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Magnetoelastic coupling within a Landau model of phase transitions: Application to the frustrated
triangular antiferromagnet CsNiCl3
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A model Landau free energy is proposed in order to describe elastic coupling to spin degrees of freedom
in systems exhibiting phase transitions which involve long-range magnetic order. Using rigourous symmetry
arguments, various interaction terms are derived for magnetic materials with a hexagonal crystal structure.
The model is applied to the frustrated triangular antiferromagnet CsNiCl3 and used to analyze and correlate
a wide variety of experimental results such as the magnetic phase diagram, magnetization, strains, and elastic
constant measurements at low temperatures. Good agreement between the model and the data is obtained for the
temperature and magnetic field dependence of C33 and C66 in the vicinity of phase transitions. In particular, the
analysis shows that the anomaly observed in the field dependence of C33, close to the spin-flop phase boundary
(HSF � 2 T), is dominated by the field dependence of the magnetic susceptibility. It is also found that higher
order magnetoelastic coupling terms are required to reproduce the qualitative behavior of the elastic constants
in the vicinity of the phase transitions. Our results demonstrate that a straightforward mean-field model which
incorporates the correct system symmetries provides a powerful tool for relating complex spin configurations
to the elastic and other response functions. The present work also serves to complement and expand our earlier
results [G. Quirion et al., Phys. Rev. Lett. 97, 077202 (2006)].
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I. INTRODUCTION

Over the past several decades, interest in triangular
antiferromagnetic systems has remained substantial due to
the fact that spin frustration is known to lead to exotic
magnetic properties giving rise to new classes of phase
transitions as well as magnetoelectric phenomena.1,2 The
interplay among geometrical exchange frustration, anisotropy,
thermal fluctuations, and an applied magnetic field (H) in
these systems can yield to a wide variety of unusual types
of magnetic (H-T) phase diagrams.3,4 In many cases, these
exhibit novel multicritical points which can reveal information
on the critical behavior. Detailed understanding of the spin
structures involved in this class of materials has been achieved
through analyses of Landau-type free energies which are based
on rigorous symmetry arguments. This has led to very good
quantitative agreement between the phenomenological Landau
approach and experimental data for H-T phase diagrams.5,6

Free energy expansions which are based on a molecular
field treatment of the spin Hamiltonian can reproduce only
qualitative features of the phase diagrams. Monte Carlo
simulations based on the same spin Hamiltonian have been
somewhat more successful.4,7

Magnetoelastic coupling and its effects on ultrasonic
velocity and the elastic constants, Cij , has proven to be useful
for the study of magnetic phase diagrams in the triangular
antiferromagnet.8–10 This is partly due to the fact that crystal
symmetry plays a significant role in these measurements as
well as in the spin structures themselves. The principal utility
of such experimental results is to map out phase diagrams
based on anomalous features in the elastic response functions
indicating the location of a magnetic transition. More detailed
measurements, along with analysis based on linear response
theory, reveals relationships between the elastic constants and
the order parameters which allows for the determination of
critical behavior.9 Analysis based on a Landau free energy

expanded to low order typically shows a discontinuity in the
Cij at a continuous phase transition. As shown in the present
work, the inclusion of higher order effects can be used to reveal
more information on the temperature and field dependence of
the Cij in the vicinity of the transition.

Particular interest in antiferromagnetic compounds with
triangular symmetry was triggered by the observation of
a 120◦ magnetic order which, according to Kawamura,11

should belong to new chiral universality classes. For that
reason, these systems have been closely examined using
renormalization-group techniques, Monte Carlo simulations,
and experimentally.1,11–15 While many of these works seem
to support Kawamura’s prediction, recent ultrasonic sound
velocity measurements16 on CsNiCl3 reveal clear evidence
that the 120◦ phase transition is rather weakly first order. This
observation is consistent with other theoretical and numerical
studies7,17–22 and new Monte Carlo simulations on the XY

stacked triangular antiferromagnet.23

The analysis of elastic properties of CsNiCl3, presented
in Ref. 16, played a crucial role in identifying the true
nature of the magnetic phase transitions observed in CsNiCl3.
Based on a Landau-type free energy, the predicted scaling
relations between the order parameters and the elastic con-
stants were used to support conclusions made regarding the
critical behavior. In particular, the model shows how the
temperature dependence of the elastic constant C66 can be
used to determine the value of critical exponent β. From this
analysis, it was established that the exponent β is clearly
field dependent in the 120◦ phase, demonstrating that the
120◦ phase transition in CsNiCl3 does not belong to a new
universality.11

We present here a full derivation of the Landau model
used in Ref. 16. Furthermore, in order to validate our model,
the numerical predictions are compared to the measured
phase diagram, magnetization, strains, and elastic constants.
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FIG. 1. (Color online) Magnetic phase diagram of CsNiCl3 for
H‖ĉ. Solid (red) lines represent the phase boundaries (HN1 ,HN2 , Hc,
HSF) based on the free energy, Eq. (10) (see Appendix).5 Experimental
data were obtained from anomalies observed on sound velocity
measurements as a function of temperature or magnetic field (this
work). Labels P, L, E, and 120◦ represent the paramagnetic, linear,
elliptical, and 120◦ phases, respectively.

A member of numerous magnetic ABX3 compounds,1

CsNiCl3 possesses a strong c-axis antiferromagnetic exchange
with easy axis anisotropy. With an external field applied
along the c axis, the competing interactions lead to the phase
diagram shown in Fig. 1. At zero field, the c-axis anisotropy
gives rise to a linear (L) ordered state at TN1 = 4.75 K. With
further cooling, an additional in-plane ordering set in at TN2 =
4.38 K, resulting in an elliptical (E) spin polarization. A
discussion of the critical exponent β associated with these two
zero-field transitions is given in Ref. 16. Due to the easy axis
anisotropy, an applied field along the c axis induces a spin-flop
phase transition at HSF ∼ 2 T. In this new phase, the spins
adopt the 120◦ spin structure commonly observed in frustrated
triangular antiferromagnets. The transition boundary (Hc)
between the 120◦ and the paramagnetic (P) phases thus belongs
to the speculated chiral “universality” class. These three phases
meet at an unusual type of multicritical point at (Tm = 4.52 K,
Hm = 2.30 T).5

In addition to its unusual phase diagram associated with
long-range magnetic order, CsNiCl3 has also been much
studied as a good example of a one-dimensional spin-1
Haldane antiferromagnet.24 Of possible relevance to the
present work is evidence for the effects of short-range
fluctuations associated with this exotic quantum state on mag-
netization measurements in the paramagnetic state.25,26 The
present study is based on classical symmetry arguments and
is purely phenomenological. Numerical estimation of model
coefficients by comparison with experimental data makes no
reference to possible microscopic origins of the interactions
but may well reflect some fluctuations effects to the extent
that they are captured by classical symmetry theory. Our work
concerns the interplay between classical long-range magnetic
order and the elastic properties of triangular antiferromagnets,
in general, and CsNiCl3, in particular.

The principal focus of this paper is on a comparison of ex-
perimental data and Landau-model results for the magnetic and
elastic properties of CsNiCl3 and how various thermodynamic
linear response functions are related near the wide variety
of phase transitions. We briefly describe the experimental
methods in Sec. II, while details regarding the derivation of
the Landau model, which takes into account the magnetoelastic
couplings, are given in Sec. III. Sections IV and V are devoted
to the analysis of the magnetic and elastic properties of
CsNiCl3. Finally, further comments and conclusion are made
in Sec. VI. Details regarding how the model’s coefficients are
determined from the magnetic phase diagram, magnetization,
strain, and elastic constant measurements are presented in the
Appendix.

II. EXPERIMENT

The emphasis of the present work is on the analysis of the
elastic properties of CsNiCl3 obtained via ultrasonic velocity
measurements as a function of temperature and magnetic
field.9,16 Data were collected using a high-resolution pulsed
ultrasonic interferometer operating at 30 MHz. Measurements
were carried out on a single crystal with a length of 8.9 mm
along the c axis and approximately 2.5 mm along the perpen-
dicular directions. Data associated with the elastic constant
C33 were determined using longitudinal modes propagating
along the c axis, while transverse lithium niobate transducers
were used in order to measure C66. These data were also used
to determine the magnetic phase diagram of CsNiCl3 for a
field applied along the c axis. The phase diagram shown in
Fig. 1 agrees well with previous measurements obtained at
lower fields.27–29

III. MODEL

The derivation presented here is essentially based on
the formulation of a nonlocal Landau free energy which is
known to successfully account for the phase diagrams of
many magnetic systems with a triangular lattice, for example,
CsNiCl3, CsNiF3, and CsMnBr3.4,5,8 Thus, our approach is
to incorporate magnetoelastic coupling terms to the existing
model by Plumer et al. 5 These contributions are essential in
order to account for the field and temperature dependence of
the elastic constants measured in CsNiCl3.9,16 In this context,
the total free energy F is decomposed into three contributions,
expressed as8

F = Fs + Fes + Fe. (1)

Here, the spin-only part of the free energy Fs , given in
Eq. (2), is represented by a Taylor expansion in term of the
components of the spin density s(r). Using the same approach,8

the magnetoelastic energy Fes is defined in Eq. (3). As our
analysis indicates, linear-quadratic and biquadratic coupling
terms between the strain components eij and the spin density
s(r) are both necessary. Finally, the integral form of the elastic
energy Fe, defined in terms of the elastic constants Cijkl , is
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given in Eq. (4).

Fs = 1

2V

∫
dr1dr2Jij (r1,r2)si(r1)sj (r2)

+ 1

4V

∫
dr1dr2dr3dr4Bijkl(r1,r2; r3,r4)si(r1)sj (r2)

× sk(r3)sl(r4) −
∫

s(r) · H dr, (2)

Fes = 1

2V

∫
dr1dr2dr3Kijkl(r1; r2,r3)eij (r1)sk(r2)sl(r3)

+ 1

4V

∫
dr1dr2dr3dr4Vijklmn(r1,r2; r3,r4)eij (r1)

× ekl(r2)sm(r3)sn(r4), (3)

Fe = 1

2V 2

∫
dr1dr2Cijkleij (r1)ekl(r2). (4)

Here, the summation convention of repeated indices is adopted,
with i,j,k,l,m,n = x,y,z. Moreover, we assume that all
coupling coefficients Jij , Bijkl , Kijkl , and Vijklmn depend on
the spin separation τij = ri − rj. The total free energy must
be invariant with respect to the hexagonal D4

6h symmetry
operations. For example, the existence of an inversion sym-
metry center imposes that Jij (τ ) = Jij (−τ ), while the time
reversal property is only satisfied by even powers of the
spin density. The other crystal symmetry operations impose
additional restrictions which considerably reduce the number
of coupling terms. A general discussion of these techniques
is given in Ref. 4. These independent contributions are then
evaluated considering that the local magnetic moment density

s(r) is defined relative to a nonlocal spin density ρ(r) such
that

s(r) = V

N

∑
R

ρ(r)δ(r − R), (5)

with R representing lattice vectors and N the number of
Ni2+ magnetic ions. As in Ref. 5, we assume that the
antiferromagnetic part of the spin density is appropriately
characterized by a single Q vector according to

ρ(r) = m + SeiQ·r + S∗e−iQ·r, (6)

where S is the spin polarization vector and m is the induced
magnetization. In order to account for nonlinear spin configu-
rations, the spin polarization vector is expressed as

S = S1 + iS2, (7)

where the polarization vectors S1 and S2 are defined as

S1 = S cos β[sin θρ̂1 + cos θ ẑ] and S2 = S sin βρ̂2, (8)

with ẑ pointing along the c axis while the arbitrary orthogonal
unit vectors ρ̂1 and ρ̂2 lie in the basal planes. To properly
account for the magnetoelastic coupling, it is important to
define the spin orientation relative to the crystallographic
directions; for that reason we define

ρ̂1 = cos φx̂ + sin φŷ and ρ̂2 = − sin φx̂ + cos φŷ. (9)

Here, the angle φ is defined relative to the hexagonal lattice
vectors, â = ŷ.

For a magnetic field applied along the z direction, the free
energy reduces to

Fs = (AQ − Azζ
2)S2 + 1

2BS4 + Azζ
2S2

⊥ + 2B2(S2
⊥ − S2)S2

⊥ + 1
2Aom

2
z + 1

4B3m
4
z + B5m

2
zS

2 + 2B4ζ
2(S2 − S2

⊥)m2
z − mzH,

(10)

Fes = Fes;K + Fes;V , (11)

Fes;K = (2K11(S2
⊥ζ 2 + S2(1 − ζ 2)) + 2K13(S2 − S2

⊥)ζ 2)(e11 + e22) + (2K31(S2
⊥ζ 2 + S2(1 − ζ 2)) + 2K33(S2 − S2

⊥)ζ 2)e33

+ 2K66(S2
⊥(ζ 2 − 2) + S2(1 − ζ 2)) cos[2φ](e11 − e22) + 4K66(S2

⊥(ζ 2 − 2) + S2(1 − ζ 2)) sin[2φ]e12

+ K̃13m
2
z(e11 + e22) + K̃33m

2
ze33, (12)

Fe = 1
2C11

(
e2

11 + e2
22

) + 1
2C33e

2
33 + 2C44

(
e2

13 + e2
23

) + 2C66e
2
12 + C12e11e22 + C13(e11 + e22)e33, (13)

where AQ = a(T − TQ), Ao = a(T − To), S⊥ = S sin β, and
ζ = cos θ . The order parameters S, S⊥, and ζ are associated
with the linear, elliptical, and 120◦ phases identified in Fig. 1.
Using the expression of s(r) in Eq. (3), along with the fact
that eij = eji , we also determined the allowed coupling terms
between the strains and the order parameters. Equation (12)
gives the expression for the linear-coupling terms, where

Kij = V

N

∑
R

Kiijj e
iQ·R,

K̃ij = V

N

∑
R

Kiijj ,

1

N

∑
R

ei2Q·R = 	2Q,G = 0. (14)

In the case of CsNiCl3, as the spin polarization wave vector,
Q = 4π/3aŷ, does not coincide with any of the reciprocal
lattice vectors G/2, none of the coupling terms proportional
to the Kronecker 	 function 	2Q,G are allowed.

The biquadratic coupling terms Fes;V have also been
derived. As reported in Table I, there are 14 terms associated
with the order parameters and 5 terms related to the induced
magnetization. Finally, the form of the elastic energy deter-
mined by the hexagonal point-group symmetry corresponds to
Eq. (13).
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TABLE I. Biquadratic coupling terms between the order parameters (S,S⊥,ζ ), the magnetization mz, and the strain components eij .

1. 2V333(S2 − S2
⊥)ζ 2e2

33 1. Ṽ333m
2
ze

2
33

2. 4V133(S2 − S2
⊥)ζ 2(e11 + e22)e33 2. 2Ṽ133m

2
z(e11 + e22)e33

3. 2V113(S2 − S2
⊥)ζ 2(e11 + e22)2 3. Ṽ113m

2
z(e11 + e22)2

4. 8V553(S2 − S2
⊥)ζ 2(e2

13 + e2
23) 4. 4Ṽ553m

2
z(e2

13 + e2
23)

5. 8V663(S2 − S2
⊥)ζ 2(e2

12 − e11e22) 5. 4Ṽ663m
2
z(e2

12 − e11e22)

6. 2V331(S2
⊥ζ 2 + S2(1 − ζ 2))e2

33

7. 2(V131 + V231)(S2
⊥ζ 2 + S2(1 − ζ 2))(e11 + e22)e33

8. 4(V441 + V551)(S2
⊥ζ 2 + S2(1 − ζ 2))(e2

13 + e2
23)

9. 1/2(V111 + V221 + 2V121)(S2
⊥ζ 2 + S2(1 − ζ 2))(e11 + e22)2

10. 1/4(V111 + V221 − 2V121 + 4V661)(S2
⊥ζ 2 + S2(1 − ζ 2))(e2

11 + 4e2
12 − 2e11e22 + e2

22)

11. 2(V131 − V231)(S2(1 − ζ 2) − S2
⊥(2 − ζ 2))(cos[2φ]e11e33 + 2 sin[2φ]e12e33 − cos[2φ]e22e33)

12. 4(V551 − V441)(S2(1 − ζ 2) − S2
⊥(2 − ζ 2))(cos[2φ]e2

13 + 2 sin[2φ]e13e23 − cos[2φ]e2
23)

13. (V111 − V221)(S2(1 − ζ 2) − S2
⊥(2 − ζ 2))(e11 + e22)(cos[2φ]e11 + 2 sin[2φ]e12 − cos[2φ]e22)

14. 1/4(V111 + V221 − 2V121 − 4V661)(S2(1 − ζ 2) − S2
⊥(2 − ζ 2))

(cos[2φ]e2
11 − 4 cos[2φ]e2

12 + 4 sin[2φ]e12e22 + cos[2φ]e2
22 − 2e11(2 sin[2φ]e12 + cos[2φ]e22))

IV. MAGNETIC PHASE DIAGRAM

The total free energy defined by Eqs. (10)–(13), along
with the biquadratic coupling terms listed in Table I, can be
used to account for the magnetic phase diagram of CsNiCl3
as well as the elastic properties as a function of field and
temperature. It is straightforward to show that the effect of
the magnetoelastic coupling terms [Eq. (12)] is to renormalize
the coefficients of the Landau free energy Fs . Moreover, these
effects scale with the elastic variations observed in the mag-
netic states. As these variations are small (	C/C ∼ 10−4),
it is still justified to determine the magnetic phase diagram
by minimizing the Landau free energy Fs alone with respect
to the order parameters. Details regarding this derivation
can be found in Ref. 5. For convenience, derivations of the
phase boundaries are reproduced in the Appendix for H ‖ c.
Using the analytical solutions [Eqs. (A4)] along with the
numerical values listed in Table III, it is then possible to obtain
very good agreement with the experimental data as shown
in Fig. 1.

As the coefficients in Table III are preset by fitting the
phase diagram, the significance of the model can be put to
the test by comparing the calculated magnetization with the
experimental data collected at 2.25 K by Johnson et al.27

Shown in Fig. 2 are the numerical prediction (solid line)
and the measured magnetization. As usual, due to fluctuation
phenomena, the data show a gradual variation around the spin-
flop first-order transition, while the mean-field model displays
a small discontinuity at the critical field H = 2.0 T. The inset
in Fig. 2 also shows the field dependence of the susceptibility.
Here, the solid line corresponds to a fit obtained using a
single Gaussian function center at the critical field. The fitted
susceptibility is used later for analysis of the elastic constants.

V. ELASTIC PROPERTIES

We now focus our attention on the field and temperature
dependence of elastic properties of CsNiCl3. Minimizing the
total free energy with respect to the strain components, we
obtain the relations

e11 + e22 = − K̃13m
2
z + 2(K13(S2 − S2

⊥)ζ 2 + K11(S2
⊥ζ 2 + S2(1 − ζ 2)))

(C11 + C12)/2
,

e11 − e22 = −4K66(S2(1 − ζ 2) − S2
⊥(2 − ζ 2)) cos[2φ]

C11 − C12
,

e33 = − K̃33m
2
z + 2(K33(S2 − S2

⊥)ζ 2 + K31(S2
⊥ζ 2 + S2(1 − ζ 2)))

C33
, (15)

e23 = 0,

e13 = 0,

e12 = −2K66(S2(1 − ζ 2) − S2
⊥(2 − ζ 2)) sin[2φ]

C66
.
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FIG. 2. (Color online) Field dependence of the magnetization of
CsNiCl3 calculated at 2.25 K for H‖ĉ. The numerical prediction [solid
(red) line] is compared to data measured by Johnson et al.27 Inset:
Field dependence of the susceptibility at 2.25 K based on the data of
Johnson et al. 27 along with the Gaussian fit [solid (red) line].

Since φ corresponds to the angle between the basal-plane
spin polarization relative to the lattice vectors, we note that
for an arbitrary angle φ, the magnetic transitions would lead
to a structural transformation due to the shear deformation
associated with e12 �= 0. In this case the structural symmetry
would be reduced to monoclinic. However, based on the
analysis reported by Zhu et al.,30 it is energetically favorable
to have the spin polarization S confined to the zρ2 plane in
the elliptical phase. Thus, as in Ref. 30, we assign ρ̂2 to the
Cartesian direction ŷ, which coincides with the hexagonal a

axis. For that reason, we limit our analysis to the case where
φ = 0 [see Eq. (9)].

Using the total free energy, solutions for the elastic
constants are obtained using31

C∗
mn = ∂2F

∂em∂en

− ∂2F

∂O∂em

(
∂2F

∂O2

)−1
∂2F

∂en∂O

− ∂2F

∂mz∂em

(
∂2F

∂m2
z

)−1
∂2F

∂en∂mz

, (16)

where O represents the order parameter associated with a
specific magnetic phase transition. Our analysis focuses on the
temperature and field dependence of C33 and C66, as shown in
Figs. 3 and 4. Thus, solutions for these two moduli are listed in
Table II, while details regarding how the value of the coupling
coefficients are determined can be found in the Appendix.

The predictions for C66 are particularly interesting. As only
quadratic-quadratic coupling terms are allowed for e12 [φ = 0
in Eq. (12)], the temperature dependence of C66 is proportional
to the order parameter squared, while the field dependence
scales with m2

z (Table II). At zero field, the data display a
very small variation signaling the paramagnetic-linear phase
transition at TN1 = 4.75 K [not clearly visible in Fig. 3(a)].
However, below the linear-elliptical phase transition (TN2 =
4.35 K), the observed temperature dependence is consistent
with that of S2

⊥. In order to optimize the agreement with the
experimental data shown in Figs. 3 and 4, the usual mean-field

FIG. 3. (Color online) Relative variation of the elastic constant
C66 as a function of temperature or magnetic field. Experimental
data are represented by symbols, while solid (red) lines represent
numerical predictions based on parameters and solutions listed in
Table II.

temperature dependence of the order parameter S⊥ is replaced
by the phenomenological relation given by

S⊥(T ) = α

{
θs

[
coth

(
θs

TN

)
− coth

(
θs

T

)]}β

. (17)

This form has been used by other groups to account for the
saturation of the order parameter observed at low temperatures
for structural phase transitions which are well characterized
with a mean-field critical exponent β = 0.5.32–34 As a low-
order expansion of the free energy in powers of S2, the Landau
free energy in its traditional form has a range of validity in
regions of the phase diagram only close to the paramagentic
phase boundary where S2 is small. Equation (16) is essentially

FIG. 4. (Color online) Relative variation of the elastic constant
C33 as a function of temperature or magnetic field. Experimental
data are represented by symbols, while solid (red) lines represent
numerical predictions based on parameters and solutions listed in
Table II.
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TABLE II. Solutions for elastic modulii C33 and C66 with numerical values of the coupling
coefficients.

C33(P) = C33 − 4K̃2
33m

2
zχ + 2Ṽ333m

2
z C33 = 6.16 × 1010 N/m2

C33(L) = C33(P) − 4K2
33

B
+ 4V333S

2 K̃33 = −0.11

C33(E) = C33(L) − (K31−K33)2

B2
+ 4S2

⊥(V331 − V333) Ṽ333 = 8.67

C33(SF) = C33(P) − 4K2
31

B−B2
+ 8V331S2

⊥ K33 = 0.0025

K31 = −0.0029

V333 = 0

V331 = 0.30

C66(P) = C66 + 2Ṽ663m
2
z C66 = 3.56 × 1010 N/m2

C66(L) = C66(P) + 4V663S
2 Ṽ663 = −0.52

C66(E) = C66(L) + (V12 − 4V663)S2
⊥ �= C11(E)−C12(E)

2 V663 = 0

C66(SF) = C66(P) + (V12 + 4V661)S2
⊥ V12 = V111 − 2V121 + V221 = −2.64

V661 = 0.77

a mean-field result for Ising-like systems which does not
have this restriction. In the case of CsNiCl3, the proposed
phenomenological function [Eq. (17)] has the advantage to
reproduce the critical behavior close to TN as well as to mimic
the lower-T saturation effect by setting θs = 0.5TN . For the
purposes of the analysis, we used β = 0.35 in the linear and
elliptical phases, while for the 120◦ phase, β ∼ 0.30. These
values correspond to those determined in Ref. 16.

Using Eq. (17) with the numerical values listed in Table II, it
is then possible to obtain excellent agreement with the temper-
ature dependence of C66 measured at 0 and 9 T [Figs. 3(a) and
3(b)]. The field dependence of C66 is related to the parameter
Ṽ663, which is easily determined using the variation observed in
the paramagnetic phase (see Appendix for details). As shown
in Fig. 3(d), the model properly accounts for the increase in
C66 at the spin-flop phase transition (HSF ≈ 2 T). According to
our analysis, this variation is associated with the change in the
magnetoelastic coupling constant (4V661) as the spin system
transforms from an xz-plane polarization (elliptical phase)
into an xy-plane configuration in the 120◦ phase. Surprisingly,
variations due to discontinuity in S⊥ and mz are an order of
magnitude smaller. In addition, the field dependence measured
at T = 5.3 K [Fig. 3(c)] is also well reproduced, giving
further support to the model. In particular, it reproduces the
unusual anomaly observed at the paramagnetic-120◦ phase
boundary.

We now focus on the analysis of the temperature and
field dependence of C33 presented in Fig. 4. At zero field
[Fig. 4(a)], the onset of the long-range linear antiferromagnetic
ordering corresponds to a small slope variation in the data at
TN1 , while the elliptical magnetic ordering is easily identified
by a pronounced anomaly at TN2 . The comparison with the
model predictions indicates that linear-quadratic coupling
terms account for the discontinuous variation at the critical
temperatures, while biquadratic terms are necessary in order to
qualitatively reproduce the temperature dependence observed
at lower temperatures. Thus, the variation of C33 for T < TN2

is associated with that of S2
⊥ given by Eq. (17), while the

coupling with S2 is negligible (V333 = 0). Again, details
regarding how the magnetoelastic constants are determined are

given in the Appendix. With all coefficients set, the numerical
predictions are compared to results obtained as a function
of temperature for H = 0 and 9 T, as well as measurements
versus the field for T = 2.5 and 5.8 K. The fact that the
agreement at H = 0 T [Fig. 4(a)] is not as good as for
C66 might reflect that higher order coupling terms have a
significant contribution in the case of longitudinal modes. In
Figs. 4(b) and 4(c), while the agreement is qualitative, we also
notice significant deviations, in particular, for the paramagnetic
state. We attribute these discrepancies to spin fluctuations
(beyond mean field), which are known to be important along
the easy axis of quasi-one-dimensional magnetic systems
such as CsNiCl3.35,36 The results presented in Fig. 4(d) are
especially interesting, as it shows the field dependence of C33

at the spin-flop phase boundary. As predicted in Table II, the
minimum on C33, associated with the term −4K̃2

33m
2
zχ , reflects

the field dependence of the magnetic susceptibility around the
phase transition. For the numerical prediction [solid (red) line],
the fit of the susceptibility data measured at T = 2.25 K and
shown in Fig. 2 has been used. Note that the coupling constant
K̃33 is determined from magnetostriction measurements,37

independent of our elastic constant measurements shown in
Fig. 4 (see the Appendix). A similar field dependence has
also been observed in the velocity of longitudinal modes in
(VO)2P2O7.38 In summary, while the agreement with the model
predictions is not as good as for C66, the model does capture
the distinct features observed on both modulii.

As a final test, we present in Fig. 5 the numerical predictions
for the temperature dependence of the thermal expansion
coefficients α1 = de1/dT and α3 = de3/dT for H = 0. The
predictions derived from Eq. (15) compare well with the
experimental data shown in Refs. 9 and 39, where α‖ = α3

and α⊥ = α1. Note that the prediction for α3 is obtained
without adjusting any coefficient, while the experimental data
for α1, which show only one anomaly at TN2 , indicate that
the coupling constant K13 � 0. This constant characterizes the
effect of the spin z component and the basal plane deformations
(e1,e2). This observation is also confirmed by sound velocity
measurements9 which show no anomaly at TN1 for longitudinal
modes propagating into the basal plane.
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FIG. 5. (Color online) Numerical predictions of the low-
temperature thermal expansion coefficients α3 and α1 for CsNiCl3.

VI. CONCLUSION

In this investigation, we present a Landau model free
energy of magnetoelastic coupling derived from symmetry
arguments that complements and extends our earlier work.16

The model predictions are tested by correlating a substantial set
of experimental data on CsNiCl3 such as the magnetic phase
diagram, magnetization, thermal expansion coefficients, and
elastic constants, measured as a function of temperature and
field. In general, the model captures well the types of anomalies
observed at the different phase boundaries. Moreover, we show
that the anomaly observed on C33 as a function of the field for
T = 2.5 K [Fig. 4(d)] is dominated by the field dependence of
the magnetic susceptibility. On the other hand, results obtained
for C66 [Fig. 3(d)] instead display a step-like anomaly at
the phase transition. Based on the numerical analysis, we
conclude that this variation is associated with the change in the
magnetoelastic coupling for different spin configurations. The
discontinuities of the order parameter S⊥ and mz (see Fig. 2)
seem to play a secondary role. Note that the same approach
has been used to analyze the magnetoelastic coupling in the
magnetoelectric compound CuFeO2

40–42 and can be applied to
other triangular antiferromagnets. It can also be used for any
magnetic phase transitions.

Based on the model presented in this paper, it is also
possible to deduce the crystal symmetry. As mentioned earlier,
the analysis done by Zhu et al.30 shows that it is energetically
favorable to have the basal plane spin polarization pointing
along the crystallographic direction a. Consequently, at low
fields the spin polarization vector S is confined in the yz

plane with the modulation vector Q parallel to the y direction
(Q = 4π/3aŷ). Thus, depending on the spin configuration,
some symmetry elements might be lost, leading to a structural
change. Information regarding this possibility can be obtained
via the analysis of the magnetoelastic coupling. On one
hand, based on the solution for e11 − e22 [Eq. (15)], we see
that the order parameter associated with the elliptical phase,
S⊥ �= 0 with ζ = 1, could lead to a structural deformation from
hexagonal to orthorhombic. On the other hand, the symmetry

of the linear phase (S⊥ = 0 with ζ = 1) and that of the
120◦ phase (S = √

2S⊥ with ζ = 0) should remain hexagonal
(e11 − e22 = 0). Thus, based on our analysis, one would expect
to observe a structural change at the linear-elliptical phase tran-
sition. However, considering that the magnetoelastic effects in
CsNiCl3 are small below TN2 (e1 ∼ e2 ∼ 10−6), this symmetry
change might be difficult to detect. Note that the symmetry des-
ignations mentioned here are also consistent with the number
of independent elastic constants obtained for each symmetry.
While no additional elastic constants are obtained for the linear
and 120◦ phase, a total of nine independent constants are evi-
dent for the elliptical phase. In particular, we obtain that C66 is
no longer equal to (C11 − C12)/2, indicating that the hexagonal
symmetry is clearly broken in the elliptical phase. Finally, we
stress that linear-quadratic and biquadratic coupling terms are
both necessary in order to account for the elastic properties of
CsNiCl3 as well as a likely symmetry change.
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APPENDIX

Considering that the derived Landau free energy contains
a large number of adjustable coefficients, it is crucial to rely
on a sufficiently large pool of independent experimental data.
Thus in this Appendix, we show how all coefficient values
are determined using data associated with the magnetic phase
diagram, magnetization, strains, and elastic constants.

Considering that the elastic energy variation in CsNiCl3 is
small at low temperatures, we determine the magnetic phase
by minimizing the Landau free energy Fs [Eq. (10)]. In that
context, the derivation presented here reduces to that realized
by Plumer et al.5 for H ‖ c. Thus, minimization of Fs with
respect to the magnetization mz and the order parameters S

and S⊥ gives

∂Fs/∂S = (
AQ + 2B5m

2
z − 2B2S

2
⊥ + BS2

+ (
2B4m

2
z − Az

)
ζ 2

)
S = 0,

∂Fs/∂S⊥ = (
2B2(2S2

⊥ − S2) + (
Az − 2B4m

2
z

)
ζ 2

)
S⊥ = 0,

∂Fs/∂mz = −H + A0mz + B3m
3
z + 2B5mzS

2

+ 4B4mz(S
2 − S2

⊥)ζ 2 = 0. (A1)

Inspection of Eqs. (A1) reveals four possible magnetic
states, corresponding to

P state: S = 0, S⊥ = 0, ζ = 1.

L state: S �= 0, S⊥ = 0, ζ = 1.

E state: S �= 0, S⊥ �= 0, ζ = 1.

120◦ state: S = √
2S⊥, S⊥ �= 0, ζ = 0.

(A2)

Here, the labels P, L, E, and 120◦ are used to identify the
paramagnetic, linear, elliptical, and 120◦ spin configurations.
Moreover, we note that the order parameter ζ is associated
with the spin-flop phase transition between the elliptical and
the 120◦ phase, which is first order in nature. The critical
temperatures at zero field are easily obtained by considering
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that S = 0 at TN1 while S⊥ = 0 at TN2 . Furthermore, the
coordinates of the multicritical point are deduced by imposing
that S and S⊥ are both 0 at (Tm, Hm). Thus, from Eqs. (A1) we
obtain that

TN1 = TQ + Az

a
,

TN2 = TN1 − B

2B2

Az

a
,

(A3)

Tm = TN1 − B6

2B4

Az

a
,

Hm =
√

Az

2B4

(
a(TQ − To) + (B3 − B5)

2B4
Az

)
,

where B6 = 2B4 + B5, B7 = BB4/B2 − B6, and B8 = B3 −
2B2

6/B. Likewise, analytical solutions for the continuous
phase boundaries HN1 , HN2 , and Hc are obtained by solving
Eq. (A1). These solutions, defining the P → L, the L →
E, and the P → 120◦ phase boundaries are conveniently
written as

HN1 =
√

−A1

B6

(
Ao − B3

B6
A1

)
,

HN2 =
√

A2

B7

(
Ao − 2B6

B
A1 + B8

B7
A2

)
, (A4)

Hc =
√

−AQ

B5

(
Ao − B3

B5
AQ

)
,

where A1 = a(T − TN1 ), A2 = a(T − TN2 ), Ao = a(T − To).
Inspection of the solution for Hc shows that the parameter
TQ = 4.4 K corresponds to the temperature at which the phase
boundary Hc extrapolates to H = 0. Moreover, To can be
estimated considering that the magnetic susceptibility in the
paramagnetic phase is given by

χ = 1

∂2Fs/∂m2
z

= 1

a(T − To)
. (A5)

Thus, the parameter To = −70 K corresponds to the value
of the experimental curie temperature43 for CsNiCl3, while
the coefficient a is determined by scaling the calculated
magnetization with the experimental data shown in Fig. 2.
The last boundary, which defines the E → 120◦ first-order
phase transition (ζ = 1 → 0), is obtained numerically by
comparing the free energy of both phases. Imposing that
TN1 = 4.75 K, TN2 = 4.38 K, Tm = 4.52 K, Hm = 2.3 T,
HSF(0K) = 1.6 T, and Hc(5.8K) = 8.5 T, we obtain the
numerical values reported in Table III. As shown in Fig. 4, the
analytical solutions, Eqs. (A4) (while the HSP phase boundary
is determined numerically), combined with the values reported
in Table III are sufficient to reproduce the magnetic phase
diagram of CsNiCl3 up to 10 T.

In a similar manner, the magnetoelastic coefficients listed
in Table II are determined by imposing constrains consistent
with variations of the elastic properties. Thus, according to
the analytical solution given in Table II, the temperature of
C66 is proportional to S2 and S2

⊥, while the field dependence
scales with m2

z . At zero field, the data display a very small
variation signaling the paramagnetic-linear phase transition

TABLE III. Numerical values used to calculate the phase bound-
aries presented in Fig. 1.

a 2.59 × 10−5

To −70
TQ 4.4
Az/a 0.40
B 3.21 × 10−12

B2/B 0.50
B3/B 15.4
B4/B 1.21
B5/B −1.03

at TN1 = 4.75 K [not clearly visible in Fig. 3(a)]. Thus, as
indicated by the list of numerical constraints [see Eqs. (A6)],
we conclude that V663 � 0, while the temperature dependence
observed below the linear-elliptical phase transition (below
TN2 = 4.35 K) is adjusted using the constant V12. The field
dependence of C66 in the paramagnetic state at T = 5.3 K
[Fig. 3(c)] is then used to determine Ṽ663, while the last
coupling constant V661 is set using the data obtained at H = 9 T
[Fig. 3(b)].

C66(L) − C66(P ) = 4V663S
2 � 0

	C66

C66
(3K) = V12

C66
S2

⊥ = −1.55 × 10−3

(A6)
	C66

C66
(5.3K,5T ) = 2Ṽ663

C66
m2

z = −1.5 × 10−4

	C66

C66
(2K,9T ) = − (V12 + 4V661)

C66
S2

⊥ = −4.8 × 10−4

The magnetoelastic coefficients associated with C33

are determined using the numerical constraints list in
Eqs. (A7).

	C33

C33
(TN1 ) = − 4K2

33

BC33
= −0.06 × 10−3

	C33

C33
(TN2 ) = − (K31 − K33)2

B2C33
= −0.37 × 10−3

	C33

C33
(3.5K) = 4V331

C33
S2

⊥ = 0.33 × 10−3 (A7)

e33(5.2K,2T ) = − K̃33

C33
m2

z = 1.8 × 10−6

	C33

C33
(5.8K,8T ) = −4K̃2

33χ + 2Ṽ333

C33
m2

z = −.002

At zero field [Fig. 4(a)], the onset of the long-range linear
antiferromagnetic ordering corresponds to a small slope varia-
tion in the data at TN1 , while the elliptical magnetic ordering is
easily identified by a pronounced anomaly at TN2 . The compar-
ison with the model predictions indicates that linear-quadratic
coupling terms account for the discontinuous variation at the
critical temperatures while biquadratic terms are necessary in
order to qualitatively reproduce the temperature dependence
observed at lower temperatures. Thus, the variation of C33

for T < TN2 can be associated with that of V331S
2
⊥ given

by Eqs. (A7), while the coupling with S2 is negligible
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(V333 � 0). Furthermore, the discontinuous variation observed
at both critical temperatures are used to set K33 and K31. The
remaining coefficient Ṽ333 and K̃33 are necessary in order to
account for the field dependence. While K̃33 is determined

independently according to magnetostriction measurements37

along the c axis (e33) using Eqs. (A7), Ṽ333 is adjusted to
qualitatively reproduce the lower field dependence measured
at T = 5.8 K [Fig. 4(c)].
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3M. L. Plumer, A. Caillé, and K. Hood, Phys. Rev. B 39, 4489 (1989).
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