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Superexchange mechanisms in an ideal 3d1 cubic system of the perovskite type
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In this article we extend the expression obtained by Kugel and Khomskii for cubic perovskites, where the
transition metal ion has a 3d1 electronic configuration with threefold (3dt2g) orbital degeneracy. We derive an
effective spin-orbital Hamiltonian by taking into account both the role of the oxygen on the bond between the
transition metal ions and the role of the 3deg levels in superexchange processes, while no simplifications are done
concerning the electron-electron interactions. A simple mean-field treatment yields a competition between an
antiferromagnetic (AFM) and a ferromagnetic phase. The stability of these phases is driven by several parameters
including the following: the ratio tπ /tσ = |(pdπ )/(pdσ )| between π -type and σ -type electron hoppings, the
charge transfer gap �CT , the exchange (Hund’s) coupling, the crystal field �0 between the t2g and eg 3d orbitals,
and the “pseudo” crystal field gap �oxy

zx between the oxygen 2p orbitals. The addition of the spin-orbit coupling
is shown to be able to lead to a sensible reduction of the ordered magnetic moment in the AFM phase as well as
the appearance of a weak ferromagnetic moment.
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I. INTRODUCTION

As is well known, the magnetic interaction in magnetic
insulators with partially filled d shells is due to superexchange
processes occurring between two metallic magnetic ions (M)
via an intermediate ligand [generally the oxygen (O)]. For
orbitally nondegenerate systems the magnitude and the sign
of this interaction depend on the geometry of the metal-
oxygen-metal (M-O-M) bond and can generally be predicted
using the so-called Goodenough-Kanamori-Anderson rules.1

According to these rules, the leading isotropic superexchange
for a M-O-M bond of 180◦ is strongly antiferromagnetic
(AFM) while it is ferromagnetic (FM) and much weaker in
a 90◦ M-O-M bond. For orbitally degenerate systems the
situation is much more complex: first because both spin and
orbital degrees of freedom are involved, secondly because the
number of electrons (or holes) occupying the relevant orbitals
plays an important role, and thirdly because the presence of
(Jahn-Teller) distortions can utterly change the physics. In
particular, the perovskite-type oxide family RMO3 where R

denotes a trivalent rare-earth ion (R = La,Y,...) and M =
T i,V ,... allows the study of the rich magnetic and electronic
properties caused by this interplay of parameters. Such systems
are generally described by Kugel and Khomskii (KK)-type
Hamiltonians.2–5 In these theoretical models, the M-O-M bond
is replaced by an effective M-M bond and distortions are often
neglected. This generally leads to a satisfactory description of
the experimental results, except for the apparently most simple
3d1 systems RT iO3 (R = La,Y ).4,6–8 In these Mott-Hubbard
insulators, each T i3+ ion is located at the center of an
oxygen octahedron.9 As is well known, such a surrounding
lifts partially the 3d orbital degeneracy into t2g symmetry
(of lower energy) for (dxy,dyz,dxz) orbitals, and eg symmetry
(of upper energy) for dx2−y2 and dz2 orbitals. In this case, a
KK-type Hamiltonian essentially predicts a FM ground state,
observed in YT iO3 but not in LaT iO3 which is a G-type
antiferromagnet.4,10 Still there is no commonly accepted view
on the origin of superexchange peculiarities in these systems
and two different theories have been proposed to explain these
observations: The first one emphasizes the relative weakness

of the Yahn-Teller coupling in LaT iO3 (as compared to the
much more distorted compound YT iO3); for such a system
for which the degeneracy of t2g orbital state is present, it
is necessary to take into account the dynamic effects in
which the orbitals may form a coherent orbital-liquid state
stabilized by quantum effects.4,6,7,11–13 In this frame, several
experimental results can be successfully explained and, in
particular, the spin reduction6,7,10 observed in LaT iO3. On
the contrary, the second approach emphasizes the existence of
lattice distortions even in LaT iO3, removing the t2g orbital
degeneracy and stabilizing the orbital structure. In such a
case the phase stability criteria can change leading to the
isotropic superexchange sign shift when one moves through the
rare-earth series from YT iO3 (FM) to LaT iO3 (AFM). This
question is widely discussed in the literature.5,10,14–23 There-
fore it is especially clear from the papers by Khaliullin et al.,
Mochizuki and Imada, Schmitz et al., and Solovyev (which
deal with different methods of orbital state and superexchange
interactions calculations) that in various approaches one can
find mechanisms of stabilization ferromagnetism in YT iO3

and antiferromagnetism in LaT iO3. Nevertheless, all these
works are assuming that the M-O-M bond can be replaced
by an effective M-M bond. In the present work we propose
to improve the KK model by considering in more detail the
role of the oxygen in superexchange processes and to know
whether one can obtain more easily the AFM state in the cubic
symmetric case (still without distortions). Here we show that
this is indeed possible.

Starting from a microscopic Hamiltonian describing hop-
ping processes between titaniums and oxygens and assuming
cubic symmetry, we propose here to consider the importance
of the combined presence of the oxygen and of the eg levels
in superexchange processes and their possible consequences
on the magnetic properties of 3d1 compounds. Indeed as
shown in Fig. 1(a), if we consider a bond i − j in the z
direction two kinds of electron hoppings can happen: a σ -type
electron hopping between oxygen orbital 2pz and titanium
orbital dz2 , and a π -type electron hopping between oxygen
orbitals (2px,2py) and titanium orbitals (dxz,dyz). As shown
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FIG. 1. (a) σ -type hoppings between oxygen orbital 2pz and
titanium orbital dz2 (left-hand side) and π -type hoppings between
oxygen orbitals [2px(2py)] and titanium orbitals [dxz(dyz)] (right-
hand side). (b) Effective spin-spin interaction between site i and
site j assuming σ -type hoppings only between the oxygen and the
titaniums. Due to Hund’s rule, the resulting effective interaction is
AFM.

in Fig. 1(b), if we neglect π -type electron hoppings and keep
only σ -type electron hoppings [(pdπ ) = 0 and (pdσ ) �= 0 in
terms of the Slater and Koster parameters],24 only the 2pz

electrons can delocalize: In the first step [denoted by (1) in
Fig. 1(b)] one of the 2pz electrons is virtually transferred onto
the titanium dz2 (eg) orbital on site i. Due to Hund’s rule,
the initial t2g electron and the transferred one have the same
spin orientation. The same phenomenon occurs in step (2): The
remaining 2pz electron of opposite spin is virtually transferred
onto titanium site j. Due to Hund’s rule, the resulting spin-spin
interaction between the t2g electrons occupying site i and j is
AFM. In steps (3) and (4), the virtually transferred electrons
return to the oxygen. Due to the particular crystallography
of these materials [see Fig. 2(a)], no frustration will appear
leading to a G-type antiferromagnet.

On the other hand, if we consider only π -type electron
hoppings [(pdπ ) �= 0 and (pdσ ) = 0] we will generally finish
with a FM interaction,2,4 as illustrated in Fig. 3. In Fig. 3(a),
a 2px (or 2py) electron of spin σ is virtually transferred to
site i, preferentially on one of the unoccupied orbitals due to
Coulombic repulsion. In step (2) the oxygen hole is filled by
the electron coming from site j with the same spin σ . These two
steps are therefore equivalent to an effective electron hopping
between the titaniums, as usually used in KK-type models,
in contrast with the σ -type hopping presented above. Due to
Hund’s rule, the resulting spin-spin interaction between site i
and j is FM. For similar reasons, the case with two holes on
the oxygen shown in Fig. 3(b) will also lead preferentially to
an FM interaction.

A competition will therefore occur between these two pic-
tures. The following parameters are then of crucial importance:

(a) (b)

FIG. 2. (a) Crystal structure in the (a,b) plane. (b) Oxygen local
environment and suggestive orbital couplings between the (2px,2py)
oxygen orbitals and the La ions in LaT iO3.

(a) (b)

FIG. 3. π -type hoppings between oxygen orbitals and titanium
orbitals favoring an effective ferromagnetic coupling. While the
scenario represented in (a) can be mapped onto an effective M-M
transfer, the second one [represented in (b)] with two holes on the
oxygen intermediate state cannot be.

(i) the ratio tπ/tσ = |(pdπ )/(pdσ )|; as we have seen, the
smaller it is, the larger the antiferromagnetic interaction will
be. In fact, it is clear that this quantity is small, as σ -type
hoppings between the ions are creating the chemical bond
responsible for the stability of the crystal. The 2pz electrons
of Fig. 1 are then “naturally” delocalized on the neighbor-
ing titaniums. (ii) The charge transfer energy �CT(n,U ) =
εd − εn + U − 5(V − 2K) involving the energy gap εd − εn

between the 3d t2g and the 2pn orbitals, the Coulombic energy
U (V ) on the titanium (oxygen), and Hund’s coupling K on
the oxygen. This quantity corresponds to the cost in energy to
transfer one electron from a fully occupied oxygen to the T 3+

i

ion. As the order of magnitude of the σ -type hopping process
is (−tσ ) × (tσ /�CT )3 (see Fig. 1 and below) while the order of
magnitude of the main competing π -type process [represented
in Fig. 3(a)] corresponding to the usual description of RT iO3

in terms of effective transfer integrals between the titaniums
is −t2

eff/U , with teff = t2
π/�CT, small εd − εn values and

large V − 2K and U values (when U < εd − εn) are thus
expected to favor the AFM process. (iii) Hund’s coupling I

(K) on the titanium (oxygen), π -type process being of order
I and σ -type process of order I 2. (iv) The value of the gap
between the t2g and eg levels. In real perovskite systems, the
measured value is around �dd � 1.7 − 2.8 eV5,19,25 which
is not favorable to σ -type hopping processes. However, it is
well known in inorganic chemistry that this gap is the sum
of the crystal field gap �0 and the ligand field gap �LF

(�dd = �0 + �LF). Generally �0 is expected to be very small
�0 ∼ 0 − 0.5 eV and is often neglected in computational
treatments and in band structure calculations,26 while �LF

comes from electron hoppings between the titanium and the
other ions (mainly the first neighbor oxygens). Therefore, in
perturbative expansion in the hopping term (as we propose
to perform) only �0 has to be considered. (v) The gap
�

oxy
zx = εpz

− εpx
between the oxygen orbital 2pz and the

degenerate oxygen orbitals 2px and 2py [Fig. 2(b)]. As already
discussed for the titanium, this gap is the result of the crystal
field and of the ligand field and only the first one (which
is small) should have to be considered (�oxy

zx � 0.21 eV as
reported in27 for SrT iO3). But another problem emerges for
the oxygen as its surrounding is also composed of R3+ ions.
Therefore, in a microscopic Hamiltonian describing hoppings
between titaniums and oxygens only, the oxygen orbitals
must be considered as already coupled with the R3+ ions
and still not with the T i3+ ions, this last hybridization being
precisely described by the microscopic Hamiltonian. As shown
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in Fig. 2(b), this leads to an important contribution of the ligand
field energy for orbitals 2px and 2py (2px and 2py electrons
being “naturally” delocalized on the R3+ ions, therefore
creating the chemical σ bonds with the R3+ ions), orbital
2pz remaining (quasi) unchanged. The resulting gap �

oxy
zx that

we have to consider in the microscopic Hamiltonian is then
much more important than the gap from crystal field alone, and
is also very different from the one obtained in band structure
calculations (containing all the hybridizations). The ionization
of 2pz electrons is then much easier than the ionization of
those occupying 2px and 2py orbitals, thus favoring σ -type
electron hoppings. From the last three points, a more precise
estimate for the σ - and π -type main competing processes
is obtained using �

(σ )
CT = �CT(2px,U − I + �0 − �

oxy
zx ) and

�
(π)
CT = �CT(2px,U − I ), respectively.
The inclusion of such a σ -type process leads then to an

AFM process, and one can note that this process is also
expected to occur in 3d2 and 3d3 compounds (in which
the electrons are only in the t2g states). As the usual KK
Hamiltonian already predicts AFM in these two cases (in
agreement with the experiments) and essentially FM in 3d1

compounds, the inclusion of such a σ -type electron hopping
has really a decisive incidence only in this last case. In this
frame, the difference between LaT iO3 and YT iO3 could be
a good demonstration of the existence and of the important
role played by this AFM process, in competition with the FM
π -type electron one.

Following all the preceding remarks, our microscopic
Hamiltonian H will be represented by the sum of two terms: a
main HamiltonianH0 describing free electrons and Coulombic
interactions, and a perturbative one V describing hopping
processes between oxygens and titaniums; H = H0 + V
with

H0 =
∑
iασ

εαd+
iασ diασ + 1

2

∑
i,α,β,γ,δ,σ,σ ′

Uαβγ δd
+
iασ d+

iβσ ′diγ σ ′diδσ

+
∑
qnσ

εnp
+
qnσpqnσ + 1

2

×
∑

q,n1n2n3n4,σ,σ ′
Vn1n2n3n4p

+
qn1σ

p+
qn2σ ′pqn3σ ′pqn4σ , (I.1)

V =
∑

iqαnσ

(
tαn
iq d+

iασ pqnσ + tnα
qi p+

qnσ diασ

)
. (I.2)

Here, d+
iασ (p+

qnσ ) creates an electron on titanium (oxygen)
site i (q), 3d orbital α (2p orbital n), spin σ , energy εα (εn);
tαn
iq is the hopping matrix element between titanium i orbital
α, and oxygen q orbital n while Uαβγ δ and Vn1n2n3n4 are the
Coulombic terms on titanium and oxygen ions. The axis for
the 3d orbitals referring to the oxygen octahedra, εα , will
be εα = ε0 for α ∈ t2g and εα = ε0 + �0 for α ∈ eg . In the
particular case of a cubic symmetry, the transfer integral tαn

iq

will be given by

tαn
iq = δnnα

(
tπiq(δα,xz + δα,yz) + tσiqδα,z2

)
, (I.3)

which precisely define tπ = |tπiq | and tσ = |tσiq |. In (I.3), the
axes are referring to Fig. 1 while nα corresponds to oxygen
orbital 2px for titanium orbital α = dxz, 2py for α = dyz, and

2pz for α = dz2 . For the Coulombic terms, Uαβγ δ is expressed
in terms of the Racah parameters A,B,C28 while Vn1n2n3n4

reads

Vn1n2n3n4 = (
1−δn1n2

){
δn1n4δn2n3V

′+δn1n3δn2n4K
}+δn1n2n3n4V,

(I.4)

with V ′ = V − 2K . For the numerical values we will take
εd − εn = 5.91 eV,29 tσ = 2.4 eV,30 U = 3.5 eV, B = 0.1
eV19,26 (i.e., A = 1.9 eV, I = 0.7 eV) reported for RT iO3

systems and typical values for the following parameters:
�0 � 0.5 eV, �

oxy
zx � 1 eV, V � 1.76 eV, K � 0.6 eV [V −

2K � 0.56 eV being obtained by taking �CT(2px,U
′ − I ) �

4.5 eV31 with U ′ = U − 2I ] and λ � 0.02 eV.32 In terms of
the Racah parameters we will have U = A + 4B + 3C,I =
3B + C which means A = 1.9 eV, B = 0.1 eV when taking
C � 4B.28

This article will be organized as follows: In part II we
will derive the effective spin-orbital Hamiltonian in a very
general way. In particular we will see how the spin part
(isotropic spin-spin interaction) of the Hamiltonian can always
be computed independently of the orbital part even for systems
with more than one electron occupying the 3d orbitals. Part III
presents the mean-field phase diagram obtained using this
model, predicting G-AFM, C-AFM, and FM phases. The
emergence and the stability of the AFM phases is discussed.
In particular, we show that they are favored by small values of
tπ/tσ ,�0 and high values of �

oxy
zx , A, B, and V − 2K . Finally,

the addition of the spin-orbit coupling is presented in part
IV and is shown to allow a sensible reduction of the magnetic
moment and to lead to the appearance of a weak ferromagnetic
moment as observed in LaT iO3.

II. DERIVATION OF THE EFFECTIVE HAMILTONIAN

In this part, we will derive an effective spin-orbital
Hamiltonian for the t2g orbitals, involving the eg levels during
hopping processes. Due to the presence of the oxygen between
each pair of titanium ions, an expansion up to order four in V
is necessary to obtain a spin-orbital Hamiltonian. P denoting
the projector on the states with one electron per each titanium
site and fully occupied oxygen 2p orbitals, and Pt2g

denoting
the projector on the degenerate ground state (of energy E0)
of the unperturbed Hamiltonian H0 with one electron per
each titanium site occupying a t2g orbital, the spin-orbital
Hamiltonian H̃4 is given by33–35

H̃4 = H̃4,1 + H̃4,2, (II.1)

with

H̃4,1 = Pt2g
V −Q
H0 − E0

V −Q
H0 − E0

V −Q
H0 − E0

VPt2g
, (II.2)

H̃4,2 = −1

8

∑
k

{
Pt2g

V −Q
H0 − E0

−Q
H0 − Ek

VPkV

×
( −Q
H0 − Ek

+ 3
−Q

H0 − E0

)
VPt2g

+ h.c.

}
. (II.3)

In these expressions, Q = 1 − P and Q/(H0 − E0) =
Q∗(1/H0 − E0)∗Q while Pk is the projector on a given H0
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eigenstate ψk of energy Ek with one electron on each titanium
site occupying either a t2g orbital or an eg one. From the
previous expressions, H̃4,1 will clearly lead to a spin-orbital
Hamiltonian while H̃4,2 will only generate orbital terms. The
knowledge of the two-electron H0 eigenstates is necessary
to compute the effective Hamiltonian. As these two electron
eigenstates can be characterized by a total spin S (S = 0 or
S = 1), they will be expressed using the two-particle operators:

ϕ
(σ )
iαα1

(S = 1) = (1 − δαα1 )
{
δσσ1ϕ

(σ )
iαα1

(1,2σ )

+ 1√
2

(1 − δσσ1 )ϕ(σ )
iαα1

(1,0)

}
, (II.4)

ϕ
(σ )
iαα1

(S = 0) = (1 − δσσ1 )

{
1 − δαα1√

2
ϕ

(σ )
iαα1

(0,0)

+ δαα1ϕ
(σ )
iαα1

(0,0)
}

, (II.5)

where α and α1 denote the two occupied 3d orbitals while

ϕ
(σ )
iαα1

(1,2σ ) = d+
iασ d+

iα1σ
, (II.6)

ϕ
(σ )
iαα1

(1,0) = (1 − δσσ1 )
1√
2

(d+
iασ d+

iα1σ1
+ d+

iασ1
d+

iα1σ
),

(II.7)

ϕ
(σ )
iαα1

(0,0) = (1 − δσσ1 )
1

2
1
2 (1+δαα1 )

(d+
iασ d+

iα1σ1
− d+

iασ1
d+

iα1σ
).

(II.8)

Denoting by |vac〉 the vacuum state, the use of ϕ
(σ )
iαα1

(S = 1)

and ϕ
(σ )
iαα1

(S = 0) will allow one to express the effective
Hamiltonian as a product of an orbital and a spin part. We
indeed have diα5σ5diα3σ3ϕ

(σ )
iαα1

(S)|vac〉 = T S
α1α5α3α

× Tσ5σ3σ1σ (S)
with T S=1

α5α3α1α
= (1 − δαα1 )(δα3αδα5α1 − δα3α1δα5α), T S=0

α5α3α1α
=

2(1−δαα1 )/2(δα3αδα5α1 + δα3α1δα5α), Tσ5σ3σ1σ (S = 1) = δσσ1σ3σ5 +
(1/2)(1 − δσσ1 )(δσ3σ δσ5σ1 + δσ3σ1δσ5σ ), and Tσ5σ3σ1σ (S = 0) =
(1/2)(1 − δσσ1 )(δσ3σ δσ5σ1 − δσ3σ1δσ5σ ). The two-particle oper-
ator d+

iασ d+
iα1σ1

= (1 − δαα1 ){ϕ(σ )
iαα1

(S = 1) + ϕ
(σ )
iαα1

(S = 0)} +
δαα1ϕ

(σ )
iαα1

(S = 0) appearing in the perturbation procedure when
computing the effective Hamiltonian (II.1) can then be ex-
panded according to the H0 eigenstates. We will conveniently
write it under the form,

d+
iασ d+

iα1σ1
=

∑
A

[
d2+

i(ασ )(α1σ1)

]A
(SA), (II.9)

where [d2+
i(ασ )(α1σ1)]

A(SA) regroups all contributions character-
ized by the same energy 2ε0 + A of total spin SA:

H0
[
d2+

i(ασ )(α1σ1)

]A
(SA)|vac〉

= (2ε0 + A)
[
d2+

i(ασ )(α1σ1)

]A
(SA)|vac〉. (II.10)

Here again it is possible to write diα5σ5diα3σ3 [d2+
i(ασ )(α1σ1)]

A

(SA)|vac〉 = T A
α5α3α1α

(SA) × Tσ5σ3σ1σ (SA) decoupling the or-
bital part with the spin part.

The spin operator Si on site i, and the orbital operators d+
iβdiα

for 3d orbitals α and β on site i being defined in the usual
way by the expressions ( 1

2 + σ · Si)σσ ′ = ∑
α d+

iασ ′diασ and
d+

iβdiα = ∑
σ d+

iβσ diασ , we then have d+
iβσ ′diασ = d+

iβdiα( 1
2 +

σ · Si)σσ ′ . Denoting by q the vector between titanium site
i and oxygen site q lying between sites i and j, and
defining the energy gap �dn1 = ε0 − εn1 − 5(V − 2K), the
effective transfer integral from site j , orbital α′, to site i,
orbital α1(tα1α

′
ij )A = ∑

n1
t
n1α

′
qj t

α1n1
iq /(A + �dn1 ), δdn12 = 2ε0 −

(1 − δn1n2 )(εn1 + εn2 ) as well as coefficients:

FABC
n4n3n2n1

=
(

1

�dn1 + A
+ 1

�dn2 + B

)

× 1

4
(
δdn12 + A + B − C

)

×
(

1

�dn3 + A
+ 1

�dn4 + B

)
, (II.11)

[
T 2

ij

]A

α5α2α′α(SA) =
∑
α3α1

T A
α5α3α1α

(SA)
(
t
α2α3
ji

)A(
t
α1α

′
ij

)A
,

(II.12)

[
T 2

i

]A

α5n3n1α
(SA) =

∑
α3α1

T A
α5α3α1α

(SA)tn3α3
qi t

α1n1
iq , (II.13)

the expression for the effective Hamiltonian Heff(i − j ; q) for
a pair i − j of titanium ions in the q direction is given by
the contribution of three terms corresponding, respectively, to
process (a), (b), and an orbital-only term:

Heff(i − j ; q) = Ha
eff(i − j ; q) + Hb

eff(i − j ; q)

+H̃4,2(i − j ; q), (II.14)

with

Ha
eff(i − j ; q) =

∑
α5α2α′αA

[T 2
ij ]Aα5α2α′α(SA) + [T 2

ji]
A
α2α5αα′ (SA)

A

×H(SA)(Si,Sj)d
+
iα5

d+
jα2

djα′diα, (II.15)

Hb
eff(i − j ; q) = −

∑
αiniABC

FABC
n4n3n2n1

[
T 2

i

]A

α5n3n1α
(SA)

× [
T 2

j

]B

α6n4n2α′ (SB)T C
n4n3n2n1

(SC)

×H(SA,SB,SC )(Si,Sj)d
+
iα5

diαd+
jα6

djα′ , (II.16)

H̃4,2(i − j ; q) =
∑

αiniAB

s(SA)s(SB)
[
T 2

i

]A

α5n1n1α
(SA)

× [
T 2

j

]B

α6n2n2α′ (SB),
1

(A + �dn1 )(B + �dn2 )

×
(

1

A + �dn1

+ 1

B + �dn2

)
d+

iα5
diαd+

jα6
djα′ .

(II.17)

In these expressions, A,B,C (SA,SB,SC) are representing
the Coulombic energies (the total spin) of the two electrons or
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TABLE I. H(SA)(Si,Sj) for the different SA situations.

SA = 1 SA=0

H(SA)(Si,Sj) 3
4 + Si · Sj − 1

4 + Si · Sj

two holes intermediate states on site i,j,q, respectively,
s(SA = 1) = 3/2, s(SA = 0) = −1/2, T C

n4n3n2n1
is a coefficient

(similiar to T A
α5α3α1α

(SA) for the titanium) describing
a two-hole oxygen intermediate state while H(SA)(Si,Sj) =∑

σσ ′σ1σ2σ3σ5
δσ ′σ1δσ2σ3Tσ5σ3σ1σ (SA)(1

2 +σ · Si)σσ5 (1
2 +σ · Sj)σ ′σ2

andH(SA,SB,SC )(Si,Sj) = 4
∑

σσ ′σ1σ2σ3σ5
Tσ5σ3σ1σ (SA)Tσ6σ4σ2σ ′(SB)

Tσ4σ3σ2σ1 (SC)( 1
2 + σ · Si)σσ5 ( 1

2 + σ · Sj)σ ′σ6 are presented in
Tables I and II, respectively.

III. MEAN-FIELD PHASE DIAGRAM

Using the previous expressions, we will now apply the
effective Hamiltonian to obtain the mean-field phase diagram.
In this aim, let us call (a,b,c,e1,e2) the dyz,dzx,dxy,dx2−y2 ,dz2

titanium 3d orbitals and (pna
,pnb

,pnc
) the (2py,2px,2pz) 2p

oxygen orbitals when the vector q between titanium site i
and oxygen site q between i and j (as drawn in Fig. 1)
is in the q = z = c direction. For a titanium-titanium bond
i − j in the q = z direction, σ -type hoppings are occurring
between orbitals 2pz and dz2 . In the q = x and q = y
directions, σ -type hoppings will happen between (2px and
dx2 ) and (2py and dy2 ), respectively, favoring each time an
AFM state but with a different orbital ordering. A further
treatment is thus necessary to determine the crystal spin
and orbital ground state for the whole crystal. This problem
being extremely difficult to solve, we have used a variational
(mean-field) treatment using classical S = 1/2 spins and two
sublattices A and B to describe the orbital state, wave functions
on site i ∈ A/B being a linear combination of the three
t2g orbitals with coefficients lA/B,mA/B,nA/B : ϕi = (lAa+

i +
mAb+

i + nAc+
i )|vac〉 and ϕj = (lBa+

j + mBb+
j + nBc+

j )|vac〉
with l2

A + m2
A + n2

A = l2
B + m2

B + n2
B = 1. Due to this orbital

description, the phase diagram cannot be obtained by just
considering the resulting exchange coupling of a single
titanium-titanium bond. By optimizing the solutions with
respect to these coefficients,4,36 one can then deduce the phase
diagram. The wave function describing the ground state is
thus assumed to decouple the spin and orbital degrees of
freedom: φ = φorbital × φspin. This assumption is very bad in
one-dimensional systems37 but can turn to be acceptable in
three dimensions to provide (at least) a qualitative picture of
the phase diagram. And even if an exact result shows that

there is no long-range spin ordering in the KK Hamiltonian,38

this result is only valid in the original KK model, the
addition of perturbations like Hund’s rule coupling allowing
long-range ordering.39 In this frame, the (classical) spin state
φspin = (σ1,σ2,...,σk,...) (where σk = ±1/2 is the classical
spin on site k) is characterized by a wave vector kspin = 0
for the FM state and kspin = (0,0,π ),(π,π,0),π = (π,π,π )
for the A-AFM, C-AFM, and G-AFM states. Therefore <

Si · Sj >= ±1/4 according to the case. The orbital state φorb =∏
(site i) ϕi is also characterized by a wave vector korb. = 0 for

the ferro-orbital (FO) state and korb. = (0,0,π ),(π,π,0),π =
(π,π,π ) for the antiferro-orbital A-AFO, C-AFO, and G-
AFO states with two sublattices A and B. In each case,
the computed energy E[korb.,kspin](lA,mA,nA,lB,mB,nB) =<

φ|(1/2)
∑

ijq Heff(i − j,q)|φ > must be optimized as re-
spect to parameters lA,mA,nA,lB,mB,nB . Due to the great
number of parameters, the optimization is rather difficult.
Two cases are generally exactly solvable: the case (korb. =
0; kspin = 0orπ ) and the case (korb. = π ; kspin = 0orπ ). In
this last case (lower in energy), the optimization leads to
the relation lAlB = mAmB = nAnB = 0 [for instance, (lA =
1,mA = 0,nA = 0,lB = 0,mB = cosθ,nB = sinθ ) fulfill this
condition]. A numerical study shows that the G-AFO states
are the lowest in energy except in the case of high degeneracy
occurring when the Racah parameter B tends to zero. The
distinction between G-AFM, C-AFM, A-AFM, and FM states
being also difficult to achieve, we have tested a subset of
possible states and drawn the phase diagram considering a G-
AFO ground state with the conditions (lA = 1,mA = 0,nA =
0,lB = 0,mB = 1,nB = 0) for the G-AFM, C-AFM, and FM
states, and (lA = 1,mA = 0,nA = 0,lB = 0,mB = 0,nB = 1)
for the A-AFM state, these conditions (or equivalent one)
giving apparently the lowest possible energy in each case.
Under such a condition, the phase diagram is presented in
Fig. 4 as a function of some of the parameters appearing in the
problem. The G/C-AFM magnetic states are favored by small
values of tπ/tσ ,�0 and high values of �

oxy
zx ,A,B and V − 2K .

Using the expected value tπ/tσ ∼ 0.5, the RT iO3 model sits
in the FM phase, close to the line separating ferromagnets from
antiferromagnets.

IV. SPIN-ORBIT COUPLING

If we now introduce the spin-orbit coupling, the Hamil-
tonian becomes:Heff(i − j,q,λ) = Heff(i − j,q) + λ(li · Si +
lj · Sj) where li = Pt2g

LiPt2g
is the projection on the t2g sub-

space of the full orbital momentum Li of the 3d electron site i.
The ground state resulting from the numerical diagonalization
of Heff(i − j,q,λ) for a one-bond i-j system contains both a
ferromagnetic and an antiferromagnetic wave function whose

TABLE II. Summation results over spin indices for process (b) according to the different SA,SB,SC situations [here, ε(1) = −1 and
ε(0) = 1].

(1,1,0) (1,0,0)
(1,0,1) (0,1,0)

(SA,SB,SC) (1,1,1) (0,1,1) (0,0,1) (0,0,0)

H(A,B ,C )(Si,Sj) 6 + 3
4 + Si · Sj ε(SC)(2 + 1

4 − Si · Sj) −ε(SC)( 3
4 + Si · Sj) 1

4 − Si · Sj

014415-5
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FIG. 4. (a) Mean-field phase diagram in the
(�0,tπ/tσ ) plane. (b) Mean-field phase diagram
in the (�zxoxy,tπ/tσ ) plane. (c) Mean-field phase
diagram in the (A,tπ/tσ ) plane (here, A = U −
1.6 eV).

amplitudes are tπ/tσ dependent. Therefore, let us consider the
most simple solution of this kind for the whole crystal (with
only one parameter) by defining

for site i ∈ A : ψi = A1α
+
i↑ + A2β

+
i↓, (IV.1)

for site j ∈ B : ψj = γ +
j↓, (IV.2)

with α,β,γ belonging to the t2g manifold a,b,c. Then, the
two-particle state ψiψj = A1α

+
i↑γ +

j↓ + A2β
+
i↓γ +

j↓ mixes an FM
state together with a (G-)AFM one. In order for A1 and A2

to be nonzero simultaneously, the spin orbit coupling must
lower the energy of the system. If we consider the case
α = b and β = c, as 〈li · Si〉ψi

= Re(iA∗
1A2) we can choose

ψi = Aλ(tπ/tσ )b+
i↑ + iBλ(tπ/tσ )c+

i↓ with Aλ(tπ/tσ ),Bλ(tπ/tσ )
positive real numbers obeying A2

λ(tπ/tσ ) + B2
λ(tπ/tσ ) = 1. In

such a case, 〈li · Si〉ψi
= −Aλ(tπ/tσ )Bλ(tπ/tσ ) is negative,

〈Si · Sj〉ψiψj
= (B2

λ(tπ/tσ ) − A2
λ(tπ/tσ ))/4 while Aλ(tπ/tσ ) is

obtained by minimizing the energy of the system. The energy
per site is plotted on Fig. 5 before and after the transition
G-AFM/FM for different λ values, Aλ(tπ/tσ ) corresponding
to the value minimizing the energy of the system and lying
in the range [0,1]. When λ = 0, ψj = a+

j↓ gives the lowest
energy (G-AFO state) with Aλ(tπ/tσ ) = 1 when tπ/tσ is in
the G-AFM part of the phase diagram and with Aλ(tπ/tσ ) = 0
when tπ/tσ is in the FM part of the phase diagram, as
expected. When λ �= 0, Aλ(tπ/tσ ) is now lying in the range
]0,1[. In Fig. 6 we have plotted 〈Si · Sj〉ψiψj

and 〈li · Si〉ψi

as a function of tπ/tσ at λ = 0 and λ = 20 meV; thanks to
the spin-orbit coupling, 〈Si · Sj〉ψiψj

passes continuously from
−1/4 to +1/4. Consequently, if the system lies in the G-AFM

FIG. 5. λ dependence of parameter Aλ(tπ /tσ ) corresponding to
the minimum of the energy per site. (a) Before the critical value;
(b) after the critical value.

part of the diagram close to the line separating G-AFM to FM,
its magnetic parameter value will be extremely reduced and
it will also present a weak ferromagnetic moment. But when
the system is in the FM part not too close to the transition,
the value of the magnetic parameter will be closed to the one
obtained without the spin-orbit coupling.

V. SUMMARY

In this article, we have derived an effective spin-orbital
Hamiltonian for 3d1 electronic systems with t2g orbital
degeneracy. This derivation was done up to order four in
the hopping term, without any approximations concerning
the Coulombic interactions. From this study, we see that
the participation of the oxygen and of the eg levels gives
rise to the σ -type electron hopping which cannot be mapped
onto an effective M-M bond and favors the emergence of
an AFM ground state (of G or C type as predicted by the
classical treatment) in competition with an FM one. This
therefore greatly improves the preceding KK Hamiltonian
essentially predicting ferromagnetism in the ideal cubic case.4

The stability of these phases is driven by several parameters
and we have obtained that small values for tπ/tσ ,�0,εd − εn

and large values for �
oxy
zx ,A,B, and V − 2K are favoring the

AFM phases. Using the expected value tπ/tσ ∼ 0.5,19 we have
placed our RT iO3 model (assuming an ideal cubic system) on
the phase diagrams which sits in the FM phase, close to the line
separating ferromagnets from antiferromagnets. In any case, it
is clear from this study that σ -type electron hoppings cannot be
neglected when studying 3dn (n = 1,2,3) RMO3 systems: for
3d3 and 3d2 systems like LaCrO3, LaV O3, and YV O3 which
are either G-AFM or C-AFM, the omission of this process only
leads to a bad quantitative description, but it turns out to be

FIG. 6. (a) 〈Si · Sj〉ψiψj
for λ = 0 and λ = 20 meV. (b) 〈li · Si〉ψi

for λ = 20 meV as a function of tπ /tσ .
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worse for 3d1 compounds as the possibility to obtain AFM
is greatly reduced. In this last case, due to the great number
of parameters involved in our model, it is plausible to expect
that a more precise description of the parameters describing
LaT iO3 (assuming this system has very small distortions)
also improved by a description in terms of the orbital-liquid
state; on the other hand the presence of a pronounced
GdFeO3-type lattice distortion (characterized by the Ti-O-Ti
angle θ ) in YT iO3 lowering the amplitude of the σ -type AFM

process (t
d

z2 2pz

iq = −tσ cosθ ) will be effective in distinguishing
LaT iO3 from YT iO3, shifting the former into being AFM.
In such a case, the spin-orbit coupling which has been shown
to allow a continuous transition of 〈Si · Sj〉ψiψj

from −1/4 to
+1/4 as a function of tπ/tσ would help to explain the small

value of the ordered parameter reported for LaT iO3 as well as
its weak ferromagnetic moment. Another improvement of the
model would be to introduce the delocalization of the one- and
two-electron hole intermediate states, as hole delocalizations
are always stabilizing the system. A description of the oxygen
orbitals similar to the one done in the case of a Zhang-Rice
singlet40 could thus be done both for the singlet and for the
triplet intermediate hopping states.
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