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Magneto-optical properties of Co/Ir superstructures on Ir(111)
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The fully relativistic spin-polarized screened Korringa-Kohn-Rostoker method is used to evaluate the electronic
and magnetic structure as well as the optical conductivity of (ComIrm)n superstructures on Ir(111). By mapping
the microscopic optical conductivity tensor onto the macroscopic permittivity tensor and by using the so-called
2 × 2 matrix technique the surface reflectivity matrices for these systems are then calculated, from which in turn
the Kerr rotation and ellipticity angles can be determined. It is found (i) that when varying at a given value of m

the number of repetitions n, these angles are linearly proportional to the total magnetic moment, and (ii) that at
a frequency of about 3.8 eV the Kerr rotation angles have the largest value, the corresponding maximum being
mainly caused by the Ir spacer layers. The optical properties of the free surface of Ir(111), which is considered
to check the applied theoretical schemes, turn out to be in good agreement with existing experimental data.
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I. INTRODUCTION

When John Kerr published his observations of the reflection
of light from the pole of a (horse-shoe) magnet,1–3 he probably
did not envisage that about 130 years later one would still speak
of a “polar” and a “longitudinal”2 magneto-optical effect. Even
his statement that “...magneto-optics.... must be all included
ultimately under one physical theory”2 remained valid up to
now. John Kerr probably never thought that “his” effect would
become one of the most commonly used experimental tools in
(nano)magnetism.

In the last 30 years, Kerr measurements were first used in
the field of nanomagnetism, for example, to trace reorientation
transitions in magnetic thin-film systems4 and then applied
to magnetic superstructures on nonmagnetic substrates such
as (Co/Cu) on Cu.5 In particular, superstructures of the type
(ComPtp)n on Pt(111)6–9 raised considerable interest because
of possible applications in the field of magneto-optical storage
media. Less studies were performed on (Co/Ir) superstructures
on Ir(111).10,11 In the wide majority of present-day applica-
tions, the Kerr effect is mainly used as a “finger-print” method
to map the properties of magnetic surfaces.

In the following, a theoretical study of the magneto-optical
properties of (ComIrm)n superstructures on Ir(111) substrate is
presented. Completely in line with John Kerr’s demand of “one
physical theory,” it turned out that the Kerr rotation and elliptic-
ity angles of such superstructures offer interesting features and
possible future applications. In particular, for example, it will
be shown that the Ir spacer layers are of a crucial importance
for the size of the Kerr rotation angles. It is also the aim of this
paper to stress the importance of considering the macroscopic
nature of magneto-optical measurements.

II. THEORETICAL APPROACH

A. Permittivities

In a system characterized by two-dimensional translational
symmetry referring to scattering regions disjoint in config-
urational space, the macroscopic permittivity tensor can be
written to a very good approximation in terms of a sum over

layer-resolved permittivity tensors,14–16

ε(ω; N ) = 1

N

N∑
p=1

εp(ω), (1)

εp(ω) =
N∑

q=1

εpq(ω), (2)

where N is the total number of atomic layers considered. The
εpq(ω) in Eq. (2) results from a mapping of corresponding
elements of the microscopic optical conductivity σpq(ω),13,16

εpq(ω) = Iδpq + 4πi

ω
σpq(ω), (3)

from which in turn the real and imaginary parts of the dielectric
tensor can be easily identified:

Reε(ω; N ) = I − 4π

ω

⎡
⎣ 1

N

N∑
p=1

Imσp(ω)

⎤
⎦ ,

Imε(ω; N ) = 4π

ω

⎡
⎣ 1

N

N∑
p=1

Reσp(ω)

⎤
⎦ , for ω ∈ R

where I is the 3 × 3 unit matrix.
The actual form of ε(ω; N ) reflects of course the underlying

(two-dimensional) rotational symmetry of the system under
investigation and the type of spectroscopy performed (polar or
longitudinal geometry).

1. Substrate

Since paramagnetic Ir(111) bulk is of fcc type (a0 =
7.2545 a.u.), in terms of three-dimensional cyclic boundary
conditions the layer-dependent permittivity tensors can be
written as14

εp(ω) =
⎛
⎝ε

p
xx(ω) 0 0

0 ε
p
yy(ω) 0

0 0 ε
p
zz(ω)

⎞
⎠ , (4)

ε
p
xx(ω) = ε

p
yy(ω), (5)
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where x and y refer to the in-plane coordinates and z is parallel
to the surface normal. If, however, only two-dimensional
translational symmetry applies, as is the case of an Ir(111)
free surface, then the following conditions have to be fulfilled
numerically:∣∣εN+m

zz (ω) − εN
zz(ω)

∣∣ < δ, m ∈ N, (6)

lim
m→M

εN+m
zz (ω) = εzz(ω), (7)

where in principle δ is an infinitesimally small number and M a
sufficiently large positive integer. Equations (6) and (7) imply
that only well inside the Ir(111) substrate full cubic symmetry
is restored.

2. Co/Ir superstructures

Considering in polar geometry Co/Irsuperstructures on
Ir(111), εp(ω) can be written as14

εp(ω) =

⎛
⎜⎝ε

p
xx(ω) ε

p
xy(ω) 0

−ε
p
xy(ω) ε

p
xx(ω) 0

0 0 ε
p
zz(ω)

⎞
⎟⎠ , (8)

and again the condition (6) has to be met.
Quite obviously, in calculating the magneto-optical proper-

ties of (ComIrm)n/Ir(111) the following gradual change in the
form of εp(ω) has to be taken into account, namely, from the
bulk-like interior of the substrate to the vacuum region,⎛

⎝εxx 0 0
0 εxx 0
0 0 εxx

⎞
⎠

︸ ︷︷ ︸
bulk

→

⎛
⎜⎝ε

p
xx(ω) ε

p
xy(ω) 0

−ε
p
xy(ω) ε

p
xx(ω) 0

0 0 ε
p
zz(ω)

⎞
⎟⎠

︸ ︷︷ ︸
substrate near surface & superstructures

→
⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠

︸ ︷︷ ︸
vacuum

. (9)

B. Kerr rotation and ellipticity angles

By starting, as sketched in relation (9), well inside the
substrate and solving sequentially in each layer the Fresnel,
Helmholtz, and curl Maxwell equations, the surface reflectivity
matrix R, (

E(r)
vac,x

E(r)
vac,y

)
= R

(
E(i)

vac,x

E(i)
vac,y

)
, (10)

can be obtained in terms of the so-called 2 × 2 matrix tech-
nique that takes into account all reflections and interferences
within the layered system.12,14–16

Matrix R relates (in the vacuum) the magnitudes of the
components, E(i)

vac,ν , where ν = x and y, of the electric field
corresponding to the incident (i) light beam to those of the
reflected (r) light beam, E(r)

vac,ν . In the case of polar geometry
(and an fcc parent lattice), R has the form

R =
(

Rxx Rxy

−Rxy Rxx

)
. (11)

For further details see Refs. 14 and 16. Expressed in spherical
coordinates, the complex reflectivity of the right- (+) and left-
handed (−) circularly polarized light is then given by

R± = Rxx ∓ iRxy = E
(r)
±

E(i)

= |R±|ei�± , (12)

where E
(r)
± is the complex amplitude of the reflected right-

and left-handed circularly polarized light and E(i) that of
the incident light. Variable �± is the phase of the complex
reflectivity R±. The Kerr rotation θK and ellipticity εK angles
are finally defined by14

θK = −1

2
(�+ − �−), (13)

εK = −|r+| − |r−|
|r+| + |r−| , (14)

or, in terms of a complex Kerr angle 
K , as


K = θK + iεK.

It is useful at this stage to recall that the Kerr rotation and
ellipticity angles are clearly macroscopic quantities.
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FIG. 1. (Color online) Layer-resolved spin-only magnetic mo-
ments in (ComIrm)n/Ir(111).
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FIG. 2. (Color online) Layer-resolved orbital magnetic moments
in (ComIrm)n/Ir(111).

III. COMPUTATIONAL DETAILS

All self-consistent ab initio electronic-structure calcu-
lations were performed for a uniform direction of the
magnetization pointing along the surface normal in terms
of the spin-polarized (fully) relativistic screened Korringa-
Kohn-Rostoker method for layered systems, within density
functional theory (DFT).16,17 The σpq (ω) in Eq. (3) are
calculated in terms of Luttinger’s formula13,18 using again the
spin-polarized relativistic screened Korringa–Kohn–Rostoker
method, contour-integration techniques,13 the Konrod quadra-
ture, and the cumulative special-points method for the oc-
curring Brillouin-zone integrals.19 It should be noted that
Luttinger’s formalism uses a vector-potential description of the
electric field and has several advantages over the well-known
Kubo formula;20 both, the absorptive and dissipative parts
of the conductivity tensor are included without using the
Kramers-Kronig relations, and so are all inter- and intra-band
contributions, avoiding thus a phenomenological Drude term
in order to mimic the latter contributions. In all calculations, a
maximum angular quantum number l = 2 was considered17

and the exchange-correlation functional parametrization of
Ref. 21 and the atomic sphere approximation (ASA) are
applied.

IV. RESULTS

Since it is not possible to show for each combination of
m and n in (ComIrm)n/Ir(111) all obtained results, in the
following, particular values of m and n are chosen (m denotes
the number of Co and Ir atomic layers, while n gives the
number of repetitions). This is, in particular, the case for
the permittivities for the real and the imaginary parts of ε

as functions of m, n, and ω ought to be displayed. The only
exception will be the Kerr rotation and ellipticity angles, since
they are directly observable and represent the main goal of this
paper.

A. Magnetic moments

As examples, the spin-only and orbital magnetic moments
for (Co1Ir1)5, (Co2Ir2)5, (Co3Ir3)3, (Co4 Ir4)2, and (Co5Ir5)2 on
Ir(111) are displayed in Figs. 1 and 2. It is perhaps surprising
to see that the spin and orbital magnetic moments of Co vary
very little in these systems, only the orbital moment of the top
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FIG. 3. (Color online) Permittivities for a free surface of Ir(111).
Top: layer-resolved permittivities for ω = 3.81 eV (open symbols),
full symbols represent the Ir bulk values; bottom: frequency depen-
dence of the permittivity in the top Ir layer.
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Co layer differs significantly from all interior Co layers. Less
surprising are the rather small moments of the Ir layers in the
superstructures, since it is quite well established by now that
Ir is much less polarizable than Pt, see, for example, Ref. 23.
If mp denotes the total magnetic moment in layer p and 〈mCo〉
an averaged Co moment (per layer), then Figs. 1 and 2 suggest
that the total magnetic moment M of a particular system can,
to a very good approximation, be replaced by the sum over all
moments in Co layers:

M =
N∑

p=1

mp ∼ mn 〈mCo〉 . (15)

B. Permittivities

1. Substrate

As already mentioned, it is important to consider enough
bulk substrate layers22 in the procedure sketched in Eq. (9).
For matters of checking the applied numerical procedures,
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FIG. 4. (Color online) Comparison of the real and imaginary
parts of bulk permittivity εxx for Ir(111) between calculated and
experimental data at 77 K.29

first, a free surface of Ir(111) was considered, since at least
in this case experimental data are available to which the
present calculations can be compared with. In the upper part
of Fig. 3, the real and the imaginary parts of the layer-resolved
permittivities ε

p
xx(ω) at a particular frequency, namely ω =

3.81 eV, are displayed versus the layer index p. As can be
seen, for a fixed frequency, Re[εp

xx(ω)] and Im[εp
xx(ω)] vary

only little when viewed from the surface, marked as “vacuum,”
toward the interior of Ir(111). Inspecting the variation of
a chosen layer-dependent permittivity, see the top Ir layer,
p = 5, in the lower part of this figure, with respect to the
frequency of the incident radiation, a strong dependency can be
observed; at a frequency of about 5.5 eV both the real and the
imaginary parts of this particular layer-resolved permittivity
are only about a tenth of the value registered at ω ∼ 0.5 eV.

This strong frequency dependence is of course also reflected
in the experimental data.24–27,29,30 From the comparison in
Fig. 4 to the experimental results in Ref. 29, which still seem
to be the only ones obtained at low temperatures, one can
see that in fact the calculated real part of ε(ω) = [2εxx(ω) +
εzz(ω)]/3 fits rather well to the experimental data, while in
the imaginary part, small deviations from the experimental
result have to be acknowledged. Possible reasons for these
deviations can be (i) an insufficient convergence with respect
to the number of substrate layers considered and (ii) the fact
that the use of Luttinger’s formulation requires to specify a
small imaginary frequency δ,13 here set to 0.653 eV, which
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FIG. 6. (Color online) Diagonal and off-diagonal elements of the
permittivities for the top Co and Ir layer in (Co1Ir1)/5Ir(111) as a
function of frequency.

causes the calculated values below ≈1.5 eV to be perhaps less
reliable. However, one has to consider also the fact that the
experimental data are almost 40 years old and were recorded
at a temperature of 77 K while our calculations refer to zero
temperature. Altogether, however, the calculated data agree
rather well with the experimental ones.

2. Co/Ir superstructure on Ir(111)

In Fig. 5, the real and the imaginary parts of the layer-
resolved permittivity-tensor elements ε

p
xx(ω) and ε

p
xy(ω) at ω =

3.81 eV are displayed for five repetitions of (Co1Ir1) on Ir(111)
versus the number of layers p, where p = 10 refers to the top
Co layer. It is interesting to note that for the diagonal elements
of the layer-resolved permittivity tensors the Co layers are
dominant, while the off-diagonal elements are dominated by
the Ir layers.

The frequency dependence of ε
p
xx(ω) and ε

p
xy(ω) with p

corresponding to the top Co layer and the Ir layer beneath in
(Co1Ir1)5/Ir(111) is shown in Fig. 6. Quite obviously, with
the exception of the Co-like ε

p
xy(ω), all other quantities are

strongly frequency dependent. The imaginary part of ε
p
xy(ω)
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FIG. 7. (Color online) Diagonal and off-diagonal elements of
the surface reflectivity matrix in (Co1Ir1)5/Ir(111) as a function of
frequency.

for the Ir layer has a maximum at about ω = 3.5 eV, explaining
thus the perhaps unexpected size of Im[εp

xy(ω)] for the Ir layers
in Fig. 5.

It should be noted that since the ε
p
xx(ω) and ε

p
xy(ω) deter-

mine the (layer-resolved complex) refraction vectors npz =
±

√
ε

p
xx(ω) ± iε

p
xy(ω) and ε

p
xx(ω) − ε

p
zz(ω) ∼ 0 (solutions of

the Fresnel equation, polar geometry), which in turn enter
the Helmholtz equation,

∑
ν(n2

pδμν − npμnpν − ε
p
μν)Epν =

0, (μ,ν = x,y,z) and the curl Maxwell equation, 
Hp = 
np ×

Ep, for details see Ref. 14, where 
Hp refers to the magnitudes
of the magnetic field in layer p and 
Ep is the corresponding
electric field, these layer-dependent permittivities govern the
optical (macroscopic) part of magneto-optical phenomena.
This is particularly important to recall, since the Kerr rotation
and ellipticity angles are determined only by the elements of
the surface reflectivity matrix in Eqs. (10) and (11).

C. Surface reflectivity matrix

As an example for the surface reflectivity matrix, again, the
system (Co1Ir1)5/Ir(111) is chosen. In Fig. 7, the frequency
dependence of the real and the imaginary parts of the
diagonal and off-diagonal elements of the R(ω) are shown
for this system. While Re[Rxx(ω)] and Im[Rxx(ω)] increase or
decrease almost linearly with ω, Re[Rxy(ω)] and Im[Rxy(ω)]
exhibit an oscillatory behavior. In particular, the position of
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the maximum in Im[Rxy(ω)] at about 3.8 eV has to be kept in
mind for the discussion in the next section.

D. Kerr rotation and ellipticity angles

In Figs. 8 and 9, finally the Kerr rotation θK (ω) and
ellipticity εK (ω) angles for (ComIrm)n/Ir(111) are displayed.
Figure 8 shows the variation of θK (ω) (top row) and εK (ω)
(bottom row) at a particular frequency, namely 3.81 eV, with
respect to either n (left panel) or m (right panel). It is quite
remarkable to observe that independent of the building block
(m), θK (ω) as well as εK (ω) depend almost linearly on the
number of repetitions n, with the exception of n = 1; it is
not the case when varying the thickness of the Co and Ir
layers (m). Only for m � 2 both Kerr angles increase with
increasing m.

Because of the linear increase of both Kerr angles with
the number of repetitions for each value of m, they are
displayed in Fig. 9 normalized by the number of repetitions
as a function of frequency. For m � 3, the functional form of
θK (ω)/n and εK (ω)/n with respect to ω is very similar; at
about 3.81 eV, there is a pronounced maximum in θK (ω)/n,
while εK (ω)/n tends to a maximum at high frequencies,
ω � 5.5 eV. At about 2.7 eV, there is a weak minimum in
εK (ω)/n. Obviously, the entries for m = 1 and 2 are different.
For m = 1, the maximum in θK (ω)/n moves toward lower
frequencies with increasing n and only for n � 2, the ellipticity
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FIG. 9. (Color online) Frequency-dependent Kerr rotation θK and
ellipticity εK angles normalized to the number of repetitions (n) in
(ComIrm)n/Ir(111) and represented as a function of frequency.

angle εK (ω)/n starts to assume the same functional form with
respect to ω as for m � 3. The frequency dependence for
m = 2 seems to be an exception as compared to all other
cases, since the values of θK (ω)/n decrease slightly with n

and both θK (ω)/n and εK (ω)/n are somewhat smaller than
in the other cases. The reason for this strange behavior might
very well be the type of coupling between the two Co layers,
namely that for an fcc stacking, an interlayer spacing is
corresponding to that of bulk fcc Ir, thus a competition between
ferro- and antiferromagnetic coupling between the Co layers
occurs in contrast to an exclusively ferromagnetic coupling
for m � 3.

The maximum of θK (ω)/n at about 3.81 eV clearly was
the reason of choosing exactly this frequency in Figs. 3, 5,
and 8. Comparing now Fig. 9 with Figs. 6 and 7 indicates that
this maximum is mainly caused by the imaginary part of the
off-diagonal element of the surface reflectivity matrix (Fig. 7),
which in turn arises from the maximum in the Im[εp

xy(ω)]
for the Ir layers (Fig. 6). In short, this maximum has to be
attributed to the Ir layers in the (ComIrm)n superstructures and
not to the Co layers.

V. CONCLUSIONS

It was one of the purposes of the present paper to show
that although the magneto-optical measurement in terms of
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Kerr intensities became a standard procedure in any kind
of nanomagnetic investigation, a theoretical interpretation of
the underlying magneto-optical constants is by no means
straightforward. Also, careful measurements of Kerr rotation
and ellipticity angles seem not to be very easy to perform. As
has been shown, a theoretical description has to include not
only an evaluation of the underlying microscopic quantities,
i.e., the optical conductivity tensor, but in addition, has
to describe properly also the classical optics part, i.e., the
macroscopic part, by taking into account all interferences and
reflections.

From the relation in Eq. (15) and from Fig. 9 it follows that,
independent of the frequency, for superstructures of the type
(ComIrm)n on Ir(111), m � 3, the Kerr rotation or ellipticity
angles are almost linearly proportional to the total magnetic

moment M of the system:

θK (ω) = kθM ∼ mn kθ 〈mCo〉 ,

εK (ω) = kεM ∼ mn kε 〈mCo〉 .

These relations might be important for technical applications.
The frequency dependence of the Kerr rotation angles

showed that an optimal frequency can be chosen, namely
ω ∼ 3.8 eV, at which the θK (ω) are the largest. Surprisingly
enough, this maximum is mainly caused by the Ir “spacer”
layers, see Fig. 6. This maximum turned out to be primarily
a consequence of the imaginary part of the off-diagonal
element of the surface reflectivity matrix and therefore cannot
be simply related to the magnetic structure in the Co/Ir
superstructures.
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