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Diffusion in liquid aluminium probed by quasielastic neutron scattering
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The diffusion coefficient of liquid aluminium has been obtained through coherent quasielastic neutron
scattering. The resulting values agree well with calculations derived from the viscosity applying the Stokes-
Einstein relation and with ab initio calculations. The temperature dependence of the diffusion constant displays
an Arrhenius-type behavior with a single activation energy of 274 meV, consistent with results obtained by
utilizing embedded atom method potentials.
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I. INTRODUCTION

Aluminium is used in many facets in our daily life and
is produced in huge amounts yearly. The production process
involves at some stage the processing of the metal in the liquid
state and subsequent solidification. Diffusion is an important
process during this step which can influence texture and
strength. The knowledge and understanding of the diffusion
process on a quantitative basis is hence a necessity for
successful phase field modeling and could have important
consequences on the production process. Surprisingly there
is a lack of measurements of the diffusion coefficient for
liquid aluminium. The classical capillary method requires
suitable radioactive isotopes, which are not available for
aluminium. The reported diffusion constants are all based on
computational efforts. At first, classical molecular dynamics
(MD) simulations using pseudopotentials1 have been applied.
Later on first-principles molecular dynamics2 and orbital-free
ab initio MD studies3 have been performed on the structure
and dynamics of liquid aluminium. The scatter of calculated
diffusion coefficients asks for input from experiment. One
approach to derive diffusion constants is neutron scattering.
However, the purely coherent scattering of aluminium provides
a more complicate situation.

In the hydrodynamic limit, the simplest ansatz is the well-
known solution of Fick’s diffusion law which describes the
motion of a Brownian particle in space and time and which
defines the self-diffusion constant D of a tagged particle. A
simple Lorentzian line shape is expected where the half width
at half maximum (HWHM) �1/2 is related to the diffusion
coefficient by �1/2 = DQ2. Hence, measuring the incoherent
scattering function Sinc(Q,ω) allows for the determination of
the self-diffusion coefficient of the liquid. This approach for
determining diffusion constants has often been applied for
liquid metals and alloys.4–6

The situation is more intricate if the sample nuclei scatter
only or mostly coherent. Coherent neutron scattering provides
insight into the collective movements of the particles. In the
hydrodynamic limit, the scattering function is given by a com-
bination of three Lorentzians, neglecting a small asymmetry
term.7 Two Brillouin lines originate from density fluctuations
and the quasielastic Rayleigh line stems from temperature
fluctuations. The Brillouin lines disperse with the velocity of
sound and can be followed far into the microscopic region.8

For larger momentum transfers or when length scales of atomic
diameters are probed, the quasielastic line shows a narrowing
around the structure factor maximum, known as deGennes
narrowing.9 In the time domain, the intermediate scattering
function for density fluctuations F(Q,t) demonstrates a slowing
down at the structure factor maximum. DeGennes derived the
frequency moments for the scattering function and found that
the second moment is given by: �2

0 = kBT Q2

mS(Q) . The moments are
a measure of the spread of the spectra and show according to
the calculation a decrease of the width when the structure factor
S(Q) reaches its maximum. In a simple picture, it costs time for
a density fluctuation to relax on a next-neighbor length scale
due to a necessary rearrangement of the surrounding particles.
This structural slowing down is manifested in the relaxation
time through the structure factor S(Q).

Within kinetic theory, the line width at the structure
factor maximum has been related to a diffusion process,
which enables the density fluctuations to decay.10 Within this
formulation, the following connection between the Enskog
self-diffusion coefficient DE of a hard sphere fluid and
the measured half width at half maximum �1/2 has been
established:10

�1/2 = DEQ2d(Qσ )

S(Q)
, (1)

where d(Qσ ) = (1 − j0(Qσ ) + 2j2(Qσ ))−1 is given by a
combination of spherical Bessel functions jl of order l and
σ denotes the hard sphere diameter. This relation strongly
resembles the hydrodynamic description of the self-diffusion
process, where the structure factor S(Q) takes into account
the slowing down of a diffusion process at next-neighbor
distances. On these length scales of one atom diameter, the
relaxation of density fluctuations resembles single particle
behavior.11 It has been shown, e.g., that the calculated line
widths around the structure factor maximum of noble gases
agree with measured values over a wide range of densities. The
same relation has also been applied to liquid alkali metals. It
was shown that for liquid cesium12 and liquid rubidium,13 the
derived diffusion coefficients are consistent with the calculated
Enskog value near the melting point and for liquid rubidium
even up to the boiling point.14

However, the Enskog model calculates the diffusion co-
efficient DE of a hard sphere system by taking into account
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only binary collisions. The neglect of more complex correlated
collisions is the reason for deviations of the macroscopic
self-diffusion constant at high and low densities. At high
densities, coupling to density fluctuations with wave numbers
near the structure factor maximum hinders the diffusion
process and hence reduces the diffusion constant.15 In contrast,
at low densities, it is the coupling to vortex backflow which
enhances the diffusion constants. Through a comparison
between simulated self-diffusion coefficients and calculated
Enskog values over a large range of densities, a correction
curve was reported:16

D =DE

(
1+0.05403

(Vo

V

)
+ 6.3656

(Vo

V

)2
−10.9425

(Vo

V

)3)
.

(2)

The correction is given as a function of relative density
V0/V = nσ 3/

√
2, where V0 denotes the closed packed vol-

ume. For example, these corrections describe quantitatively
the diffusion behavior of liquid sodium over a wide range
of densities very well.5 A kinetic theory with inclusion of
correlated collisions has been given first by Cukier and
Mehaffey17 for a hard sphere liquid and later by Wahnstrom
and Sjogren18 for continuous potentials. The characteristic
feature of Eq. (2) is well displayed, namely, the reduction
of D/DE near the melting point via the cage effect and an
enhancement of D/DE due to transverse currents at higher
temperatures with a typical maximum near V0/V = 0.4.19

With all these corrections, which seem to work to a high
accuracy for some systems, one has to keep in mind that the
self-diffusion constant is extracted from a coherent quantity.
Only comparison with sophisticated ab initio simulations
or new experimental data will tell to which extent these
corrections are correct for liquid aluminium.

II. EXPERIMENTAL DETAILS

Aluminium is a pure coherent scatterer with an incoherent
cross section of less than 0.01 barn compared to the coherent
cross section of 1.495 barn. Because aluminium alloys with
almost all metals alumina were chosen as sample can material.
The same cell material was used in an early structure factor
measurement.20 A cylindrical cell with an outer diameter of
25 mm and an inner diameter of 20 mm was filled with a
99.999% pure aluminium rod. The alumina cell was closed
with a niobium cap glued onto the alumina cell by a ceramic
high temperature glue, which is stable up to 1800 K. The
sample was installed in a furnace and heated with a stability
of ±2 K. The melting point of aluminium is 933.5 K.
Measurements have been performed between the melting point
and 1193 K in about 50 K steps. The sample weight did not
change during the experiment.

The spectra of liquid aluminium have been measured at the
IRIS-spectrometer of the ISIS Facility, UK. A spectrometer
configuration with an end energy of 7.38 meV was chosen,
which provided an energy resolution of 0.055 meV (FWHM).
This good energy resolution well separated from the liquid
aluminium dynamics facilitates the correction of the empty
can contribution. The Q-resolution was about ±0.04 Å−1.
The structure factor maximum of liquid aluminium occurs at

FIG. 1. (Color online) Two spectra of liquid aluminium are
depicted for a Q-value at the peak of the structure factor. The line
shows the fit with a Lorentzian. Included is the resolution from the
spectrometer, which is about a factor 40 smaller than the width of
the spectra.

Q0 = 2.7 Å−1. Strong scattering powder lines of alumina
which could affect the data analysis are outside this Q-range.

In Fig. 1, two spectra at Q0 = 2.7 Å−1 are displayed
including the measured resolution function. The overall line
shape, shown as a line, is reproduced by one Lorentzian. The
contribution of the spectrometer resolution is so small that a
convolution with the resolution function was not performed for
the fit. With increasing temperature, the spectra broaden and
fill the available dynamic range of the spectrometer which was
from −3.5 to +5 meV. The data analysis included monitor
normalization, empty cell subtraction, absolute calibration
with a vanadium standard, and conversion into constant
Q-spectra. Absorption coefficients for the empty cell subtrac-
tion have been calculated according to a method of Paalman
and Pings.21 The multiple scattering contribution is small at the
structure factor maximum and was not corrected. To describe
the line shape and to extract the line widths, a fit with a single
Lorentzian function was used.

III. RESULTS AND DISCUSSION

Fitting Lorentzians to constant Q spectra around the
structure factor maximum delivers the half width at half
maximum �1/2(Q). Figure 2 displays the result for T = 943 K.
Included in the figure is the structure factor of liquid aluminium
obtained by x-ray diffraction.22 It demonstrates well the
correspondence between the structure and the slowing down
of the dynamics. To extract the diffusion coefficient DE ,
Eq. (1) was fitted to the widths around the structure factor
maximum in a Q-range between 2.4 and 2.9 Å−1. As input
parameters, the temperature-dependent S(Q) values and the
hard sphere parameter σ are needed. For S(Q), the x-ray
literature data from Waseda have been used which cover three
temperatures: 943, 1023, and 1323 K.22 The values for the
missing temperatures have been interpolated. It has to be noted
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FIG. 2. (Color online) The HWHMs of liquid aluminium at 943 K
are displayed together with literature values of the structure factor
S(Q) (Ref. 22). The line is a fit through the widths according to
Eq. (1).

that the S(Q) peak values from the neutron diffraction work20

are lower than the corresponding x-ray data, whereas the
newer neutron diffraction data23 seem to differ less. The hard
sphere parameter σ has been derived from a Percus-Yevick
fit7 to S(Q) around the main structure peak. The obtained
value for σ = 2.53 Å at T = 943 K is consistent with used
values in simulations.2,24 A theoretical study on the potential
of liquid aluminium concluded that a hard sphere diameter of
σ = 2.57 Å approximates well the structure factor.25 The fit
delivers a slight reduction of the hard sphere parameter with
rising temperature which reflects the softness of the repulsive
part of the potential. The resulting temperature-dependent
parameters are given in Table I. Then Eq. (2) was applied
to the Enskog values DE to obtain the diffusion constants D.
The table includes also the Enskog diffusion values derived
from the neutron data according to Eq. (1) and the corrected
diffusion constants D.

In Fig. 3, the obtained diffusion coefficients D are depicted
(circles) and compared with results from simulations and
derived values from the viscosity. An indirect method to obtain
a diffusion constant is based on the Stokes-Einstein relation:26

D = kBT
2πηdeff

. Here kB denotes the Boltzmann constant, T is
the temperature, deff is an effective atomic diameter, and η is
the viscosity. The temperature-dependent viscosity was taken
from a recent compilation of data for liquid aluminium27

TABLE I. The table provides the values for the structure factor
peak S(Q0), the hard sphere parameter σ (T ), and the diffusion
coefficients DE and D.

T σ DE D
(K) S(Q0) (Å) (10−5 cm2/s) (10−5 cm2/s)

943 2.5 2.53 6.5 ± 0.02 6.06
993 2.4 2.518 7.4 ± 0.02 7.29
1043 2.32 2.507 8.5 ± 0.02 8.73
1093 2.26 2.5 9.2 ± 0.02 9.73
1143 2.2 2.494 10.2 ± 0.05 11.07
1193 2.15 2.487 11.2 ± 0.07 12.45

FIG. 3. (Color online) The derived diffusion coefficients D are
shown with rising temperature. The line denotes the calculated
diffusion values using the Stokes-Einstein relation. The star denotes
a value from an ab initio calculation (Ref. 2), the down triangles are
from an orbital-free (OF) ab initio calculation and the up triangles
from a classical MD (Ref. 3).

and for deff , the hard sphere parameters from Table I were
applied. The so derived diffusion constant, which is based on
macroscopic data, is included as a line and agrees well with D
from neutron scattering at next-neighbor distances.

These values are compared with results from ab initio
and classical MD simulations. A first-principles calculation
from Alfe and Gillan reports a diffusion constant of D =
6.8 × 10−5 cm2/s2 at the experimental density (star), which
agrees well with our values. Gonzales et al. used an orbital-free
ab initio method to calculate the dynamics in liquid aluminium
for two temperatures.3 For comparison, a local pseudopotential
was used in a classical MD simulation. At the melting point, the
diffusion coefficient derived by the pseudopotential lies near to
the experimental values, whereas D from using the orbital-free
ab initio MD is about 20% lower. Surprisingly, both methods
deliver values at the high temperature which seem to be too
low compared with the expectations from the experimental
data and from the Stokes-Einstein calculation. Later on the
same group performed a Kohn-Sham ab initio calculation on
liquid aluminium and reported the same diffusion coefficient
D = 6.8 × 10−5 cm2/s (Ref. 28) as in Ref. 2. Simulation
potentials derived by the embedded atom method (EAM)
deliver diffusion coefficients between D = 3.14 × 10−5 and
D = 5.5 × 10−5 cm2/s near the melting temperature, strongly
dependent on the exact implementation of the potential.29

In Fig. 4, the temperature-dependent diffusion coefficient
D(T) is presented in a logarithmic scale. Assuming an
Arrhenius-type behavior D = D0 exp(− E

kBT
) for the diffusion

process, an activation energy E can be derived. The fit
describes the data points well, so one activation energy is
sufficient to describe the diffusion process in this temperature
range. The derived activation energy is E = 274 ± 4 meV
and the prefactor is D0 = 179 ± 11 × 10−5 cm2/s. Activation
energies have been obtained from classical MD simulations
using potentials derived by the embedded atom method
(EAM).29 A range of activation energies between 259 and
310 meV has been reported due to different implementations
of the EAM potential. D(T) values calculated with one of the
potentials (EA = 260 meV), believed to describe the structure
best, have been included into Fig. 4 as a dashed line. The overall
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FIG. 4. (Color online) The diffusion coefficient are given in a
logarithmic scale. A fit with an Arrhenius-type activation process
describes the temperature dependence sufficiently well. The dashed
line represent the simulated D(T) values from a particular EAM
potential (Ref. 29).

diffusion coefficients are smaller, which might be related to
different temperatures between simulation and experiment, but
the activation energy agrees well with the simulation.

The diffusion coefficients in the Enskog model and the
correction provided by Eq. (2) are all based on the as-
sumption of hard spheres. Aluminium has valence three
and pseudopotential theory predicts distinct changes in the

potential compared to the simple alkali metals.30 However,
the agreement of the derived diffusion coefficients with values
of the calculations indicate that liquid aluminium can still be
regarded as a hard sphere-like liquid in respect of its diffusion
behavior. This might be related to the fact that in a dense liquid,
mainly the strong repulsive part of the potential is probed by
the particles, which might be very similar in many metals. For
liquid aluminium, it was shown that a hard sphere potential
can approximate the true potential quite well, reflected in the
structure factor.25

IV. CONCLUSIONS

Experimental diffusion coefficients of liquid aluminium
have been obtained from coherent quasielastic neutron scat-
tering. The decay of the density fluctuations near the structure
factor maximum is a process which is strongly related to
a self-diffusion step. This resemblance was used to derive
diffusion constants for several temperatures. The derived
diffusion constant agrees well with an ab initio result near the
melting point and values calculated with the Stokes-Einstein
relation. The temperature dependence suggests a single acti-
vation process described by an Arrhenius relation. These first
experimental diffusion constants of liquid aluminium might
provide an important input data set for simulation work and
phase field modeling. The outlined method to derive diffusion
coefficient from coherent quasielastic neutron scattering might
be applicable to many more metals with a potential which
resembles a hard sphere-like potential.
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