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Conventional and charge-six superfluids from melting hexagonal Fulde-Ferrell-Larkin-Ovchinnikov
phases in two dimensions
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We consider defect-mediated melting of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) and pair density wave
(PDW) phases in two dimensions. Examining mean-field ground states in which the spatial oscillations of
the FFLO/PDW superfluid order parameter exhibit hexagonal lattice symmetry, we find that thermal melting
leads to a variety of novel phases. We find that a spatially homogeneous charge 6 superfluid can arise from
melting a hexagonal vortex-antivortex lattice FFLO/PDW phase. The charge 6 superfluid has an order parameter
corresponding to a bound state of six fermions. We further find that a hexagonal vortex-free FFLO/PDW phase
can melt to yield a conventional (charge 2) homogeneous superfluid. A key role is played by topological defects
that combine fractional vortices of the superfluid order and fractional dislocations of the lattice order.
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I. INTRODUCTION

The interplay between solid order and superconducting/
superfluid order has become an issue of tremendous inter-
est in a variety of physical systems. The putative super-
solid phase1 of 4He has provided a strong motivation for
understanding the relationship between these two orders.
Additionally, the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
phase,2,3 recently observed in ultracold 6Li atom systems,4

provides another compelling example. This phase exhibits
translational symmetry breaking through the formation of
a paired fermion superfluid lattice over which the spatial
average of the superfluid order is 0. Related pair density
wave (PDW) states, a generalization of FFLO phases, are
relevant in CeCoIn5

5–8 and in the cuprates La1−xBaxCuO4 and
La1.6−xNd0.4SrxCuO4.9,10 Also related to both PDW and FFLO
phases are vortex-antivortex (v-av) lattice phases. Such phases
have been discussed in the context of two-dimensional (2D)
superfluid11 4He and superconducting thin films,12 where, at
high temperatures, thermally excited vortices and antivortices
exist. It is argued that if the density of these vortices is
sufficiently high, then a v-av solid phase will appear rather than
a v-av liquid. Recently, a staggered vortex phase (a specific
type of v-av phase) has been observed in an optical square
lattice.13,14 This diverse set of physical systems underlies
the ubiquity and importance of the interplay between these
orders.

Very recently, a quasi-1D FFLO phase has been engi-
neered in cold atomic gases.4 This system allows for the
opportunity to examine recent theoretical predictions of the
Larkin-Ovchinnikov (LO) phase, in which the mean-field su-
perconducting order parameter breaks translational symmetry
in one direction [e.g., the pairing gap �(x) = �0 cos(qx)].
In particular, recent theoretical work has focused on the
consequences of the U (1) × U (1) symmetry that exists in the
free energy due to translational and gauge invariance.10,15–17

This symmetry implies the existence of fractional vortices in
addition to the usual vortices and dislocations that would be
anticipated. The fractional vortices have a superfluid phase
winding of π , one-half the usual vortex phase winding.10,15–18

These fractional vortices are thus called 1/2 vortices. This 1/2

phase winding is accompanied by a 1/2 dislocation, which
leads to an additional sign change in the order parameter,
so that the order parameter remains single valued when the
1/2 vortex is encircled. In two-dimensions, the existence of
these 1/2 vortices is closely related to the existence of a
spatially homogeneous superfluid condensate that corresponds
to a bound state of four fermions: a charge 4e superfluid10,15 (in
rotationally invariant superfluids, this phase always appears in
two and three dimensions).15

The recent discovery of an LO phase in quasi-1D cold atoms
systems provides an ideal opportunity to examine the physics
discussed above. It further indicates that FFLO phases confined
to two dimensions are also likely to be realized in cold atoms.
Mean-field theories of the FFLO phase in two dimensions
predict not only an LO phase, but also a variety of other
stable FFLO phases.19 In many of these phases, superfluidity
is spatially modulated with an underlying hexagonal or square
lattice. These results lead to some more general questions about
PDW phases: Are there other possible fractional vortices? Are
there other exotic phases? Here we examine two such 2D
FFLO phases with underlying hexagonal lattices that have
been found in microscopic theories.19 The theory we develop
is relevant not only to FFLO phases, but also to PDW and v-av
lattice phases discussed above. Our most interesting results
are the existence of a spatially uniform charge 6 superfluid
phase, in which quasi-long-range order appears only in an
order parameter corresponding to a bound state of six fermions
(this results from a mean-field v-av lattice phase in which
1/3 vortices exist); and the existence of spatially uniform
charge 2 superfluid phases (this results from a mean-field
phase in which there are no fractional vortices). These phases,
in addition to the charge 4 superfluid10,15 and nonsuperfluid
density wave10,15,17 found earlier in stripe-like PDW and FFLO
phases, indicate that the physics of such phases is much richer
than previously anticipated and offer the possibility to see
never-before-seen states of matter.

II. GINZBURG-LANDAU-WILSON (GLW) THEORY

We consider two symmetry groups for the normal state
which will serve to define the FFLO/PDW order. Both are
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2D: the first is an isotropic normal state with cylindrical
rotational symmetry and the second is the 2D space group
P 6m, the group of a triangular lattice. For simplicity, our
development and emphasis are on the group P 6m and we
state results for the case with cylindrical symmetry. For
FFLO/PDW order appearing at a wave vector Q, the order
parameter is defined by the irreducible representations of
GQ (the set of rotation elements that conserve Q) and the
star of the wave vector Q in P 6m (set of wave vectors
symmetrically equivalent to Q).20 We choose the wave
vector Q2 = 2π

a
2√
3
(0,1) (where a is an FFLO/PDW lattice

constant), which is invariant under the rotation group
GQ = {E,C2y,σz,σx}, with C2y the 180◦ rotation around the
axis (1,0) and σz and σx the mirror operations perpendicular to
the 2D plane and the plane perpendicular to (1,0), respectively.
The irreducible representations of GQ are all 1D. The only
situation in which the particular irreducible representation of
GQ is relevant is when there is a spatially uniform Q = 0
superfluid order also present (e.g., corresponding to usual
Cooper pairs).8 This situation can be accounted for easily,
and for this reason, we consider explicitly the identity
representation in the following (for which the order parameter
is unchanged under the action of any element of GQ). To define
the additional order parameter components at the wave vectors
in the star of Q, we use the elements {E,C6,C

2
6 ,C

3
6 ,C

4
6 ,C5

6};
these give the star of Q2, { Q2,− Q1, Q3,− Q2 Q1,− Q3},
as shown in Fig. 1. This then defines a superconducting
order parameter with six complex components, which
we define as � = (�Q1 ,�Q2 ,�Q3 ,�−Q1 ,�−Q2 ,�−Q3 ).
We take Q1 = 2π

a
2√
3
(
√

3/2, − 1/2), Q2 = 2π
a

2√
3
(0,1),

and Q3 = − Q1 − Q2 so that the superfluid order
is unchanged by the translations a1 = a(1,0) and
a2 = a(1/2,

√
3/2) (note that these are not translation

vectors of the underlying microscopic triangular lattice).
We consider the case where these translation vectors

x

y

Q1

Q2

Q3

FIG. 1. Directions of Qi used in the text.

are not commensurate with the translation vectors of the
underlying microscopic triangular lattice (as is the usual case
with FFLO phases). With these definitions, the symmetry
properties of the order parameter are given as follows: under
a microscopic translation T , �Qj

→ ei Qj ·T �Qj
(�∗

Qj
→

e−i Qj ·T �∗
Qj

), and under a time-reversal operation, �Qj
→

�∗
−Qj

. Moreover, under point-group symmetries we have that
(�Q1 ,�Q2 ,�Q3 ,�−Q1 ,�−Q2 ,�−Q3 ) transforms to

C6, (�−Q3 ,�−Q1 ,�−Q2 ,�Q3 ,�Q1 ,�Q2 );
σz, (�Q1 ,�Q2 ,�Q3 ,�−Q1 ,�−Q2 ,�−Q3 );
C2y, (�Q3 ,�Q2 ,�Q1 ,�−Q3 ,�−Q2 ,�−Q1 ).
σx : (�Q3 ,�Q2 ,�Q1 ,�−Q3 ,�−Q2 ,�−Q1 )

(1)

The GLW free energy is constructed by requiring invariance
under the group P 6m, U(1) gauge symmetry (under which
�Qi

→ eiθ�Qi
), and time-reversal symmetry. These symme-

try operations are given above and the resulting free energy
density is

f = −α
∑

i

|�Qi
|2 + β1

(∑
i

|�Qi
|2

)2

+ β2

∑
i

|�Qi
|2|�−Qi

|2 + β3(|�Q1 |2|�Q2 |2 + |�Q1 |2|�Q3 |2 + |�Q2 |2|�Q3 |2

+ |�−Q1 |2|�−Q2 |2 + |�−Q1 |2|�−Q3 |2 + |�−Q2 |2|�−Q3 |2) + β4(|�Q1 |2|�−Q2 |2 + |�Q1 |2|�−Q3 |2 + |�Q2 |2|�−Q3 |2
+ |�−Q1 |2|�Q2 |2 + |�−Q1 |2|�Q3 |2 + |�−Q2 |2|�Q3 |2) + β5[�Q1�−Q1 (�Q2�−Q2 )∗ + �Q1�−Q1 (�Q3�−Q3 )∗

+�Q2�−Q2 (�Q3�−Q3 )∗ + c.c] + κ1

∑
i

|∇�Qi
|2 + κ2[ν2(|∇+�Q1 |2 + |∇+�−Q1 |2) + (|∇+�Q2 |2 + |∇+�−Q2 |2)

+ ν(|∇+�Q3 |2 + |∇+�−Q3 |2) + c.c.] (2)

where c.c. means complex conjugate, ∇± = ∇x ± i∇y , and
ν = ei2π/3. If the ground-state solution has all six components
unequal to 0, then Eq. (2) is not sufficient to completely
specify the order parameter [there remains an unphysical U(1)
symmetry in the solution]. In this case the following free
energy contribution is also required:

γ [�Q1�Q2�Q3 (�−Q1�−Q2�−Q3 )∗

+�−Q1�−Q2�−Q3 (�Q1�Q2�Q3 )∗]. (3)

Unlike the case for tetragonal symmetry,8,17 we are not
able to find the ground states of Eq. (2) analytically. However,
through a combination of analytical and numerical analysis,
we find that Eq. (2) allows at least 12 possible global minima
depending on the parameters βi . These are listed in Table I
(note that these ground states also exist for a material that
is cylindrically invariant). Of particular relevance are the
states �LO, ��, and �v-av since these have all been found as
stable ground states of cylindrically symmetric microscopic
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TABLE I. Possible FFLO/PDW ground states and associated free energy. The free energy is given by −α2/4β̃. The conditions in parentheses
are necessary (but not sufficient) for the phase to exist. The phase factors θ , φ1, and φ2 are not determined by the free energy and lead to
Goldstone modes of the FFLO/PDW phases. The parameters ε, a, b, and c are determined by the free energy and are temperature dependent.

Phase (�Q1 ,�Q2 ,�Q3 ,�−Q1 ,�−Q2 ,�−Q3 ) Free energy β̃

�FF eiθ (1,0,0,0,0,0) β1

�LO
eiθ√

2
(eiφ1 ,0,0,e−iφ1 ,0,0) β1 + β2/4

�2Q
eiθ√

2
(eiφ1 ,0,0,0,e−iφ1 ,0) β1 + β4/4

�v-av
eiθ√

3
(eiφ1 ,eiφ2 ,e−i(φ1+φ2),0,0,0) β1 + β3/3

�3Q eiθ ( eiφ1 cos ε√
2

, eiφ2 cos ε√
2

,0,0,0,e−i(φ1+φ2) sin ε) β1 − β2
4

4|β4|−|β3| (β3 < 0,2|β4| < β3)

�4Q
eiθ

2 (eiφ1 ,ieiφ2 ,0,e−iφ1 ,ie−iφ2 ,0) β1 + (β2 + β3 + β4 − β5)/8

�� eiθ√
6
(eiφ1 ,eiφ2 ,e−i(φ1+φ2),e−iφ1 ,e−iφ2 ,ei(φ1+φ2)) β1 + β2/12 + (β3 + β4 + β5)/6 (γ < 0)

�kag
eiθ√

6
(eiφ1 ,eiπ/3eiφ2 ,e−iπ/3e−i(φ1+φ2),e−iφ1 ,eiπ/3e−iφ2 ,e−iπ/3ei(φ1+φ2)) β1 + (β2 − β5)/12 + (β3 + β4)/6 (γ < 0)

�6Q,1
eiθ√

2+a2+2b2+c2
(eiφ1 ,eiφ2 ,ae−i(φ1+φ2),be−iφ1 ,be−iφ2 ,cei(φ1+φ2)) No analytic solution found (β4 < 0,γ < 0)

�hc
eiθ√

6
(ieiφ1 ,eiφ2 ,e−i(φ1+φ2), − ie−iφ1 ,e−iφ2 ,ei(φ1+φ2)) β1 + β2/12 + (β3 + β4 + β5)/6 (γ > 0)

�hc,2
eiθ√

6
(ieiφ1 ,eiπ/3eiφ2 ,e−iπ/3e−i(φ1+φ2), − ie−iφ1 ,eiπ/3e−iφ2 ,e−iπ/3ei(φ1+φ2)) β1 + (β2 − β5)/12 + (β3 + β4)/6 (γ > 0)

�6Q,2
eiθ√

2+2b2+a2+c2
(ieiφ1 ,eiφ2 ,ae−i(φ1+φ2), − ibe−iφ1 ,be−iφ2 ,cei(φ1+φ2)) No analytic solution found (β4 < 0,γ > 0)

weak-coupling theories of the FFLO phase.19 The state �LO

has been studied previously and discussed in the Introduction
(Sec. I). Consequently, in the following, we concentrate on the
states �� and �v-av. The state described by �� is a superfluid
triangular lattice (this state is closely related to �hc, which is a
superfluid honeycomb lattice without any vortices). The state
�v-av is a v-av triangular lattice. These two states are depicted
in Fig. 2. Prior to examining these two ground states in detail,
we note that some of the other phases are also of interest.
Perhaps the most interesting is �kag. The local maxima of the
superfluid density of �kag form a Kagomé lattice. Within the
hexagons of this Kagomé lattice there are double vortices, and
within the triangles of this Kagomé lattice there are single
antivortices. The analysis that follows can be applied to any of
the ground states listed in Table I.

FIG. 2. (Color online) Hexagonal FFLO/PDW states considered
in detail in this paper. Filled (red) circles depict maxima in the
magnitude of the superfluid density, and plus(minus) signs depict
vortices of positive(negative) phase winding. Both states are stable
2D FFLO states in weak-coupling theories with cylindrical symmetry.

III. SECONDARY ORDER PARAMETERS FOR THE
PHASES �v-av AND ��

In addition to the FFLO/PDW order parameters, there
are secondary order parameters that play an important
role in thermal melting and in distinguishing the different
FFLO/PDW phases. In the mean-field theory, these order
parameters appear at the mean-field phase transition in addition
to the FFLO/PDW order. These secondary order parameters
include density wave order, orbital angular momentum and
spin density wave order (characterizing the v-av lattice), and
spatially uniform superfluid order. When thermal melting is
considered, these secondary order parameters may become the
primary order parameters and therefore play an important role
in the theory. In the following, we characterize these secondary
order parameters for the two states �� and �v-av in turn.

The state �� is characterized by a spatially oscillating
superfluid density with an underlying triangular lattice and
a coexisting spatially uniform s-wave charge 2 superfluid
order. Specifically, the secondary orders are a spatially uni-
form conventional superfluid order ψs ∝ �Q1�Q2 (�−Q3 )∗ +
�Q1�Q3 (�−Q2 )∗ + �Q2�Q3 (�−Q1 )∗ and the density wave
order ρQ1 ∝ �−Q3 (�Q2 )∗, ρQ2 ∝ �−Q1 (�Q3 )∗, and ρQ3 ∝
�−Q2 (�Q1 )∗. The density wave order has the same lattice
as the FFLO/PDW order. The appearance of a spatially
uniform charge 2 superfluid is somewhat surprising for a
FFLO/PDW phase. It is a consequence of the underlying
hexagonal symmetry; it does not occur for the LO phase or
for FFLO/PDW phases with an underlying square lattice. The
existence of this order stems from the following coupling term
in GLW free energy:

ε{ψs[�Q1 (�−Q2�−Q3 )∗ + �Q2 (�−Q1�−Q3 )∗

+�Q3 (�−Q1�−Q2 )∗] + c.c.}. (4)
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Here since ψs appears linearly, it must become non-zero at
the mean-field FFLO/PDW transition. We note that, for the
same reasons as for ��, the phases �hc,2 and �kag have
spatially uniform charge 2e px + ipy and dx2−y2 + idxy order,
respectively, in addition to the FFLO/PDW order.

The state �v-av describes a triangular v-av lattice. For �v-av

the secondary order parameters are a charge 6 superfluid
order ψ6e ∝ �Q1�Q2�Q3 and the orbital angular momentum
(lz) and density wave (ρ) orders ilz,K1 ∝ ρK1 ∝ �Q2 (�Q3 )∗,
ilz,K2 ∝ ρK2 ∝ �Q3 (�Q1 )∗, and ilz,K3 ∝ ρK3 ∝ �Q2 (�Q1 )∗,
where K1 = Q3 − Q2, K2 = Q1 − Q3, and K3 = Q2 − Q1.
The density wave order characterizes a hexagonal lattice
that is rotated π/2 and has a

√
3 shorter lattice vector than

the FFLO/PDW lattice. The orbital angular momentum lz
describes the v-av lattice that exists in this phase (the state
�� has no vortices, so that lz = 0).

IV. ELASTIC THEORY

The undetermined phase factors θ , φ1, and φ2 in �� and
�v-av reveal an underlying U(1) × U(1) × U(1) symmetry of
the GLW free energy and correspond to elastic modes of these
phases. Physically, this symmetry originates from the two
phonon degrees of freedom u = (ux,uy) of the 2D FFLO/PDW
lattice and the superfluid phase degree of freedom θ . The
phases φ1 and φ2 are then φ1 = Q1 · u and φ2 = Q2 · u. Under
uniform phase shifts of θ and u, the order parameters transform
as follows:

�Q → eiθ+iQ·u�Q,

ψs → eiθψs,

ψ6e → ei3θψ6e, (5)

ρQ → eiQ·uρQ,

lz,K → eiK·ulz,K.

At low temperatures, we can ignore fluctuations in the
magnitude of the �Qi and the effective Hamiltonian is
governed by fluctuations in θ and u. To lowest order, the
relevant elastic Hamiltonians are listed in Table II. We
have used the usual definitions, us

ij = 1
2 ( ∂ui

∂xj
+ ∂uj

∂xi
) and ua

ij =
1
2 ( ∂ui

∂xj
− ∂uj

∂xi
). Note that if cylindrical symmetry is assumed,

then γ = 0 in the elastic Hamiltonians. However, if there
is an underlying microscopic hexagonal lattice, then γ 	= 0.
Note that the expressions in Table II are the most general
expressions allowed by symmetry. For the GLW theory of
Eq. (2), the elastic coefficients simplify. For example, for the
phase �v-av, the elastic coefficients in the GLW limit are
ρs = 2|�0|2κ1, λ = −( 2π

a
)2|�0|2κ2/2, μ = ( 2π

a
)2|�0|2κ1/2,

γ = ( 2π
a

)2|�0|2(κ1 + κ2)/2, and ε = 2π
a

|�0|2κ2, where �0 is
the magnitude of the normalized order parameter. In general,
higher order terms in the GLW theory will lead to new
coefficients; for example, the term

ω[(�Q1�Q2)
∗(∇�Q1 · ∇�Q2) + (�Q1�Q3)

∗(∇�Q1 · ∇�Q3)

+(�Q1�Q3 )∗(∇�Q1 · ∇�Q3 ) + c.c.] (6)

will increase ρs and decrease μ and γ (for positive ω), leading
to different energy scales for superfluid phase fluctuations and
for phonons. Since terms such as Eq. (6) are not necessarily
small near any melting transition in two dimensions, we have
included all terms allowed by symmetry. We note that the
related elastic theories for LO phases have been worked out
microscopically in Refs. 18 and 21.

The elastic Hamiltonians listed in Table II imply power-law
spatial correlations in two dimensions for the order parameters.
While it is possible to carry out a complete analysis of the
melting transition for ��, this is not the case for �v-av. We
therefore consider a simpler and more physically transparent
approach that allows both �� and �v-av to be treated on an
equal footing. In particular, we ignore terms that give rise to
spatial anisotropy in the correlation functions. This approach is
akin to an early treatment of 2D melting done by Nelson.22 This
yields the correct phase melting diagram in two dimensions
but does not provide accurate critical exponents.23,24 The
simplified elastic Hamiltonian is

H = ρs

2
(∇θ )2 + μ

2

(
2π

a

)2

[(∇ux)2 + (∇uy)2]. (7)

The spatial dependence of the correlation functions is then
given as

〈�Q(r)�−Q
∗(0)〉 ∝ r−(ηs+ηd ),

〈ψs(r)ψs(0)〉 ∝ r−ηs ,

〈ρQ(r)ρ−Q(0)〉 ∝ r−ηd ,

〈ρK(r)ρ−K(0)〉 ∝ r−3ηd , (8)

〈lz,K(r)lz,−K(0)〉 ∝ r−3ηd ,

〈ψ6e(r)ψ∗
6e(0)〉 ∝ r−9ηs ,

where ηs = T/(2πρs) and ηd = T/(2πμ).

V. TOPOLOGICAL EXCITATIONS

Low-energy topological excitations are important in the
melting of the FFLO/PDW phases. These are found by
requiring single valuedness of the order parameter components
�Q. In particular, defining �Qi

= �0e
iθi with θi = θ + Qi ·

TABLE II. Elastic Hamiltonians and vortex and dislocation charges of the topological excitations of the two FFLO/PDW phases (ni and li
are integers).

Phase Elastic Hamiltonian Vortex charge Dislocation charge

�� 1
2 ρs(∇θ )2 + λ

2 u2
ii + μ(us

ij )2 + γ (ua
ij )2 1

2π

∮
dθ = n

∮
du = l1(a,0) + l2

(
a

2 ,
√

3a

2

)
�v-av

1
2 ρs(∇θ )2 + λ

2 u2
ii + μ(us

ij )2 + γ (ua
ij )2 1

2π

∮
dθ = 1

3 (n1 + n2 + n3)
∮

dux = a

2 (n1 − n3)

+ ε
[

∂θ

∂x
2us

xy + ∂θ

∂y
(uxx − uyy)

] ∮
duy = a

2
√

3
(2n2 − n1 − n3)
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u, then along a contour surrounding a point defect in two
dimensions,∮

dθi =
∮

dθ +
∮

Qi · du = ni2π, (9)

with integer ni . Implementing this condition for all com-
ponents of the FFLO order parameter leads to the defect
classification in Table II. An important feature is the existence
of defects that contain both fractional vortex charge and
fractional dislocation charge. In the case of the stripe-like PDW
and FFLO phases, the predicted 1/2 vortices play a central role
in determining the phase diagram.10,15,17 Fractional vortices
exist for �v-av but not for ��.

The ground state �v-av supports conventional vortices (n1 =
n2 = n3 in Table II); conventional dislocations l1(a,0) +
l2( a

2 ,
√

3a
2 ) (when n1 + n2 + n3 = 0 in Table II); and 1/3

vortices which combine a phase winding of 2π/3 and a
fractional dislocation (with a charge that is 1/

√
3 the charge of

the smallest conventional dislocation). We note that fractional
vortices related to the 1/3 vortices found here have been
discussed in the context of an antiferromagnetic model on
the XY lattice25 and the fully frustrated XY model on the dice
lattice.26

The ground state �� allows only conventional vortices
and conventional dislocations. The latter result is somewhat
surprising given the prevalence of fractional vortices in other
FFLO/PDW ground states and is a direct consequence of the
coexistence of the spatially uniform charge 2 s-wave superfluid
with the FFLO/PDW order.

VI. DEFECT-DRIVEN FFLO/PDW MELTING

The elastic Hamiltonian, Eq. (7), implies that the interaction
between the defects is given by

Htop = 2π
∑
i 	=j

{
Ksninj + Kd

a2
bi · bj

}
ln

(
rij

ac

)
, (10)

where ni is the vortex charge of the defect, bi is the dislocation
charge, ac is a hard-core cutoff, rij is the distance between de-
fect i and defect j , Ks = ρs/T , and Kd = μ/T . Core energies
of the defects give rise to bare fugacities yi = exp{−C(Ksn

2
i +

Kd b2
i /a

2)}, where C is a constant of order 1. We consider
the small fugacity limit. In describing the critical properties,
only the lowest energy defects are required. For the ground
state �v-av, we include single vortices

∮
dθ = ±2π (with

fugacity yv), minimal normal dislocations
∮

du = a(±1,0),∮
du = ±a(1/2,

√
3/2), and

∮
du = ±a(−1/2,

√
3/2) (each

with with fugacity yd ), and 1/3 vortices
∮

dθ = ±2π/3 and∮
du = ±a 1√

3
(0,1), ±a 1√

3
(
√

3
2 ,−1

2 ), ±a 1√
3
(
√

3
2 , 1

2 ) (each with
fugacity y1/3), whereas for �� we include single vortices and
minimal normal dislocations.

The approach of Kosterlitz and Thouless as generalized to
vector Coulomb gases22–24,27,28 is used to determine the phase
diagram. The hard-core cutoff ac of the defects is increased to
ãc = ace

dl . Under this infinitesimal coarse graining, pairs of
defects separated by a distance ac either annihilate, if they
have opposite charges, or combine to form a new defect
described by the sum of the charges. This procedure leads to
renormalization-group (RG) equations for the scale-dependent

fugacities yi and interaction parameters Ks and Kd . For �v-av,
we find

dK−1
s

dl
= 4π3

(
y2

v + 1

3
y2

1/3

)
,

dK−1
d

dl
= 2π3

(
3y2

d + y2
1/3

)
,

dyv

dl
= (2 − πKs)yv, (11)

dyd

dl
= (2 − πKd )yd + 2πy2

d + 2πy2
1/3,

dy1/3

dl
= y1/3

{[
2 − π

(
Ks

9
+ Kd

3

)]
+ 4πyd

}
.

To gain insight into Eq. (11), it is useful to consider initially
the first RG equation (for Ks). This RG equation arises due to
screening of single vortices. These vortices can be screened by
other single vortices and by the 1/3 vortices. The interaction
between single vortices is given by Ks , while that between a
single vortex and a 1/3 vortex is given by Ks/3. This leads to
the first RG equation (for Ks): the 1/3 in the new term y2

1/3/3
comes from a factor of (Kv/3)2 (due to the interaction between
a vortex and a 1/3 vortex) and a factor of 3 stemming from the
three possible ways to screen a single vortex with 1/3 vortices.
The second RG equation follows from a similar consideration
for dislocations (these can be screened by other dislocations
and by 1/3 vortices). The equations determining the fugacities
follow from the usual considerations27,29 together with the
possibility of combining defects to create a new defect.22–24,28

For example, dislocations can be created either by pairing two
other dislocations or by pairing two 1/3 vortices. These two
processes lead to the terms 2πy2

d + 2πy2
1/3 in the fourth RG

equation.
For comparison, we write the RG equations for �� (these

are simply the RG equations of superfluidity27 and 2D melting
in the isotropic limit22)

dK−1
s

dl
= 4π3y2

v ,

dK−1
d

dl
= 6π3y2

d , (12)

dyv

dl
= (2 − πKs)yv,

dyd

dl
= (2 − πKd )yd + 2πy2

d .

Despite starting with the same elastic Hamiltonian, the RG
equations and the resultant phase diagrams for the two different
ground states (shown in Fig. 3) differ substantially. This is
because the state �v-av has exotic 1/3 vortices, while the state
�� does not.

For the ground state ��, the theory is that of uncoupled
dislocations and vortices. Vortices proliferate for πρs/T < 2
and dislocations proliferate for πμ/T < 2. As a consequence,
the melting of the FFLO/PDW phase occurs generally through
two separate phase transitions. As the temperature is increased,
the first transition is either to a conventional superfluid or to a
density wave state and the second is to the disordered phase. An
examination of the correlation functions in Eq. (8) reveals that
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FIG. 3. Phase diagrams for �� and �v-av. Phase boundaries are
given by solid lines. The shaded triangles are discussed in the text.
The new phases that arise from melting the FFLO/PDW phases are the
density wave, superfluid, orbital antiferromagnet, and homogeneous
charge six superfluid (�6e) phases. The density wave phase has no
superfluid order and breaks translational symmetry through the for-
mation of a hexagonal lattice. The superfluid phase is a homogenous
conventional paired superfluid. The orbital antiferromagnet phase has
no superfluid order and hexagonal orbital current antiferromagnetic
order. The �6e phase is a spatially homogenous superfluid phase of
bound states of six fermions

in the FFLO/PDW phase either the conventional superfluid
order or the density wave order (and not the FFLO/PDW
order) has the longest-range correlations, masking the original
FFLO/PDW order. Indeed, the melting of the FFLO/PDW to
a density wave state and then to a disordered state represents
the same sequence of transitions expected for a conventional
supersolid.30,31 These arguments indicate that �� strongly
resembles a conventional supersolid state.

Let us return to the state �v-av. Its phase diagram can be
understood qualitatively by considering the terms in Eq. (11)
that are linear in the fugacities. In this limit, vortices pro-
liferate for πρs/T < 2 (superfluid order is lost), dislocations
proliferate for πμ/T < 2 (density wave order is lost), and 1/3
vortices proliferate when π (ρs/9 + μ/3)/T < 2 (all order is

lost). Consequently, in addition to the disordered phase and
the fully ordered FFLO/PDW phase, there exist two new
phases. The first is an orbital antiferromagnet phase in which
there is no superfluid order, however, the density wave order
and the orbital order still exhibit power-law correlations. The
second phase is a charge 6 superfluid (�6e) that is spatially
homogeneous. In this phase there is no density wave or orbital
order. The qualitative phase diagram for �v-av is shown in
Fig. 3 (an exact phase diagram requires going beyond the
small fugacity limit). Solid lines are the anticipated phases
boundaries. These follow from an argument given in Ref. 32
for the phase diagram of 2D spinor condensates. In the shaded
triangular regions in Fig. 3, the phases ψ6e and the orbital
antiferromagnetic phase cannot be stable (a theory linear in
fugacities would lead to the opposite conclusion). In particular,
even though π (ρs/9 + μ/3)/T < 2 for the unrenormalized
stiffnesses, this is not true for the renormalized stiffnesses.
Consequently, 1/3 vortices will proliferate and all quasi-long-
range order will be lost.

We note that, in principle, there can exist other phases
that have not been explicitly considered here. For example,
for rotationally invariant systems, the passage of the density
wave phase into the disordered phase can have an intervening
hexatic phase.23 Similarly, a recent analysis of the LO phase for
rotationally invariant systems leads to an intervening nematic
phase.33 Consideration of such phases requires the inclusion of
disclinations and related defects which have not been included
in this work.

VII. CONCLUSIONS

We have presented an analysis of thermal melting in
two FFLO/PDW ground states with hexagonal symmetry.
For an FFLO/PDW v-av lattice phase, we find that thermal
melting can lead to either a charge 6 superfluid, to an
orbital antiferromagnetic, or directly to a disordered phase.
While for an FFLO/PDW phase with only superfluid density
oscillations, thermal melting necessarily proceeds in two
transitions: the first, to either a density wave phase or a
conventional superfluid; and the second, to a disordered phase.
The latter FFLO/PDW phase is difficult to distinguish from a
conventional supersolid phase.

ACKNOWLEDGMENTS

We acknowledge Manfred Sigrist for useful discussions.
This work was supported by NSF Grant No. DMR-0906655
and by Grant-in-Aid for Scientific Research No. 19052003,
MEXT of Japan. D.F.A. and H.T. acknowledge the Hospitality
of the Pauli Center of the ETH-Zurich.

*Corresponding author: agterber@uwm.edu
1E. Kim and M. H. W. Chan, Nature 427, 225 (2004).
2A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136
(1964) [Sov. Phys. JETP 20, 762 (1965)].

3P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).

4Y. Liao et al., Nature 467, 567 (2010).
5H. A. Radovan et al., Nature 425, 51 (2003).
6A. Bianchi, R. Movshovich, C. Capan, P. G. Pagliuso, and J. L.
Sarrao et al., Phys. Rev. Lett. 91, 187004 (2003).

7M. Kenzelmann et al., Science 321, 1653 (2008).

014513-6

http://dx.doi.org/10.1038/nature02220
http://dx.doi.org/10.1103/PhysRev.135.A550
http://dx.doi.org/10.1038/nature09393
http://dx.doi.org/10.1038/nature01842
http://dx.doi.org/10.1103/PhysRevLett.91.187004
http://dx.doi.org/10.1126/science.1161818


CONVENTIONAL AND CHARGE-SIX SUPERFLUIDS FROM . . . PHYSICAL REVIEW B 84, 014513 (2011)

8D. F. Agterberg, M. Sigrist, and H. Tsunetsugu, Phys. Rev. Lett.
102, 207004 (2009).

9E. Berg, E. Fradkin, E. A. Kim, S. A. Kivelson, V. Oganesyan, J. M.
Tranquada, and S. C. Zhang, Phys. Rev. Lett. 99, 127003 (2007).

10E. Berg, S. Kivelslon, and E. Fradkin, Nature Phys. 5, 830 (2009).
11S. C. Zhang, Phys. Rev. Lett. 71, 2142 (1993).
12M. Gabay and A. Kapitulnik, Phys. Rev. Lett. 71, 2138 (1993).
13G. Wirth, M. Olschlager, and A. Hemmerich, Nature Phys. 7, 147

(2011).
14W. V. Liu and C. Wu, Phys. Rev. A 74, 013607 (2006).
15L. Radzihovsky and A. Vishwanath, Phys. Rev. Lett. 103, 010404

(2009).
16D. F. Agterberg, Z. Zheng, and S. Mukherjee, Phys. Rev. Lett. 100,

017001 (2008).
17D. F. Agterberg and H. Tsunetsugu, Nature Phys. 4, 639 (2008).
18C. Lin, X. Li, and W. V. Liu, Phys. Rev. B 83, 092501 (2011).
19Y. Matsuda and H. Shimahara, J. Phys. Soc. Jpn. 76, 051005

(2007).

20L. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev. 50, 58
(1936).

21K. V. Samokhin, Phys. Rev. B 83, 094514 (2011).
22D. R. Nelson, Phys. Rev. B 18, 2318 (1978).
23D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).
24A. P. Young, Phys. Rev. B 19, 1855 (1979).
25S. E. Korshunov, Phys. Rev. B 65, 054416 (2002).
26S. E Korshunov, Phys. Rev. Lett. 94, 087001 (2005).
27J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
28F. Kruger and S. Scheidl, Phys. Rev. Lett. 89, 095701 (2002).
29V. L. Berezinskii, Zh. Eskp. Teor. Fiz. 59, 1907 (1970) [Sov. Phys.

JETP 34, 610 (1972)].
30G. V. Chester, Phys. Rev. A 2, 256 (1970).
31A. T. Dorsey, P. M. Goldbart, and J. Toner, Phys. Rev. Lett. 96,

055301 (2006).
32D. Podolsky, S. Chandrasekharan, and A. Vishwanath, Phys. Rev.

B 80, 214513 (2009).
33D. G. Barci and E. Fradkin, Phys. Rev. B 83, 100509 (2011).

014513-7

http://dx.doi.org/10.1103/PhysRevLett.102.207004
http://dx.doi.org/10.1103/PhysRevLett.102.207004
http://dx.doi.org/10.1103/PhysRevLett.99.127003
http://dx.doi.org/10.1038/nphys1389
http://dx.doi.org/10.1103/PhysRevLett.71.2142
http://dx.doi.org/10.1103/PhysRevLett.71.2138
http://dx.doi.org/10.1038/nphys1857
http://dx.doi.org/10.1038/nphys1857
http://dx.doi.org/10.1103/PhysRevA.74.013607
http://dx.doi.org/10.1103/PhysRevLett.103.010404
http://dx.doi.org/10.1103/PhysRevLett.103.010404
http://dx.doi.org/10.1103/PhysRevLett.100.017001
http://dx.doi.org/10.1103/PhysRevLett.100.017001
http://dx.doi.org/10.1038/nphys999
http://dx.doi.org/10.1103/PhysRevB.83.092501
http://dx.doi.org/10.1143/JPSJ.76.051005
http://dx.doi.org/10.1143/JPSJ.76.051005
http://dx.doi.org/10.1103/PhysRev.50.58
http://dx.doi.org/10.1103/PhysRev.50.58
http://dx.doi.org/10.1103/PhysRevB.83.094514
http://dx.doi.org/10.1103/PhysRevB.18.2318
http://dx.doi.org/10.1103/PhysRevB.19.2457
http://dx.doi.org/10.1103/PhysRevB.19.1855
http://dx.doi.org/10.1103/PhysRevB.65.054416
http://dx.doi.org/10.1103/PhysRevLett.94.087001
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1103/PhysRevLett.89.095701
http://dx.doi.org/10.1103/PhysRevA.2.256
http://dx.doi.org/10.1103/PhysRevLett.96.055301
http://dx.doi.org/10.1103/PhysRevLett.96.055301
http://dx.doi.org/10.1103/PhysRevB.80.214513
http://dx.doi.org/10.1103/PhysRevB.80.214513
http://dx.doi.org/10.1103/PhysRevB.83.100509

