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Magnetization-graded multiferroic composite and magnetoelectric effects at zero bias
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A magnetoelectric (ME) phenomenon in a multiferroic composite consisting of magnetization-graded
ferromagnetic and ferroelectric phases is discussed. The traditional strain mediated coupling in such composites
arises due to magnetostriction and piezoelectric effects associated with the ferroic phases. Such an ME effect, in
general, requires a bias magnetic field H0 and an ac magnetic field. This paper is on the observation and theory of
ME interactions under zero bias (H0 = 0) in a bilayer of lead zirconate titanate (PZT) and a ferromagnetic layer in
which the magnetization is graded with the use of Ni and Metglas. At low frequencies, the ME coefficient ranges
from 0.3 to 1.6 V/cm Oe and depends on the thickness of the Metglas. A similar dependence is also observed
for the ME coupling at bending modes. A factor of 40 increase in the ME voltage is measured at resonance.
The zero-bias ME coupling is attributed to strain-mediated coupling between the transverse magnetization due
to magnetization grading at the interface of Ni-Metglas and the in-plane ac magnetic field. Theoretical estimates
of ME coefficients at low frequencies and bending modes are in general agreement with the data.
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I. INTRODUCTION

Single-phase multiferroics and composites of ferromag-
netic and ferroelectric phases have attracted considerable
interest in recent years due to a rich variety of phenomena
associated with cross coupling between ferroic subsystems
and strain mediated magnetoelectric (ME) interactions in
composites.1–10 The strain-mediated coupling in composites,
in general, is observed as an induced electric field δE under
an applied bias magnetic field H0 and an ac field δH. The ME
voltage coefficient αE = δE/δH is measured as a function of
H0 and the frequency f of the ac field.6–10 Studies on samples
with ferromagnetic metals or alloys, ferrites, or manganites
for the magnetic phase and lead zirconate titanate (PZT)
or lead magnesium niobate–lead titanate (PMN-PT) for the
piezoelectric phase reveal a giant low-frequency coupling and
enhancement of the coupling strength when the electric or
magnetic subsystem is at resonance.6–12

This paper is on ME interactions in a ferroic composite
in which the order parameter is graded. Recent works on
functionally graded ferroics have resulted in the discovery of
important phenomena including internal potentials, induced
anisotropies, and spontaneous strain.13–15 Since the piezoelec-
tric (d) and piezomagnetic (q) coefficients are the critical
parameters that determine the strength of ME coupling in a
composite, we recently modeled the effects of such grading in
bilayers of Ni-Zn ferrite and PZT. Grading of magnetostriction
λ (and q = δλ/dH) in the ferrite and piezoelectric coupling d
was considered. A bilayer in which q and d are graded along a
vertical axis, for example, will result in a bending moment that
will have in-plane components that will affect the strength of
ME interactions. Our theory predicts a 50%–60% stronger ME
interaction in q and d graded ferrite-ferroelectrics compared
with homogeneous systems.16,17 Results of experiments on
such graded systems are in agreement with the theory.18

This paper is on the observation and theory of ME effects
in magnetization-graded ferromagnetic-piezoelectric layered
composites. Ban et al. reviewed experiments and theoretical
modeling on graded ferroics with particular emphasis on
polarization (P) graded ferroelectrics.19 In a film in which

P is graded along an axis perpendicular to the sample plane,
the grading in P manifests as a vertical shift in the P vs.
E loop when excited with a periodic ac field in a modified
Sower-Tower circuit. Significant modeling efforts in this
regard include domain structures in graded ferroelectric films
and multilayers.20,21 Similar studies on magnetization-graded
ferromagnets reveal the presence of an internal field.22,23 In
samples of composition-graded Ni-Zn ferrite, ferromagnetic
resonance data indicated a “built-in” magnetic field aligned
along the magnetization-gradient.22 Similarly in a hexagonal
ferrite with a variation in saturation magnetization of 30 emu/g
over a sample thickness of 2.5 mm, the dc magnetization
showed an anisotropy depending on the direction of the
external magnetic field relative to the grading direction. A shift
in magnetic properties corresponding to an internal magnetic
field of 30 Oe was reported.23 Such internals fields, in turn, give
rise to zero-bias ME coupling in multiferroic composites.18,24

Here we focus on ME effects in a bilayer of PZT and
a magnetization-graded ferromagnetic layer consisting of
Ni (with 4 πM ≈ 6 kG) and Metglas (4 πM ≈ 15.6 kG).
Studies were performed on samples of PZT-Ni-Metglas and
PZT-Metglas-Ni. Measurements of ME voltage coefficients
(MEVCs) αE vs. bias field H0 at low frequencies and αE

vs. f at bending resonance show characteristics typical of
piezomagnetic-piezoelectric cross coupling. The most signifi-
cant observation, however, is the observation of ME coupling
at zero bias (H0 = 0). We attribute the coupling to the
interaction of an out-of-plane internal magnetic field arising
from grading in M and the applied in-plane ac magnetic
field. Results of a systematic study on the dependence of the
low frequency and resonance zero-field MEVC αE,0 on the
thickness of ferromagnetic layer are provided here. A theory
is also discussed for the effect and compared with data.

II. EXPERIMENT

Samples of Ni-Metglas-PZT and Metglas-Ni-PZT were
studied. Annealed, 99.98% pure Ni foil (obtained from
Goodfellow Cambridge Limited, England) of thickness
250 μm was used. The foil was polished down to a thickness
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FIG. 1. (Color online) AFM topography for nickel showing 150–
200-nm grains.

of 160 μm. Surface profile data obtained with a Park Systems
scanning probe microscope (XE-100E) for the Ni foil is shown
in Fig. 1. The thick film was polycrystalline with a grain
size in the range 150–200 nm. We used iron-based Metglas
(No. 2605SA-1 provided by Metglas Inc., Conway, SC)
ribbons. The ribbons were 25 μm in thickness and contained
20–50nm crystallites, as seen in the atomic force microscopy
(AFM) topography data in Fig. 2. Vendor-supplied PZT (No.
851, American Piezo Ceramics, Mackeyville, PA) was used
in the composites.

Samples were made with 5 cm × 1 cm × 0.025 cm PZT,
160-μm-thick Ni, and 25-μm-thick Metglas of similar lateral
dimensions. The PZT with silver electrodes was initially
poled in an electric field of 30 kV/cm by heating it to 150 ◦C

FIG. 2. (Color online) AFM topography for Metglas showing 20–
50-nm crystallites.

in an oil bath. It was then bonded to Ni and Metglas with a
2- to 3-μm-thick layer of epoxy (West System 105-resin and
206-hardner). The sample was kept at 40 ◦C for 5 h to cure
the epoxy. For samples with higher thicknesses of Metglas,
it was necessary to bond the required number of 25-μm-thick
Metglas layers with the epoxy. For ME characterization, a
three-teriminal sample holder was used. Measurements were
then made by subjecting the sample to a bias magnetic field
H0 generated by an electromagnet and ac magnetic field H1 =
1 Oe produced by a pair of Helmholtz coils. With the sample
plane defined as (1,2), the magnetic fields were applied
parallel to the length of the sample plane, along direction 1.
The induced ac electric field E3 was measured across the width
of PZT, perpendicular to the bilayer plane. The MEVC αE =
E3/H1 = δV/tδH, where t is the total thickness of PZT,
was measured as a function of H0 and frequency f of the ac
magnetic field.

For measurements of ME voltages under zero-bias con-
dition, a three-layer mu-metal magnetic shield was used to
screen the effects of the Earth’s magnetic field. The sample
was subjected to ac fields H1 = 100–900 μOe and the
voltage across the sample was amplified with a low-noise
high-input impedance amplifier (Stanford Research Systems,
Model SR560) and fed to a spectrum analyzer (Stanford
Research Systems, Model SR780).

III. RESULTS

Representative data on variations of the MEVC αE with H0

are shown in Fig. 3 for PZT-Ni-Metglas and PZT-Metglas-Ni

(a)

(b)

FIG. 3. (Color online) Magnetoelectric Voltage (MEVC) as a
function of the bias field H0 for samples of PZT and ferromagnetic
layers with Ni and Metglas. The Metglas thickness is 75 μm. The
bias field H0 and ac field H1 are parallel to the sample plane.
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samples. The data are for a Metglas thickness of 75 μm.
Consider first the data for PZT-Ni-Metglas in Fig. 3(a). The
MEVC is ∼1.6 V/cm Oe for H0 = 0. There is a phase
difference φ = 180o between the applied ac magnetic field
H1 and the induced ME voltage δV . With increasing H0 the
magnitude of the MEVC decreases to zero for a bias field
of 5–7 Oe. Beyond this zero crossing, a further a increase in
the bias field results in a sharp increase in the MEVC to a
maximum value of 3.5 V/cm Oe. Finally one observes a drop
in the MEVC down to zero with increasing bias field. Data
in Fig. 3(b) for PZT-Metglas-Ni shows similar MEVC vs. H0

characteristics, but the peak MEVC is somewhat smaller than
the value in Fig. 3(a).

An observation of significance in Fig. 3 is the large αE

for H0 = 0. The large zero-bias MEVC can only be due to
a torque which arises from interaction between the in-plane
ac field H1 and a transverse grading-induced magnetization.
Compositional grading of ferrites are shown to result in such
an internal field.22,23 The torque produces a bending moment in
the magnetic-layer direction and gives rise to the ME output at
the zero-magnetic-bias field. An increase in in-plane bias field
H0 causes a gradual shift of effective magnetization toward
the sample plane. As a result, the torque vanishes when the net
magnetization is parallel to H1.

The MEVC data beyond the zero crossing originate from
strain-mediated coupling that arises due to piezomagnetism
associated with the magnetic layer and the piezoelectric
coupling for PZT. This effect is not considered any further
in this paper.

Next we investigated the zero-field ME effects in detail.
The PZT-Ni-Metglas sample was located in a magnetically
shielded chamber to achieve H0 = 0 and subjected to an in-
plane ac field of 100 μOe. The ME voltage was measured
with a spectrum analyzer. Results of these measurements are
shown in Fig. 4. One observes a near-constant ME response
independent of the frequency f of the ac field. The MEVC
corresponds to 0.5 V/cm Oe and is smaller than the value in
Fig. 3.

FIG. 4. (Color online) The zero-bias ME voltage as a function of
frequency f of the ac field H1 measured for a sample of PZT-Ni and
75-μm-thick Metglas.

FIG. 5. (Color online) Data on ME voltage vs. frequency for a
sample of PZT-50 μm Metglas. The profiles are for ac field H1 = 0,
100 μOe, and 900 μOe at 1 Hz.

To confirm the absence of zero-field ME voltage in
homogeneous bilayers, measurements similar to those in Fig. 4
were performed on PZT-Metglas or PZT-Ni. Representative
data are shown in Fig. 5 for PZT and 50-μm-thick Metglas.
The figure shows the ME voltage measured with a spectrum
analyzer for ac fields of zero, 100 μOe, and 900 μOe. It is clear
from the data that the ME voltage does not increase above the
noise level even for H1 = 900 μOe.

Next we focus on the zero-bias ME coupling in
magnetization-graded samples. We prepared samples with
Metglas thicknesses varying from 25 to 125 μm (or the
number of layers L = 1–5) and measured the ME response
as in Fig. 3. Figure 6 shows αE,0 as a function of L for
the magnetization-graded samples. With increasing Metglas
thickness, one observes a rapid rise in αE,0 to a peak value
for L = 3 that is followed by a sharp fall for higher L. The
zero-bias ME voltage is vanishingly small for L = 5.

FIG. 6. (Color online) Zero-bias MEVC obtained from data as in
Fig. 3 as a function of number of Metglas layers L for magnetization
graded samples. The lines represent theoretical values.
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FIG. 7. (Color online) Magnetoelectric Voltage Coefficient for
H0 = 0 as a function of frequency f of the ac magnetic field H1 for
a sample of PZT-Ni-25 μm thick Metglas. The peak in the MEVC
corresponds to bending resonance in the sample clamped at one end.
The symbols are data and the solid line is theoretical estimates.

An ME phenomenon of interest is the coupling at bending
resonance.25–28 We modeled the resonance enhancement of
ME interactions at frequencies corresponding to bending
oscillations. It was shown that the enhancement in ME
coupling occurs at the lowest frequency for a bilayer that is
fixed at one end and free at the other end. Measurements of the
zero-bias MEVC as a function of frequency of the ac magnetic
field were carried out in the magnetically shielded chamber,
and typical results are shown in Fig. 7. The data are for a
sample of PZT-Ni-25-μm-thick Metglas. With increasing f,
one notices an increase in αE,0 to a peak value at the resonance
frequency of 170 Hz and a decrease to an off-resonance value
at 200 Hz. The resonance value of the MEVC is a factor of 40
higher that the low-frequency value.

Similar measurements on samples with a series of Metglas
thickness and the peak αE,0 are shown in Fig. 8. The data reveal
a much stronger ME coupling at resonance in PZT-Ni-Metglas

FIG. 8. (Color online) The resonance value of zero-bias MEVC
vs. number of Metglas layers in the magnetization-graded samples.
The solid and dashed lines are theoretical values.

than for PZT-Metglas-Ni. The peak value of αE,0 ranges from
2 to 46 V/cm Oe, depending on the thickness of the Metglas.
The highest value is measured for PZT-Ni-75-μm Metglas.

Finally we compare the strength of zero-bias ME effects in
the present system with observations in PZT-Ni-Zn ferrite18

and laminates with a layer of metallic nickel and a layer of
Ni-Zn ferrite particles dispersed in a lead-free piezoelectric.19

The zero-field MEVCS, in Refs. 18 and 19 range from 25
to 100 mV/cm Oe, depending on the volume fraction for
the piezoelectric and magnetic phases. The highest MEVC
measured in the present paper is a factor of 16 higher than in
PZT and composition-graded Ni-Zn ferrite.18

IV. THEORY

We discuss here a model for the zero-bias ME effects for
PZT, Ni, and Metglas, as in Fig. 3. Although magnetic metals
or alloys of homogeneous compositions are not piezomagnetic,
one can achieve a pseudo-piezomagnetic effect (q = dλ/dH,
where λ is the magnetostriction) by subjecting the sample to
a bias magnetic field H0 and ac field H1. Magnetostriction of
magnetic components and piezoelectric coupling of PZT are
known to result in the traditional strain-mediated ME effect.
However, there is a distinctive feature of a magnetic layer with
graded saturation magnetization: Magnetically graded ferro-
magnets are shown to develop a built-in magnetization.22,23

This magnetization gives rise to a new type of ME coupling
that is a product property of spontaneous magnetization and
piezoelectric coupling. The physical mechanism for this ME
effect is as follows: The built-in magnetization interacts
with applied ac magnetic field and thus produces a moment
of rotation acting on the magnetic layers. Considering the
sample as a cantilever, a flexural deformation arises which
is transferred to the PZT layer. An induced output voltage is
generated by average longitudinal stress in the piezoelectric
phase. It should be noted that magnetic layers do not have to
be magnetostrictive to exhibit such magnetoelectric coupling.

We assume a sample geometry and field orientations as in
Fig. 9. The analysis described here is based on the well-known
equations for the strain of magnetostrictive and piezoelectric
phases and electric displacement of the latter:

m1Si = m1sij
m1Tj ,

m2Si = m2sij
m2Tj ,

(1)pSi = psij
pTj + pdki

pEk,
pDk = pdki

pTi + pεkn
pEn,

H0,  H1 

PZT 

Ni 

Metglas 

x

z 

E3 

FIG. 9. A sample of PZT, Ni, and Metglas. The bias magnetic
field H0 and the ac magnetic field H1 are parallel to the x axis. The
piezoelectric layer is poled along z and the ac electric field E3 is
measured across PZT.
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where Si and Tj are strain and stress tensor components, Ek

and Dk are the vector components of electric field and electric
displacement, sij and dki are compliance and piezoelectric
coefficients, and εkn is the permittivity matrix. The superscripts
p, m1 and m2 correspond to piezoelectric and two magnetic
layers, respectively. We assume the symmetry of piezoelectric
to be ∞m and the magnetic layers to be cubic.

A. Low-frequency magnetoelectric effect

For finding the low-frequency MEVC at a no-bias magnetic
field, we solve elastostatic and electrostatic equations in the
piezoelectric phase and elastostatic equations in magnetic lay-
ers in the absence of magnetostrictive coupling. The modeling
of ME coupling in bilayers based on a compositionally graded
magnetostrictive component is described in our previous
work.17 In our actual investigation, we proceed from the
theoretical approach cited above. To adapt that model to
the structure in Fig. 9, we set the piezomagnetic coupling
coefficients equal to zero. Next we assume the longitudinal
axial strains of each layer to be linear functions of the vertical
coordinate zi to take into account the cylindrical bending of
the trilayer: pS1 =pS10 +zp/R1

m1S1 =m1S10 + zm1/R1, and
m2S1 = m2S10 +zm2/R1, where iS10 are the centroidal strains
along the xaxis at zi = 0,R1 is the radius of curvature, and zi

is measured relative to centroidal plane of the i layer. It can be
shown that centroidal strains obey the following conditions:
m2S10 –m1S10 = h2/R1 and m1S10− pS10 = h1/R1, where h1 =
(m1t +p t)/2 and h2 = (m1t + m2t)/2 are distances between the
centroidal planes of the piezoelectric and first magnetic layers
and between that of two magnetic layers, and pt , m2t, and m2t

are thicknesses of three layers.
The axial forces in the three layers must add up to zero, and

the rotating moments of axial forces in the three layers must
be counteracted by resultant bending moments pJ 2, m1J2, and
m2J2, induced in piezoelectric and two piezomagnetic layers
to preserve force and moment equilibrium:

m1F1 + m2F1 + pF1 = 0,
(2)

m1F1h1 + m2F1(h1 + h2) = pJ2 + m1J2 + m2J2 + HJ2,

where iF1 = ∫ i t/2
−i t/2

iT1dz1,
iJ2=

∫ i t/2
−i t/2 zi

iT1dzi and HJ2 is a
moment of rotation produced by the applied ac magnetic
field. This rotating moment per unit width due to built-in
magnetization is defined as

HJ2 = μ0H1(1Mm1t + 2Mm2t), (3)

where 1M and 2M are vertical components of built-in magne-
tizations of magnetic layers arising from the stepped-graded
magnetic phase.

The built-in magnetization due to grading in saturation
magnetization can be estimated using the thermodynamic
analysis similar to the polarization of a ferroelectric bilayer
with different values of saturation polarization.20,21 We con-
sider a bilayer of two magnetic layers with normally directed
magnetizations of layers. The free energy density of the bilayer

can be presented as follows:

F = v1

[
F1(1m) − μ0

1MH + μ0
N33

1M2

2

]

+ v2

[
F2(2m) − μ0

2MH + μ0
N33

2M2

2

]

+μ0v1v2
(1M − 2M)2

2
, (4)

where v1 = t1/(t1+t2),v2 = t2/(t1+t2), 1M and 2M are the
volume fractions and the macroscopical magnetizations of
layers, respectively, M is an average magnetization, Fi(im)
is the free-energy density of the i layer as a function of the
microscopic magnetization im, and H is the external magnetic
field. For the polydomain layer, iM is dependent on fractions
of 180◦ domains, βi , and iM = (1–2 βi)im. It is well known that
domains prefer to be parallel or antiparallel to the easy mag-
netization axis, if any. In our case, the internal magnetic field
due to mismatch in saturation magnetizations is high enough
and is similar to an easy magnetization axis for the layer with
lower saturation magnetization. Thus a majority of first-layer
domains are parallel to the z axis. For the second layer (with
higher saturation magnetization), the in-plane average magne-
tization components are zero at the zero-bias field provided
that the easy-axis anisotropy field direction is parallel to the z
axis. Thus the only z component of the second layer’s average
magnetization is nonzero due to the axial symmetry of the
structure. The term μ0

N33
iM2

2 in Eq. (4) is the demagnetization
energy and N33 is the form factor of the sample.

The last term in Eq. (4) expresses the magnetic coupling
between the layers which arises due to the mismatch of
the equilibrium magnetization of layers. Free-energy density
is known to include only even powers of magnetization.
An additive term which describes mismatch in a layer’s
magnetization should be zero for equal magnetizations. Thus
the dominant term in free-energy expansion can be k(2M–
1M)2. Then this term should be zero for each of the two layers
separately. So we can put k = μ0v1v2/2. Ni and Metglas have
a high value of (2M –1M) and all the discussion above and the
form of Eq. (4) correspond to this system.

The free-energy density of the i layer can be determined by
a Landau expansion as follows

Fi(
im) = ai

2
im2 + bi

2
im4, (5)

where ai and bi are the Landau-type bulk free-energy expan-
sion coefficients. For uncoupled layers, 1m = 1M0 and 2m =
2M0 where 1M0 and 2M0 are the saturation magnetizations of
the layers. We assume next that 1M0 < 2M0.

The magnetizations in the coupled layers are determined
by equations of equilibrium, ∂F/∂1M = 0 and ∂F/∂2M = 0.
Taking into account Eq. (5) for F1 and F2, these equations are
reduced to the form

∂F1

μ0∂(1M)
= H − N33

1M + v2(2M − 1M),

(6)
∂F2

μ0∂(2M)
= H − N33

2M − v1(2M − 1M).

In the absence of an external field, these equations have
an infinite number of solutions including the domain structure
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with zero net magnetization (β1 = β2 = 1/2). In light of
Eqs. (6), the mismatch in magnetizations of layers results in an
additional magnetic field in the layer with lower magnetization
(layer 1), which gives rise to an increase in magnetization.
On the other hands, the additional field in the second layer
is negative and appears a depolarizing field. Equations (6)
can be reduced to an algebraic system of equations that is
solved for 1M and 2M at fixed values of β1 and β2. The final
solutions should result in minimum energy. For the bilayer of
Ni and Metglas with t1 = 0.16 mm and t2 = 0.075 mm, this is
described by the following solutions of Eqs. (6): μ0

1M = 0.12
T and μ0

2M = 0.78 T. In our measurements, the virgin sample
was initially magnetized by a dc magnetic field to bring the
magnetic system to equilibrium.

Solving Eqs. (2) for R1 and pS10 enables one to find the axial
stress pT1 from Eqs. (1). Using the open-circuit condition, the
expression for the MEVC can be obtained in the following
form:

αE31 = E3

H1
= −

∫ pt/2

−pt/2

pd31
pT1

ptH1
pε33

dz, (7)

where E3 and H1 are the average electric field induced
across the piezoelectric layer and applied ac magnetic field,
respectively. Substituting the obtained value of stress into
Eq. (7) yields

αE31

= −
pd31

pYμ0(1M3
m1t + 2M3

m2t)tb[
pK2

31(DpYpt/Ȳ t + b2t2ptpY ) + D
(
1 − pK2

31

)]
pε33

,

(8)

where the design factors are defined as follows:

b =
m1th2

m1Y + (h1 + h2)m2tm2Y

Ȳ t2
,

Ȳ =
m1tm1Y + m2tm2Y + ptpY

t
,

D = [
m2Ym2t(h1 + h2)2 + m1Ym1th2

2

]ptpY

tȲ

+
m1tm2th2

1
m1Ym2Y

tȲ
+

pY pt3

12
(
1 − pK2

31

)

+
m1Ym1t3

12
+

m2Ym2t3

12
.

Here t is the total thickness of the sample, pK31 is
the piezoelectric coupling coefficient, and Y is the Young’s
modulus.

Equation (8) reveals the MEVC at zero magnetostrictive
coupling to be substantially determined by the piezoelectric
coefficient and built-in magnetization due to using the magnet-
ically graded components. The conclusion is that, for achieving
a strong ME coupling, the magnetic layers should possess
the different saturation magnetizations, M1s<M2s and M1s

should be as large as possible.

B. Magnetoelectric effect at bending resonance

The ME coupling in the composites is known to be mediated
by the mechanical stress that enables us to obtain orders-of-

magnitude-stronger coupling when the frequency of the ac
field is tuned to the same frequency as the longitudinal, thick-
ness, or bending modes of the structure. For nominal sample
dimensions, bending oscillations occur at lower frequencies
compared with those of the longitudinal or thickness acoustic
modes,17 which is favorable for applications. Studies reveal a
much higher enhancement in the strength of ME coupling for
the bending mode than for other modes. Theoretical models
of ME interactions at electromagnetic resonance (EMR) in
a bilayer of a ferroelectric phase with a linearly graded
piezoelectric coefficient and permittivity and a ferromagnetic
phase with linear grading of a piezomagnetic coefficient
was developed previously.17 Here we focus on modeling the
resonance ME effects at bending modes in layered structures
based on PZT and stepwise-graded magnetic alloys with a
no-bias magnetic field, as in Fig. 9.

Modeling of the ME effect at a zero-bias field is based
on the recently reported theory of ME interactions in graded
systems.17 In contrast to Ref. 17, here the present model
is based on the assumption that piezomagnetic coupling
coefficients are zero: m1qki = m2qki = 0 and stepped grading
in the saturation magnetization of magnetic layers results in a
built-in magnetization.

The equation of bending motion of the composite, whose
thickness is assumed to be small compared with other
dimensions and whose width is assumed to be small compared
with length, has the form17

∇2∇2w + ρt

D

∂2w

∂t2
= 0, (9)

where ∇2∇2 is a biharmonic operator, w is the deflection
(displacement in the z direction), t and ρ are thickness
and average density of the sample, respectively, and D is
the cylindrical stiffness. For a trilayer of PZT and two
magnetostrictive layers, t =pt + m1t+m2t,ρ = (pρ pt +
m1ρm1t+m2ρm2t)/t, where pt , m1t, and m2t are thicknesses of
the piezoelectric and two piezomagnetic layers, respectively,
and pρ, m1ρ,m2ρ are the densities of the layers.

The general solution of Eq. (9) contains four arbitrary
constants that have to be found from boundary conditions
at x = 0 and x = L. To obtain the lowest resonance
frequency possible, a cantilever of a layered piezoelectric
and ferromagnetic composite is considered. For this case, the
deflection and derivative of deflection ∂w/∂x equal zero at the
fixed end (x = 0) and the turning moment J2 and transverse
force V equal zero at the free end (x = L). The moment of
rotation is defined as

J2 =
∫

A

zT1dz1 + μ0H1(1Mm1t+2Mm2t),
(10)

where A is the cross-sectional area of the sample normal to the x
axis. The transverse force can be expressed in terms of turning
moment as follows: V = ∂J2

∂x
. The stress component T1, which

appears in the expression for the turning moment, is found
from Eqs. (1), taking into account that strain components of
all layers are related to the deflection of structure: S1 = −z ∂2w

∂x2 .
Taking into consideration the boundary conditions at x =

0 and x = L, solving Eq. (10) enables finding the strains and
stresses. Once the stresses are determined, the MEVC can then
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be found by using the open-circuit condition
∫
G

pD3dx = 0,
where G is the cross-sectional area of the sample normal to the
z axis. The resultant expression for the MEVC has the form

αE31 =
pd31

pYμ0(1M3
m1t + 2M3

m2t)(2z0 − pt)(r1r4 + r2r3)

�pε33
,

(11)

where

� = D
[
kL

(
1 + r2

3 − r2
4 + 2r1r3

) + 2a1(r1r4 + r2r3)
]
,

a1 = 1

3D

pK2
31

pY pt[3z0(z0 − pt) + pt2],

r1 = cos(kL), r2 = sin(kL), r3 = cosh(kL), r4 = sinh(kL),

k4 = ω2(pρpt + m1ρm1t + m2ρm2t)D−1,

z0 =
pY pt2 − m1Ym1t2 − m2Ym2t(2m1t + m2t)

2(pY pt + m1Ym1t + m2Ym2t)
.

1M and 2M are the built-in magnetizations of magnetic
layers arising from the stepped-graded magnetic phase. The
value of this magnetization was discussed above.

One can see from Eq. (11) that for an ME interaction
to occur at zero magnetostrictive coupling, the presence of
internal magnetization of the magnetic phase is required. The
built-in magnetization can be produced by stepped saturation
magnetization. The appearance of internal magnetization can
be stipulated by a compositionally graded magnetic phase as
well. At EMR, the MEVC reveals an enhancement. Resonance
frequencies are determined by roots of the equation � = 0 [�
is defined in the notation of Eq. (11)]. Coefficient a1 that enters
this equation describes the influence of piezoelectric coupling
on resonance frequencies. Neglecting this influence (setting
a1 equal to zero) leads to an expression cos(kL) cosh(kL) =
−1, which coincides with that for bending vibrations of a
homogeneous rod.17

V. APPLICATION TO PZT-NI-METGLAS

Now we carry out numerical estimates of the MEVC for
samples with PZT, Ni, and Metglas. We consider ME coupling
at zero bias. In this case, the sample is subjected only to ac
magnetic field H1 as in Fig. 9. The material parameters used
for the estimates are listed in Table I. The energy losses are
taken into account by substituting ω for complex frequency ω

+ iω′ with ω′/ω = 103. Figure 6 shows the estimated zero-field
low-frequency ME coefficient as a function number of Metglas
layers L. The theory predicts dependence of the MEVC on the
grading scheme due to differences in the cylindrical stiffnesses

FIG. 10. (Color online) MEVC as a function of bias field H
for a sample of PZT-3 L Metglas-Ni. The bias field was applied
perpendicular to the sample plane, and the ac magnetic field was
in-plane.

for PZT-Ni-Metglas and PZT-Metglas-Ni and an increase in
the MEVC with L. The discrepancy between theory and data
in Fig. 6 could be due to the fact that the theory assumes a
continous magnetic medium for Metglas, whereas one has an
epoxy layer between Metglas layers for L > 1 that gives rise to
a magnetic discontinuity.

Figure 7 shows the estimated MEVC vs. frequency profile
for PZT-Ni-25-μm-thick Metglas. The theoretical profile is
shifted to a lower frequency compared with the data and the
calculated peak MEVC is smaller than the measured value.
Figure 8 shows the calculated values of the peak MEVC at
bending resonance. The estimated MEVCs are higher for PZT-
Ni-Metglas than for PZT-Metglas-Ni. One notices a general
agreement between theory and data in Fig. 8.

It should be noted that the ground state for a magnetization-
graded system has infinite solutions for the ground state. The
ground states are influenced by the domain structure and the
domain rearrangement brought on by an initial magnetizing
field. Such samples, once magnetized to an equilibrium state,
do not show any decrease in the zero-bias MEVC for a
prolonged period of several months. We carried out further
investigation on the nature of the zero-bias state by measuring
the MEVC vs. H on a sample subjected to a transverse bias field
and a longitudinal ac magnetic field. Representative results are
shown in Fig. 10 for a sample of PZT-Metglas (3L)-Ni. For

TABLE I. Material parameters (compliance coefficient s, magnetization, permittivity ε, and density ρ) for Ni, Metglas, and PZT used for
theoretical estimates. Parameters a and b are used in Eq. (5) for free-energy density.

Material s11 (10−12 m2/N) μ0M (T) d31 (10−12 m/V) ε33/ ε0 ρ (g/cm3) a (in SI units) b (in SI units)

PZT 15.3 175 1750 7.75
Ni 4.9 0.616 8.9 −1.66·10−5 0.34·10−16

Metglas 10 1.56 7.18 −2.15·10−5 0.38·10−17
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|H| > 0, the magnetoelectric coupling is due to bending of the
sample under the transverse bias field and one observes an
increase in the MEVC with increasing field to a maximum
that is followed by a decrease in MEVC at higher fields. Upon
reversal of the direction of the bias field, the MEVC begins to
decrease in magnitude and is zero for H ≈ ±60 Oe. For this
zero-MEVC state we estimated the magnetization state of Ni
and Metglas by using Eqs. (6) and obtained μ0

1M = −0.33 T
and μ0

2M = 0.77 T so that the average magnetization becomes
zero. Applying the dc magnetic field in the vertical direction
opposite to the direction of the built-in magnetization gives
rise to a decrease in the internal field in the Ni layer and an
increase in the demagnetizing field in Metglas. As a result,
the average magnetization approaches zero due to variations
in fractions of 180◦ domains. Then the layers are gradually
magnetized, and the average magnetization increases. So a
hysteresis loop arises with the remanent magnetization equal to
the built-in magnetization and a zero-bias MEVC. The sign of
this zero-bias MEVC is determined by the previous magnetic
state.

The data and the model discussed here are likely to
encourage similar studies on functionally graded ferroics and
ME interactions. Studies on monolithic heterostructures of
ferroelectrics and ferromagnetics are of interest in this regard.
One can, for example, grow a compositionlly graded alloy of
NixFe1−x with x varying from 0 to 1 so that 4πM varies from

6 kG to 21 kG. Such systems are expected to show strong
zero-field ME couplings that depend on only the rate of change
in the magnetization.

VI. CONCLUSIONS

The observation and theory of zero-bias ME coupling have
been discussed for samples of PZT and magnetization-graded
ferromagnetic layers. The grading in the magnetization is
achieved with the use of Ni and Metglas. A large zero-
bias low-frequency ME coefficient of the order of 0.3–
1.6 V/cm Oe is measured for the systems. The ME coupling
is strengthened by a factor of 40 at bending modes when
the samples are clamped at one end. The zero-bias ME
coupling is attributed to strain-mediated coupling between
the transverse magnetization due to magnetization grading
at the interface of Ni-Metglas and the in-plane ac mag-
netic field. There is general agreement between theory and
data.
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