exponentially for T > TGL, as


σSF (T ) = 
σLD(T ) exp

(
−T − TGL

T0

)
. (25)

Here TGL, the upper temperature for the GL regime, exceeds
Tc of about 5 K to 7 K. Let us recall here that, for the most
underdoped sample, we have replaced Tc with Tc0 = 72 K, the
mean-field temperature determined above. The exponential
decay rate T0 of the SCF increases from 10 K to 15 K with
decreasing doping.

In our previous report,31 we had proposed that the total
suppression of SCFs in the cuprates could be associated with
an intrinsic ultimate possibility to thermally induce pairs

in these systems. The simultaneous analysis of the Nernst,
paraconductivity, and magnetoconductivity data allows us
to emphasize that ξ (0) is intrinsically very small in these
compounds and of the same order as the mean distance d

between the hole carriers, which is about 10 Å for instance in
optimally doped cuprates with a hole content of 0.16 per Cu.
Therefore, pairing with shorter coherence length scale would
correspond to a thermal excitation of isolated Bose pairs. The
total suppression of paraconductivity and Nernst signals above
T ′

c therefore means that the density of such excited pairs drops
to zero already at T ′

c . This fits with the idea that the energy of
fluctuations which can be thermally excited is bounded with a
sharp cutoff at an energy kBT ′

c .
In usual BCS materials, for which the density of carriers

per atom is of the order of unity, ξ is large enough with respect
to the atomic distance a, so that SCFs could be thermally
excited as long as ξ (T ) 	 a, which agrees with the observation
that SCFs survive up to at least T � 30Tc in amorphous
superconducting films.18

The existence of such a sharp cutoff at T ′
c is not restricted

to pure samples but also applies to disordered ones. This
similarity appears very clearly in Fig. 20 for the underdoped
irradiated samples where the excess conductivity above Tc0

nearly parallels that of the pure sample and vanishes exponen-
tially with the same decay rate.

It is quite intriguing to see this quasi- “universality” of the
SCF attenuation in a T range where one would rather expect a
response highly sensitive to the peculiar features of the systems
of interest. This exponential decay means that a T range of the
order of 5T0 is universally required to suppress the fluctuations
above Tc, or Tc0 in the underdoped cases. Independently of
the physical meaning of this representation, this shows that
the SCFs vanish similarly with increasing T for all the hole
contents. This confirms that the pseudogap state has no specific
incidence on the range of SCFs. This observation contradicts
the recent proposition79 which attributes the rapid suppression
of superconducting fluctuations evidenced by Nernst effect
and conductivity measurements in underdoped LaSrCuO6,59

to the presence of the pseudogap. All the detailed analysis
of the data proposed here rather substantiates the conclusion
done previously from the simple comparison of the T ′

c and T 

lines16 that these two lines are emphasizing two independent
phenomena in the phase diagram of cuprates.

B. Magnetic fields

In the analysis of the fluctuation magnetoconductivity done
above, we have been able to fit the data using Eq. (19) as long
as H � H ∗ for which the GL coherence length ξ (T ) becomes
comparable to the magnetic length lB .

Well beyond the GL regime, for ε � 0.2, where the
coherence length is strongly reduced by temperature, we
expect that the fluctuation magnetoconductivity cannot be
described any longer by Eq. (19). Some data taken in this
regime are illustrated in the case of the UD85 sample in
Fig. 26(a).

There it can be seen that the excess conductivity appears to
decay exponentially with the magnetic field as


σSF (T ,H ) = 
σSF (T ,0) exp[−(H/H0)2]. (26)
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FIG. 26. (Color online) SC fluctuation contribution to the con-
ductivity 
σSF (T ,H ) plotted versus H 2 for the UD85 sample. In
(a), the data plotted in a linear scale for the high-T regime can be
fitted by the exponential relationship of Eq. (26) with H0 � 25 T.
In (b), the data are plotted in a semilogarithmic scale for all the
temperatures investigated. The dotted lines are curves using Eq. (19)
with Hc2(0) = 125(5) T, which deviate from the experimental data for
H > H indicated by arrows. The straight lines are exponential fits
of the high-field data with H0 = 25 ± 3 T whatever T . The plotted
curves correspond to increasing temperatures from top to bottom.

This sharp exponential decay confirms that H ′
c(T ) can indeed

be reliably defined and is not so dependent on the crite-
rion used [we defined it here and in Ref. 16 for 
σSF =
1 × 103(� m)−1].

In order to better visualize how the SCFs are suppressed
by magnetic fields in the whole T range, we have then plotted

σSF versus H 2 in a semilogarithmic scale in Fig. 26(b) for
the UD85 sample. For the lowest temperatures, we find that
Eq. (19) applies with Hc2 = 125(5) T as long as H < H.
It is intriguing to see on this plot that the decay of 
σSF

evolves then smoothly toward an exponential behavior with
nearly the same value of H0 as found at higher temperatures.
The same type of evolution is observed for all the samples,
pure or irradiated. H0 remains nearly constant whatever the
temperature, doping, or disorder level with H0 = 25 ± 5 T, as
can be seen in Fig. 27.

FIG. 27. (Color online) SC fluctuation contribution to the con-
ductivity 
σSF (T ,H ) plotted versus H 2 in a semilog scale for (a) the
OPT93.6 sample, (b) the UD57 sample, and (c) the UD57 irradiated
sample with Tc = 25 K. The full lines are exponential fits according
to Eq. (26) which do not take into account the low-field data at low T .
For all these samples, we find H0 = 25 ± 5 T at all temperatures. For
the pure UD57 sample, we have also indicated the matching curves
taken from Eq. (19) with Hc2(0) = 90(10) T in order to better visualize
the deviations at larger fields. Here again it is seen that Eq. (19) does
not fit the data for T � 93.3 K, even at low fields, if one keeps the
same value of Hc2(0) (see discussion in Sec. VIII). The plotted curves
correspond to increasing temperatures from top to bottom.

To conclude, all these experimental observations allow us to
establish unambiguously that H ′

c(T ) sharply delimits a region
of the phase diagram beyond which SCFs become vanishling
small.

IX. DISCUSSION AND CONCLUSIONS

We have done here a set of measurements where the
normal-state MR of YBa2Cu3O6+x could be followed down
in temperature from the high-T totally non-superconducting
state. This allowed us to monitor the progressive advent of
fluctuation contributions to the conductivity above Tc. We
could not therefore study the close vicinity of Tc, that is, the
3D critical exponents. However, this experiment quite uniquely
allowed us to study the variation of SCFs from the 3D to the 2D
higher T regime. We could evidence that the GL regime applies
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near Tc for optimally doped samples, while for underdoped
ones phase fluctuations might play a role in a narrow T

range above Tc. Above those T ranges the SCFs are highly
damped, which reveals the intrinsic microscopic limitations
of the pairing at high temperatures. We have also evidenced
that disorder increases the phase-fluctuation regime above Tc.
We summarize below the most important conclusions and
questions which arise from this work.

Normal-state properties in the pseudogap phase. In Sec. III
we definitely evidenced that a 60-T field is not sufficient to
suppress totally the 3D SC at Tc in the pure 123 phases, even for
underdoped samples with Tc � 60 K, so that the normal-state
transport properties are only accessible above. The SCFs could
only be suppressed fully with 60 T in the presence of strong
disorder reducing Tc down to ∼4 K.

In the pure UD57 sample we had demonstrated that the
resistivity keeps a metallic behavior at low T in large applied
fields.31 This hole content is slightly lower than that on which
maximal quantum oscillations have been observed at low
T and high applied fields.43 From the negative Hall effect
detected in these experiments,44 a reconstruction of the Fermi
surface with the appearance of an electron pocket has been
proposed. Here we evidenced that the simple relation between
the MR and the Hall effect which had been established above
∼130 K in the past39 has a validity which extends nearly down
to Tc, without any singular behavior both for this YBCO6.6

composition and for an optimally doped sample. This is in
rather good agreement with the fact that, for underdoped
Tc = 57 K samples, the high-field Hall constant becomes
negative only below the zero-field Tc and that the Fermi surface
reconstruction only arises deep in the SC state in fields which
are, however, insufficient to totally suppress the SCFs.

Ginzburg-Landau regime: Critical fields and gaps. For
samples around optimal doping, the quantitative comparative
analysis of the measured SCF contribution to the zero-field
conductivity and of the off-diagonal Peltier term αxy has
been found in total agreement with the GL approach for
2D Gaussian order parameter fluctuations (Sec. VI B). The
data perfectly fit the leading order 2D AL contribution up
to T � 1.1Tc using the c lattice constant as the mean spacing
between the CuO2 bilayers. It can be fitted as well up to ∼1.2Tc

if higher-order corrections are taken into account. This analysis
allows us to deduce values of ξ (0) and of Hc2(0) versus doping.

The analysis of the fluctuation magnetoconductivity in
this GL regime allows us to determine Hc2(0) independently
in Sec. VII. The good agreement between these different
values establishes the perfect consistency of our data analyses.
A very important result obtained here is that the deduced
superconducting gap increases smoothly with increasing hole
doping from the underdoped to the overdoped regime.

Let us recall that energy-resolved spectroscopies have
evidenced spectral gaps in the SC state which increase with
decreasing doping while here we find a gap which rather
follows the same trend as Tc. For overdoped samples the
local density of states (LDOS) has coherence peaks3,72 and
exhibits the k dependence expected for d wave pairing, which
distinguishes the nodal and antinodal regions.4 Above Tc a
small dip in the LDOS remains and has been assigned to the
pseudogap, but should be attributed to SCFs, as we have shown
that in this range the pseudogap disappears.16

However, in the underdoped cases a large gap is found
to persist then well above Tc, while at low energies the
LDOS becomes nearly independent of local disorder.73,80 A
large debate has been raging recently as various spectroscopy
data have suggested that a smaller gap exists, visualized in
the nodal regions by Raman spectroscopy81 or obtained by
discriminating different spectral weights in the ARPES or
STM spectra.73,82 Our deduction here, that an important SC
property deduced from thermodynamic considerations, that is,
the critical field Hc2(0), is governed by a gap which follows Tc,
reinforces then the idea that the pseudogap is connected with
the large gap detected by STM and ARPES on cuprate sample
surfaces in the underdoped regions of their phase diagram.
Conversely, it can be seen that the gap magnitudes deduced
from our data scale quite nicely with the smaller gaps obtained
by STM.72,73

Phase coherence and phase fluctuations. For the Tc = 57 K
underdoped sample, well into the pseudogap phase, the SCF
paraconductivity and Nernst coefficient are found in Sec. VI C
both much larger than expected for Gaussian fluctuations in a
range of temperatures of the order of 15 K above Tc, which
points for the occurrence of phase fluctuations. This range
increases markedly if disorder is used to decrease Tc and can
become as large as 40 K when Tc has been depressed down
to Tc = 5 K. These results are therefore consistent with the
proposal done by Emery and Kivelson9 that, in the underdoped
regime, controlled disorder reduces the phase coherence. The
regime where phase fluctuations might play an important role
occurs then between the 3D Tc up to a mean-field temperature
which we can assimilate to Tc0. In this limited T range we do
not have sufficiently accurate measurements nor theoretically
established firm criteria to go beyond qualitative observations.

We noticed, however, that the Nernst signal is more
enhanced than the excess fluctuation conductivity with respect
to expectations for Gaussian fluctuations. More work, both
theoretical and experimental, is required to decide the possible
importance of vortex contributions to the Nernst effect in this
phase-fluctuation regime and/or other possibilities such as the
enhancement of SCFs by AF spin fluctuations.83 However,
this enhancement of Nernst effect with respect to excess
conductivity decreases for T > Tc0. So while it has been
recently proposed that Nernst measurements were among the
best approaches to probe the extension of the SCFs above
Tc (Ref. 6), we demonstrated here that those are indeed not
as powerful as expected initially for pure YBCO as they are
limited by the need of an independent determination of the
normal-state Nernst coefficient. The latter is not as small
as could be anticipated from the Sondheimer cancellation
rule, which applies only for classical metals.84,85 For the
conductivity measurements, our approach using high fields
and the former knowledge of the high-T MR permitted to
circumvent the corresponding difficulties, so that the SCFs
could be followed until they are fully suppressed at high T .

Suppression of SCFs at high T and pairing energies. We
have evidenced that in all samples, pure or disordered, and for
all dopings, the SCFs sharply decay with increasing T or H ,
in the ranges where SC Gaussian fluctuations are dominant. In
Sec. IV B, we could then deduce for all the samples a curve
H ′

c(T ) ending at H ′
c(T ′

c ) = 0, which delineates the (H,T ) plane
region beyond which SCFs are totally suppressed.
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In Sec. VI A, the SCFs are found to be much more rapidly
depressed than in thin films of classical s-wave metallic
superconductors for which SCFs are detected even for T 	 Tc

(Ref. 18). This provides a strong support for our preliminary
suggestion31 that the H ′

c(T ) curve delineates the regime where
microscopic considerations specific to the cuprate physics
prohibit SC pairing. We propose in Sec. VIII A that the spatial
pair extension at high T is limited by the actual density of
carriers available for pairing, so that a lower bound of ξ (T )
could be linked with the distance between doped holes.

The suppression of the fluctuation conductivity is found in
Sec. VIII to display a phenomenological exponential decay
in exp[−(Tc − TGL)/T0] and exp[−(H/H0)2], with values of
T0 and H0 which are not markedly dependent on the doping
and disorder. This suggests as well that there is a sharp energy
cutoff at kBT ′

c which is shifted by the magnetic energy increase
which scales with H 2

0 . The energy balance is such that SC pairs
cannot be thermally excited any more above T ′

c or H ′
c(T ). Let

us notice as well that the extrapolated values of H ′
c(0) have

been found to be nearly identical to those obtained for Hc2(0),
which gives confirmation that both are connected with the
pairing energy. All these consistent deductions give weight to
the present analysis.

Influence of disorder and generic PD of cuprates. It has
been found by STM that cuprates (or at least Bi2212 surfaces)
displayed a short-range disorder, visible, for instance, as a
spatial distribution of spectral gaps.86 These observations have
been questioned as being nongeneric, as NMR data indicate
that YBCO is not as disordered,87 hence the metallic behavior
observed for YBCO6.6 (Ref. 31). This has justified our use of
YBCO to study the pure cuprate behavior and the incidence of
disorder.36 We have as well shown that controlled disorder
affects drastically the transport properties. Indeed, similar
upturns of ρ(T ) have been found for controlled disorder in
YBCO and in some pure cuprate families, which indicated the
occurrence of intrinsic disorder in those families.46

The influence of such disorder on SCFs has been thoroughly
studied in Sec. IV C and we have shown that the local pair
formation emphasized by the T ′

c line is only moderately
affected, while the bulk Tc, that is, the SC pair coherence, can
be severely reduced by disorder. Our results allow us to draw
important conclusions on the cuprate phase diagram which
we had specifically emphasized in a preliminary report.16 We
could determine that the pseudogap line crosses the T ′

c line
at optimal doping, which establishes unambiguously that the
pseudogap is not the onset of pairing. The results presented
here reinforce completely this conclusion as the fluctuations
are similarly limited in field and temperature independently of
the pseudogap, though they are enhanced in magnitude in the
underdoped regime.

We want to insist here that specific effects induced by
disorder are certainly at the origin of many confusions in the
study of High Tc superconductors (HTSC). It is interesting to
mention here very recent STM data taken on classical metallic
films in presence of large disorder.88 LDOS measurements
reveal strong spatial inhomogeneities of the superconducting
gap. The remarkable finding is that the gap magnitude is
not much affected when increasing T through Tc while
the coherence peaks in the one-particle LDOS disappear.
While pairs should be thermally excited and fluctuating above

Tc, those appear to be localized by disorder as preformed
pairs. The authors call “pseudogap” the reduction of LDOS
detected above Tc (Ref. 90). This gap, which is induced by
superconducting fluctuations and favored by the vicinity of
the superconductor insulator transition in the most disordered
samples, has no relation with the situation encountered in clean
HTSC, for which the pseudogap is not due to SC pairing and
has no connection whatsoever with disorder.33 This experiment
is, however, quite striking as it demonstrates how disorder
can produce phenomena which can be easily confused with
the pseudogap which characterizes the properties of clean
cuprates.

This reinforces our insistence that the cuprate phase
diagram has to take into account the presence of disorder,
which we have long suggested explains the anomalously low
optimum Tc value in some cuprate families. This 3D phase
diagram that we anticipated from previous results probing the
metal insulator transition46 and from the recent comparison
of Tc and T ∗ is displayed in Fig. 28. There, in the pure
high-Tc systems the occurrence of SCFs and the difficulty
to separate the SC gap from the pseudogap in zero-field
experiments justifies that the Tc line could often be mistaken
as a continuation of the T ∗ line. It can be also seen there
that the respective evolutions with disorder of the SC dome
and of the amplitude of the SCF range explains as well the
phase diagram often shown in a low-Tc cuprate family such as
Bi2201.89 There both T ∗ and T ′

c might appear well above the
shrunken SC dome probably because the actual concentration
of carriers is not determined independently but just mapped
from the shape of the SC dome.32 Finally, for intermediate

FIG. 28. (Color online) Phase diagram constructed on the data
points obtained here, showing the evolution of T ′

c and the onset of
SCFs, with doping and disorder. The fact that the pseudogap and
the SCF surfaces intersect near optimum doping in the clean limit is
apparent. These surfaces have been limited to experimental ranges
where they have been determined experimentally. In the overdoped
regime, data taken on Tl 2201 indicates that disorder suppresses SC
without any anomalous extension of the SCFs (Ref. 36).
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disorder, the enhanced fluctuation regime with respect to Tc

illustrated in the initial Nernst measurements performed in the
La2−xSrxCuO4 family can be reproduced as well.6

Conclusion. In the present work we have performed a
thorough quantitative study of the SCFs, which establishes
that such data give important determinations of some thermo-
dynamic properties of the SC state of high-Tc cuprates. Those
are not accessible otherwise, as flux flow dominates near Tc in
the vortex liquid phase and the highest fields available so far
are not sufficient to reach the normal state at T = 0. This is an
illustration that the studies of SCFs permit a “fluctuoscopy”76

of the SC state. It has allowed us to demonstrate that
the pairing energy and SC gap both increase with doping,
confirming then that the pseudogap is to be assigned to an
independent magnetic order or crossover due to the magnetic
correlations.

Further experimental work in even higher fields should
help to better characterize the regime where disorder governs
the SCFs and to decide about the possible relevance of
phase fluctuations. The quasiuniversal behaviors found for the
suppression of SCFs in both temperature and magnetic fields

beyond the GL regime suggests that pairing is prohibited above
an energy scale which is directly linked with microscopic
parameters responsible for SC in the cuprates.

Theoretical works within the various scenarios proposed to
explain HTSC are highly desirable to connect our data with
the microscopic parameters which govern the pairing energy.
Such an approach might be helpful to discriminate between
theories.
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Keimer, N. Barišić, and A. Dulčić, Phys. Rev. B 83, 144508 (2011).
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