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The elastic properties and phonon density of states of UO2 have been studied by first-principles spin-polarized
electronic-structure calculations in both the local density approximation (LDA) and the generalized-gradient
approximation (GGA) for the experimentally determined antiferromagnetic spin configuration. Calculations have
also been done both with and without Hubbard corrections (LDA + U and GGA + U ). The elastic properties
and phonon density of states are in very good agreement with experimental measurements when the Hubbard
correction is included. The elastic constants and low-frequency (acoustic mode) phonons are in reasonably
good agreement with experiment for all the different calculations. However, when Hubbard corrections are not
included, the high-frequency phonons are pushed to lower frequencies and the optical phonons are significantly
underestimated. The melting temperature is approximated by using an empirical equation, which uses elastic
constants as input parameters, and is in good agreement with experiment. The first-principles calculations are
also used to obtain the specific heat and entropy within the harmonic approximation at finite temperatures. It is
shown that harmonic approximation is valid up to room temperature. The Debye temperature is estimated using
two different methods. The predicted values are in excellent agreement with experimental results. It is shown
that inclusion of the spin-orbit interaction does not significantly alter either the elastic or thermal properties.
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I. INTRODUCTION

Oxide fuels have received much experimental and the-
oretical attention because of their unique properties, such
as high stability, melting temperature, fusion point, and the
capacity to retain fission products.1 For example, UO2 is
a commonly used fuel in pressurized heavy-water nuclear
reactors. Understanding the physical, mechanical, and thermal
properties of the fuel materials is primarily of interest in
ensuring integrity of the core under operating conditions.
Developing reliable theoretical modeling of such properties
is a significant help, especially for the fuels without adequate
experimental data such as PuO2.

The elastic constants contain quite a bit of information
about the stability and mechanical properties of solids. They
are, for example, directly related to the bulk, shear, and Young’s
moduli. Also, the Debye temperature can be approximated
by using the average speed of sound waves, which can be
calculated from the elastic constants.2 This is the easiest
method for estimating this quantity, since it can be obtained
either by experimental measurement or theoretical calculation.
In addition, thermodynamic data such as the specific heat can
also be used to determine the Debye temperature.

Based on experimental measurements of the elastic con-
stants, Fritz3 reported a Debye temperature of 385 K for
the UO2 system, while with a similar approach Marlowe
and Kaznoff4 found 875 K. Jones et al.5 reported a Debye
temperature of 160 K obtained from low-temperature interpo-
lation of their specific heat measurement. Dolling et al.6 have
used the phonon density of states obtained from their neutron
diffraction data in order to obtain the vibrational specific heat
and to calculate the Debye temperature over a temperature
interval between 0 and 500 K, with a zero-temperature value
of 395 K. The enormous range of estimated or measured
Debye temperatures strongly suggests that independent and

reliable modeling would be extremely useful for resolving this
controversy.

First-principles band-structure calculations can provide
valuable insight into physical, elastic, and thermal properties of
materials. However, 5f -electron systems often have electronic
correlation effects that cause the failure of conventional band-
structure approaches such as the local density approximation
(LDA) and generalized gradient approximation (GGA) to
accurately predict many aspects of these materials. For
example, such approaches predict a fluorite (Fm3m) metallic
ferromagnetic ground state for UO2, while the observed
ground state is an antiferromagnetic insulator with a band gap
of about 2.0 eV.7 Several corrections to band theory that involve
adding a Hubbard term to the Hamiltonian such as the DFT +
U method8,9 and dynamical mean-field theory (DMFT),11

and also some other first-principles approaches such as the
GW quasiparticle method12 and hybrid density-functional
theory,13 do correctly predict the actual ground state for many
materials, including UO2 (note that GW approximations have
not yet been performed on UO2). However, the picture is
muddied somewhat by the fact that some simple band-structure
calculations on UO2, such as for the lattice parameters and bulk
modulus, appear less sensitive to the correlations effects and
are in good agreement with experiment.

Since the elastic parameters are directly related to the
low-frequency or acoustic phonons, it is not clear whether
first-principles calculations with or without corrections would
give a similar phonon density of states at all frequencies.
The study of phonon spectra and lattice vibrations are of
particular interest since many physical properties of crystals,
including their specific heat, entropy, thermal expansion,
thermal conductivity, phase transformations, melting, sound
velocity, optical properties, and interaction with radiations
such as x-ray and neutrons, are all related to the vibrations
of the atoms in a solid. Therefore, it is essential to have a
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reasonable phonon density of states for such an important
material.

In this work we perform a systematic study of the elastic
properties and phonon density of states of UO2 within local
spin density approximation (LSDA) and generalized gradient
spin approximation (GGSA) with and without Hubbard cor-
rections (in the LSDA + U and GGSA + U approximations)
and spin-orbit interaction. Using the phonon density of states
we have calculated the specific heat and entropy for different
approximations within the harmonic approximation to the
Helmholtz free energy. The specific heat at low temperatures
as well as calculated elastic parameters are used to obtain
the Debye temperature. This paper is organized as follows:
Section II discusses the details of the methods used to
perform the calculations. Section III contains the results and a
discussion of the crystal parameters, elastic constants, bulk and
shear moduli, phonon density of states, Debye temperature,
specific heat, and entropy within the harmonic approximation.
A summary of our main findings is presented in Sec. IV.

II. METHODOLOGY

Our electronic-structure calculations have been carried out
using the first-principles density-functional pseudopotential
package, VASP,14–16 within the local density (LDA) and
generalized gradient approximation (GGA) to the exchange-
correlation potential as parameterized by Perdew, Burke, and
Ernzerhof (Ref. 17). In the VASP code we use the projector
augmented-wave method18,19 with a cutoff kinetic energy of
500 eV. Since the experimentally observed magnetic structure
for UO2 is antiferromagnetic,20,21 all of the elastic and phonon
properties that we present were calculated in a spin-polarized
antiferromagnetic structure consistent with experiment. We
have also done calculations including the Hubbard correction
in the LDA + U or GGA + U approximation to approximately
describe the correlated uranium f electrons, using the U =
4.5 eV and J = 0.51 eV values suggested by Dudarev et al.8,9

Since the elastic properties and phonons depend on the
occupied electronic structure, changing the value of U mainly
affects the size of the band gap and hence the unoccupied
electronic structure. Probably any value of U that is large
enough to open up a band gap would give similar or identical
results. A few of our calculations also included the spin-orbit
interaction in order to examine how strong an impact this had
on the electronic structure. Spin-orbit (SO) calculations, of
course, also require much longer computer runs. Electronic
degrees of freedom were optimized with a conjugate gradient
algorithm, and both cell constants and ionic positions were
fully relaxed. The crystal was represented by 12 atom periodic
cells. A modified tetrahedron method10 (4 × 4 × 4 mesh) was
used for the k-point integration in the Brillouin zone. The
elastic-constant, phonon, and thermodynamic methods are
described below.

A. Elastic constants and melting temperature

There are three independent elastic constants for a lattice
with cubic symmetry; C11, C12, and C44. The elastic constant

C44 can be obtained from the following monoclinic volume
conserving distortion,22

ε =

⎛
⎜⎝

0 δ/2 0

δ/2 0 0

0 0 δ2/(4 − δ2),

⎞
⎟⎠ ,

where the energy increase (per unit cell volume) is given by:

E(δ) = 1
2C44δ

2 + O(δ4). (1)

Similarly, the tetragonal shear constant C ′ [C ′ = 1
2 (C11 −

C12)] can be obtained from the tetragonal volume conserving
distortion,22

ε =

⎡
⎢⎣

δ 0 0

0 −δ 0

0 0 δ2/(1 − δ2).

⎤
⎥⎦ .

The relation between the energy increase (per unit cell
volume) and the distortion δ is given by

E(δ) = 2C ′δ2 + O(δ4). (2)

The equilibrium volume (lattice constant) is obtained
by fitting the total energy-volume data with Murnaghan’s
equation of state.23 The bulk modulus for a cubic crystal
is equal to B = (C11 + 2C12)/3 and can be obtained from
the second derivative of the energy-volume curve. The C11

and C12 can be obtained from the calculated bulk modulus
and C ′.

The shear modulus G is obtained by solving the following
Hershey-Kröner averaging method relation24,25 (see also the
discussion in Refs. 26–28):

G3 + 9B + 4C ′

8
G2 − 3C44(B + 4C ′)

8
G

− 3BC44C
′

4
= 0. (3)

Another important mechanical parameter that is directly
correlated to the ductility is the Poisson’s ratio and given by

ν = 1

2

(
1 − E

3B

)
, (4)

where E is the Young’s modulus and is related to the bulk and
shear moduli:

E = 9BG

3B + G
. (5)

The calculated lattice constant can also be used in order
to estimate the melting temperature (Tm). Fine et al.29 have
studied many cubic metals and compounds and have obtained
an approximate empirical linear relationship between Tm and
the C11 elastic constant. The scatter of all the different points
falls within plus or minus 300 K of the following equation for
Tm in units of K:

Tm = 553 + 5.91K

GPa
C11. (6)
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B. Debye temperature

Debye temperature is a very important parameter in solid-
state physics and correlates with many physical and thermal
properties of materials. There are many ways to approximate
the Debye temperature for a system. In this work we used
the calculated elastic constants in order to find the average
of the sound velocities. The longitudinal and shear velocities
are given by2:

vl =
√(

B + 4
3G

)
/ρ, vs =

√
G/ρ, (7)

where ρ is the mass density of the material.
The Debye temperature θD is given by2

θD = h

kB

[
3

4π

(
NAρ

M

) ] 1
3
[

1

3

(
2

v3
s

+ 1

v3
l

) ]− 1
3

, (8)

where h, kB , NA, and M, are Planck’s constant, Boltzmann’s
constant, Avogadro’s number, and average molecular weight,
respectively.

C. Phonon and thermal calculations

The dynamical matrix calculations were performed using
the force-constant method in 48-, 96-, and 192-atom cells with
k-point sampling30 of 3 × 3 × 2, 2 × 2 × 2, and 1 × 1 × 1,
respectively. The dynamical matrices are obtained from the
Fourier transform of the force constant matrices. Diagonaliza-
tion of the dynamical matrix yields the eigenfrequencies and
eigenvectors.31,32 All of the force constants are calculated for
the lattice constant with the minimum total energy (i.e., the
lattice constants for each different method that are given in
Table I).

The vibrational modes of the crystal are usually a much
more important contribution to the free energy of the system
than the electronic contribution. Significantly far below the
melting point (when the anharmonicities get very severe),
the vibrational free energy Fvib can be calculated within the
harmonic approximation,33

Fvib(T ) = 3kBT

∫
�

ln

[
2sinh

(
h̄ω

2kBT

)]
g(ω)dω, (9)

where g(ω) is the phonon density of states. The vibrational
entropy and specific heat at constant volume are calculated by

using the first and second derivatives of the Helmholtz free
energy.34

III. RESULTS AND DISCUSSION

A. Elastic properties and Debye temperature

The spin-polarized LDA (LSDA) and GGA (GGSA) cal-
culations predict a metallic ferromagnetic fluorite structure.
When the LSDA + U or GGSA + U have been used, like
other published first-principles calculations, we found that
the minimum energy crystal structure is an insulator fluorite
structure. Depending on the choice of the U parameter one
can find a 1-k or 3-k magnetic ordering for the ground state
of this system.35 Based on the parameters used in this work
calculated ground state has 1-k ordering with slightly distorted
(a = 5.4605 Å, c/a = 0.992 with LSDA + U approximation)
lattice constants relative to the cubic structure. However,
in order to be consistent with the experimentally observed
crystal structure (cubic) and because the theoretically predicted
zero-temperature distortion is so small, we have done all of our
elastic constant and phonon calculations for the cubic structure
(c/a = 1). The LSDA + U method predicts a band gap of
1.9 eV and a magnetic moment of 1.851 Bohr magnetons on
each uranium atom. The GGSA + U method gives a band
gap of 2.1 eV and a uranium magnetic moment of 1.885 Bohr
magnetons.

The lattice constants, elastic constants, bulk moduli, shear
moduli, Young moduli, and Poisson’s ratio for different
approximations are given in Table I. The LSDA lattice constant
is slightly too small. Both GGSA and GGSA + U tend
to expand the lattice by a small amount. In general, the
elastic constants and moduli obtained with LSDA + U and
GGSA + U are in very good overall agreement with the
measured values. As expected from the contracted lattice
constant, the LSDA (without Hubbard U corrections) is in
worst agreement of the various calculations. Overall, LSDA +
U slightly overestimated elastic properties while GGSA + U

underestimated them. Inclusion of the spin-orbit interaction
did not improve the results significantly. It is interesting
to note that GGSA still produces very accurate lattice and
elastic parameters despite predicting the wrong type of ground
state (ferromagnetic metal). This is likely because the elastic

TABLE I. Calculated lattice constant (a in Å), elastic constants and bulk modulus (Cij and B in GPa), pressure derivative of the bulk modulus
(dB/dP, dimensionless), shear modulus and Young’s modulus (G and E in GPa), Poisson’s ratio (ν, dimensionless), and Debye temperature
and melting temperature (θ and TM in K) of UO2 and the comparison of these quantities with experimental data.

a (Å) C11 (GPa) C12(GPa) C44(GPa) B(GPa) dB/dP G(GPa) E(GPa) ν θ (K) Tm(K)

LSDA 5.320 432.5 144.2 85.2 240.3 1.73 105.3 275.6 0.309 425 3109 ± 300
GGSA 5.423 367.0 114.7 62.9 198.8 4.34 83.3 219.3 0.316 390 2722 ± 300
LSDA + U 5.448 380.9 140.4 63.2 220.6 4.13 82.0 218.9 0.335 399 2804 ± 300
LSDA + U + SO 5.448 419.1 120.9 62.0 220.3 4.15 88.3 233.7 0.323 395 3030 ± 300
GGSA + U 5.548 345.7 115.5 63.4 192.2 4.21 80.6 212.1 0.316 388 2596 ± 300
Expt. 5.4731a 389.3b 118.7b 59.7b 209.0b 4.69b 83.0b 221.0b 0.324b 385b, 875c 3120 ± 30d

aReference 36.
bReference 3.
cReference 4.
dReference 38.
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properties are relatively insensitive to the spin orientations and
excited-state properties (the unoccupied states move higher in
energy as the band gap is increased). As expected the GGSA
with and without Hubbard corrections produces larger lattice
constants and smaller bulk moduli with respect to the LDSA.

An LSDA + U calculation by Dudarev et al.9 has caused
some controversy over the C44 elastic constant, since they
found a rather large value (149 GPa) compared with the
experimental value of 64 GPa. Kanchana et al.37 suggested
that this error might be caused by not relaxing the atomic
positions of the anions (oxygen atoms). They performed
first-principles LDA and GGA calculations on CeO2, ThO2,
and PoO2 fluorite-type structures and found for these materials
that without such relaxation C44 was larger than the fully
relaxed calculations by a factor of two. In all of the calculations
reported in this work we have therefore fully relaxed the
internal coordinates. Our calculations using LSDA + U and
GGSA + U without any internal relaxation gave 71.7 and
67.2 GPa for C44, respectively, whereas the fully relaxed values
were 63.2 and 63.4 GPa (cf. Table I).

The C11 elastic constants obtained from the different
approximations have been substituted into Eq. (6) in order
to estimate the melting temperature for UO2. As it can be
seen from Table I, all of the approaches slightly underestimate
the melting temperature with the LSDA, LSDA + U , and
LSDA + U + SO being closest (between 2804 and 3109 K)
to the experimental measurement38 of 3120 K. Note, however,
that LSDA and LSDA + U + SO overestimate C11 relative to
the other approximations and experiment. A systematic study
involving other actinide dioxides is needed to give us a better
insight into the accuracy of Eq. (6) for predicting melting
temperatures of mixed fuels.

The calculated elastic constants have been used to obtain
the average longitudinal and shear velocities [see Eq. (7)].
From these quantities the Debye temperature can then be
calculated from Eq. (8). A similar approach by Fritz3 gave
385 K for the Debye temperature and is in excellent agreement
with our results. In agreement with Fritz3 we believe that the
reported Debye temperature of 875 K by Marlow and Kaznoff4

must be caused by an algebraic mistake. Since the elastic data
calculations are in good agreement with each other, this cannot
be the source of such a huge error.

B. Phonon density of states

The elastic constants and the phonon dispersion (and hence
phonon density of states) are directly related to each other
(the elastic constants are proportional to the slopes of the
linear low-frequency acoustic phonon modes that are linear
in wave vector). Since we are using the direct method to
calculate the phonons, it is important to test convergence in
the size of the supercell used. Using the LSDA + U , the
phonon densities for 48- and 96-atom cells are shown in
Fig. 1. The phonon density of the 48-atom cell appears very
similar to that of 96-atom cell, indicating good convergence
for the vibrational and thermodynamical properties. Adding
the spin-orbit interaction did not significantly modify the
phonon density of states (Fig. 2) and, consequently, we did
not consider this contribution for other results, since spin-orbit
calculations drastically increase the computational expense of
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FIG. 1. (Color online) (Top) A comparison of the phonon density
of states of 48- and 96-atom cells. (Middle) The phonon density of
states of ideal and distorted 96-atom cells. (Bottom) The phonon
density of states of the 96-atom cell for different values of the U

parameter.

the calculations. Although the spin-orbit interaction has not
improved the elastic properies of the system, it has significant
effect on the electronic structure and local magnetization of
the UO2

39 and similar magnetic systems.40

We have also checked the effect of the small theoretically
predicted lattice distortion on the total phonon density of states
of the system; this distortion was obtained by minimizing
the total energy of the electronic structure calculations (see
Sec. III A). Figure 1 shows the phonon density of states of
the distorted and ideal 96-atom cells. It is obvious that the
contribution of the lattice distortion is not significant. Another
important question is the effect of the U parameter on the
phonon density of states of the system. Figure 1 shows the
phonon density of states for the different values of U when
the exchange parameter J is kept constant. We found that
phonon density of states converges for higher values of U .
However in general, the different U values do not affect the
phonon density of states significantly, which is consistent with
the expectation that excited-state (unoccupied) properties of
the electronic states should not affect ground-state materials
properties very much.
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FIG. 2. (Color online) The phonon dispersion curves in two
directions of high symmetry using a 192-atom cell. The experimental
measurements6 are shown by the open symbols.
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FIG. 3. (Color online) (Top) The phonon density of states
obtained from LSDA + U , GGSA + U , and shell model.6 (Bottom)
Calculated phonon density of states without Hubbard corrections.

A shell model of the dynamical matrix can be fitted
to the experimental phonon dispersion curves in different
directions.6 From the fitted phonon dynamical matrix, the
“experimental” phonon density of states can be calculated.
In Fig. 3 we compare our phonon density of states for the
different approximations with the shell model. As can be
seen from this figure, when Hubbard corrections are not
included, the higher-frequency phonon modes are shifted to
lower frequencies and the optical modes are underestimated. In
addition, small band gaps in phonon densities of states around
24–30 meV are found for the LSDA and GGSA calculations
that are not present for the other methods (or experiment).
The calculated 
-point optical phonon frequency for LSDA,
GGSA, LSDA + U , and GGSA + U is 516 (63.9), 495 (61.4),
595 (73.8), and 579 (71.8) in units of cm−1 (meV), respectively,
and can be directly compared to the measured value6 of 557
± 20 cm−1 (69.1 ± 2.5 meV). Note that for the low-frequency
phonon spectra (in the acoustic mode regime) the LSDA
and GGSA phonon densities of states are very similar to
that of LSDA + U and GGSA + U . At low temperatures
the elastic properties and vibrational excitations are directly
related to those modes. Therefore, LSDA and GGSA predict
reasonably good elastic properties despite giving the wrong
phonon density of states at higher frequencies.

In general we find a good overall agreement between
phonon densities obtained from the (experimental) shell model
and the LSDA + U and GGSA + U calculations, including
the phonon density maxima and minima. However, there are
some differences in the height of the peaks, especially around
the 20 meV (4.8 THz) and 50 meV (12.1 THz) energy regions.
Phonon densities of states from molecular dynamics simula-
tions of UO2,41 based on interatomic potential interactions, are
similar to our calculations in that they also predict less sharp
peaks. Note that calculated phonon dispersion curves along the
high symmetry directions obtained in this work (Fig. 2) and
molecular dynamics simulations are in very good agreement
with experimental measurements for accoustic modes and
optical modes around 4.8 and 12.1 THz, respectively. Thus, in
addition to possible errors in the theoretical models, additional
sources of discrepancies from the shell model could arise from
approximations and errors in calculating the density of states
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FIG. 4. (Color online) Calculated specific heat and its comparison
with experimental measurements. The low- (open square) and high-
(open circles) temperature data are taken from Refs. 5 and 42,
respectively.

from phonons in the full Brillouin zone from a shell model that
is only fit to a few high symmetry directions as well as from
differences in temperature, since the phonon measurements
were done at room temperature, whereas our calculations
were performed at T = 0 K. Note that there is a difference
in the highest optical mode in both directions. However,
considering the experimental estimated error6 of ±1 THz for
these branches will result in a better agreement between the
theory and experiment.

C. Specific heat and entropy

The phonon density of states has been used in order to
calculate the specific heat and entropy of the system due to
the vibrational modes. Since most experiments are conducted
at constant pressure, it would be more relevant to calculate
the Gibbs free energy. However, Helmholtz free energy has
been calculated in this study instead. The results for specific
heat and entropy and their comparison with experimental
values are shown in Figs. 4 and 5, respectively. It is clear
that the harmonic approximation gives reasonable values for
specific heat up to the room temperature and after that there
is a significant deviation from the measured values. Note
that calculations without U approximation as well as GGSA
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FIG. 5. (Color online) Calculated entropy and its comparison
with experimental measurements. The values of entropy (open circle)
are taken from Ref. 43.
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give slightly higher specific heats. Since they underestimate
the optical phonons, they have more lower frequency modes.
These low-frequency modes have longer wavelengths and are
associated with larger volumes in the configurational space.
Therefore, they cause higher values for specific heat and
entropy. It is instructive that for this system one should use the
quasiharmonic approximation in order to have better results
for the thermodynamical potentials.

In order to obtain another estimation of the Debye temper-
ature we have fitted the calculated values of the specific heat
between 8 and 18 K with the formula33

Cv(T ) = 9NkB

(
T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2
dx, (10)

(where x = h̄ω
kBT

= θ
T

) and interpolated the results to find θD

at zero temperature.
This fitting results in predicted values of 405 and 391 K for

LSDA + U and GGSA + U calculations, respectively. These
temperatures are in excellent agreement with the temperature
of 395 K, which has been obtained with a similar approach.6

The temperature of 160 K reported by Jones et al.5 is also not
a reliable value since at 28.7 K there is an antiferromagnetic
transformation in UO2. Thus, there is a magnetic contribution
to the specific heat at low temperature that makes it difficult
to estimate the Debye temperature with such a measurement.
Based on our findings we believe that the Debye temperature
of UO2 should be around 400 K.

As can be seen from Table II, the specific heat and entropy
at room temperature have been underestimated by 0.8–4.4%
and 8.9–15.1% for 96-atom cell calculations. Since the entropy
has been calculated by integration of the curve obtained from
fitting the specific heats, one can ask this question: Why the
entropy is underestimated by so much? The difference between
entropies at room temperature and 35 K is given in Table II.
The agreement between the calculated and experimental values

TABLE II. Calculated 
 phonon energy (in cm−1) and the
specific heat, entropy, and change in entropy (in J/mol K) at room
temperature. The �S represents the difference between the entropy
at room temperature and 35 K.


 C S �S

(cm−1) (J/mol K) (J/mol K) (J/mol K)

48-atom cell
LSDA 484 62.82 68.86 66.61
GGSA 483 63.15 70.86 68.44
LSDA + U 599 60.60 64.65 62.65
LSDA + U + SO 596 61.71 69.75 66.72
GGSA + U 573 62.70 72.69 69.57

96-atom cell
LSDA 516 62.1 66.66 64.66
GGSA 495 63.37 70.96 68.71
LSDA + U 595 61.11 66.15 64.35
GGSA + U 579 62.12 70.36 67.90
Expt. 557 ± 20a 63.89b 77.87c 68.90c

aReference 6.
bReference 5.
cReference 43.
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FIG. 6. (Color online) Calculated vibrational entropy difference
with and without quasiharmonic approximation (solid line and dashed
line) and its comparison with experimental measurements (open
circles).43 The S0 is refered to the entropy at 35 K.

is much better than the abstract value at room temperature
and the error (0.3–6.6%) is in the similar range of error
for the specific heat. The plot of entropy differnce versus
temperature is depicted in Fig. 6. The agreement between
experiment and predcition is much better than the absolute
ones (Fig. 5). It looks like that part of the contribution to
the entropy of the system has been neglected. As it can be
seen from Fig. 5 around 30 K there is a jump in entropy
of the system. After this temperature the entropy is almost
parallel to the vibrational entropy of the system. This entropy
increment is associated with the magnetic transition in the
system. This contribution is usually evaluated by subtracting
the lattice contribution from the measured entropy. However,
in the UO2 system the situation is more complex because
of the coupled magnetic-lattice character of the transition.
Therefore, if one subtracts the vibrational part of entropy, one
obtains both magnetic and lattice contributions. In this case
we can find an upper limit for the magnetic entropy. At 100 K,
where the contribution from higher crystal field states should
be negligible, we find an upper limit of 8.17 J/mol K. For
a triple ground state one can expect an entropy contribution
of R ln 3 = 9.1 J/mol K5,6 which is in agreement with the
predicted value.

Note that our calculations are performed within harmonic
approximation that underestimates the entropy and specific
heat at finite temperatures. In order to have some estimation
about the finite temperature correction to harmonic approxi-
mation we used the following equation,

dS
qh
vib

dT
= 9Nk2

Bγ 2

BV0
, (11)

where γ , B, and V0 are the avarage Gruneissen parameter,
bulk modulus, and volume at 0 K, respectively. The input
parameters are taken from experiment.3 At room temperature
the correction to entropy due to thermal expansion is about
1.57 J/mol K. The entropy difference based on quasiharmonic
approximation is shown in Fig. 6. There is slight improvement
with respect to harmonic approximation at higher tempera-
tures.
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IV. SUMMARY

We have performed first-principles calculations to study
the elastic and thermal properties of UO2. The lattice
parameters, bulk, shear, and Young’s moduli as well as
Poisson’s ratio for the fluorite phase are calculated. The
phonon density of states of different approximations has
been calculated. It was shown that the LSDA and GGSA
without the Hubbard correction significantly underestimate
the high-energy region of the phonon density of states (optical
phonon). The effects of the Hubbard parameter (U ) and
size of the unit cell on phonon density of states have been
investigated.

The vibrational free energy is obtained from first-principles
calculations within the harmonic approximation. The specific
heat at constant volume and entropy contribution to the free
energy for all of the approximations are calculated. This
approximation is valid up to room temperature. At higher
temperatures one should calculate Cp instead of Cv .

The controversial Debye temperature (θD) was calculated
by two different methods. In the first approach the elastic
properties were used (we found Debye temperatures between
390 and 399 K except for the LDA method, which gave 425 K),
and in the second approach this quantity was obtained by fitting
to the specific heat at low temperatures (we found 405 and
391 K for LSDA + U and GGSA + U results). Calculated
values from both methods are in excellent agreement with each
other and close to the reported values of 385 and 395 K (Refs. 3
and 6).
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