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Equilibrium and metastable phase transitions in silicon nitride at high pressure: A first-principles
and experimental study
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We have combined first-principles calculations and high-pressure experiments to study pressure-induced phase
transitions in silicon nitride (Si3N4). Within the quasi-harmonic approximation, we predict that the α phase is
always metastable relative to the β phase over a wide pressure-temperature range. Our lattice vibration calculations
indicate that there are two significant and competing phonon-softening mechanisms in the β-Si3N4, while
phonon softening in the α-Si3N4 is rather moderate. When the previously observed equilibrium high-pressure
and high-temperature β → γ transition is bypassed at room temperature (RT) due to kinetic reasons, the β

phase is predicted to undergo a first-order structural transformation to a denser P 6̄ phase above 39 GPa. The
estimated enthalpy barrier height is less than 70 meV/atom, which suggests that the transition is kinetically
possible around RT. This predicted new high-pressure metastable phase should be classified as a “postphenacite”
phase. Our high-pressure x-ray diffraction experiment confirms this predicted RT phase transition around
34 GPa. No similar RT phase transition is predicted for α-Si3N4. Furthermore, we discuss the differences in
the pressure dependencies of phonon modes among the α, β, and γ phases and the consequences on their thermal
properties. We attribute the phonon modes with negative Grüneisen ratios in the α and β phases as the cause
of the predicted negative thermal expansion coefficients (TECs) at low temperatures in these two phases, and
predict no negative TECs in the γ phase.
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I. INTRODUCTION

Silicon nitride (Si3N4) is known to have excellent mechan-
ical strength, high thermal stability, and low mass density. Its
mechanical and thermal properties at ambient pressure have
been investigated extensively by both experiment and theory,1,2

due to its wide applications as cutting tools, antifriction
bearings,1 and etch masks in microelectronics.2 In contrast,
its properties at high pressure (HP) are less known. Prior
to the discovery of the cubic spinel-structured γ -Si3N4 (or
c-Si3N4, Fd3̄m) phase at HP and high temperature (HT),3–7

the structurally related hexagonal α (P 31c) and β (P 63/m)
phases were the only two bulk crystalline polymorphs of Si3N4

known to exist. Both α and β phases can be synthesized by
nitriding pure silicon.8,9

The relative phase stability between α and β phases
has been a topic of investigation for many years. Direct
measurements of energetics of Si3N4 were reported by Liang
et al.10 However, the difference in formation enthalpies
between α- and β-Si3N4 was found to be less than the intrinsic
experimental uncertainty of ±22 kJ/mol (±32.6 meV/atom).
Nevertheless, the β phase is believed to be the ground state of
Si3N4 because no β → α transition was ever observed. The
stability condition for the α phase has been experimentally
studied at temperatures of 1300◦−1800 ◦C and pressures up
to 60 GPa.11–18 Pure single-crystal α-Si3N4 shows no sign
of transformation at temperatures up to 1820◦−2200 ◦C.18,19

However, the α → β transformation is observed to occur

at ambient pressure and HTs in the presence of Y2O3 or
other oxides. From the observed liquid phases on the α-Si3N4

surfaces, Suematsu et al. proposed a solution-precipitation
mechanism for the α → β transformation.18 They claimed
that first the catalyst oxides form a liquid phase with Si3N4

on the surface at HTs. Then, through atomic transportation in
the liquid, small particles of β-Si3N4 emerge. The liquid phase
on the α-Si3N4 surfaces is believed to play an important role
to lower the activation energy of atomic transportation. The
stability of pristine α-Si3N4 at HTs is ascribed to the extremely
high value of the activation energy with clean surfaces. On the
theory side, several studies confirmed that the static binding
energy of an α phase is slightly higher than that of a β

phase.8,20–22 Wendel and Goddard21 and Kuwabara et al.22

carried out calculations using a statistical quasi-harmonic
approximation (QHA), and they both found that the α phase
remains metastable in the temperature range from 0 to 2000 K
at ambient pressure. Yet, pressure effects on the relative
thermodynamic stability between α and β phases was not
addressed in previous theoretical studies.

Pressure-induced structural phase transitions in Si3N4 have
drawn extensive attention since 1999. Experiments showed
that the cubic spinel γ -Si3N4 can be obtained from both hexag-
onal α- and β-Si3N4 upon compression and simultaneous in
situ heating.3–7 The γ phase is quenchable to the ambient con-
dition, and it remains stable at temperatures ranging up to about
1670 K at ambient pressure.23,24 When γ -Si3N4 “decomposes”
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at ambient pressure upon heating, the samples may consist
of both α- and β-Si3N4.23 Previous ab initio studies have
calculated the β → γ transition pressure (Pt ) at adiabatic static
condition,3,25 as well as at HTs.22,26 The predicted equilibrium
transition pressure Pt increases only slightly with the increase
of temperature. Several hypothetical postspinel HP phases
have also been proposed by first-principles calculations.27,28

For example, a CaTi2O4-type postspinel phase is predicted to
be thermodynamically more stable than the spinel γ phase at
pressures higher than 160 GPa. Yet, none of the predicted new
phases has been confirmed experimentally.

The in situ heating to HT is found to be critical for
synthesizing the γ -Si3N4 at HPs. At room temperature (RT),
the β → γ transition is, however, bypassed. Zerr found
that β-Si3N4 exists up to 34 GPa and it then transforms
into an unknown phase (labeled the δ phase) under further
compression.29 The new γ → δ phase transition was observed
by both Raman spectroscopy and energy-dispersive x-ray
powder diffraction (EDXD) measurements. But the structure
of the δ phase was not fully determined. Zerr proposed three
possible unit cells based on the measured EDXD pattern:
two tetragonal and one orthorhombic. The first hypothetical
tetragonal unit cell has a density of 4.05 g/cm3 at 42.6 GPa,
which is smaller than that of γ -Si3N4 (4.50 g/cm3). At the
same pressure, the second tetragonal and the orthorhombic
structures were proposed to have densities of 4.56 g/cm3

and 5.16 g/cm3, respectively, which are both larger than that
of the γ phase. The latter two structures are considered as
“postspinel” phases. Zerr further suggested that the δ-Si3N4

should be considered as a metastable intermediate stage in the
β → γ transition. Kroll proposed a metastable willemite-II-
Si3N4 phase as an intermediate between β- and γ -Si3N4 in both
energetics and density.25 However, the willemite-II (wII) phase
is unlikely to be the experimentally observed δ phase because
1) the wII phase, which is structurally closely related to the
spinel γ -Si3N4, has been shown to have a significantly lower
activation barrier for the γ → wII transformation, comparing
to that of γ → β transformation.25 Although the activation
barrier of the β → wII transformation is unknown, it is more
likely to be high enough to exclude the RT transition. And
2) the calculated Raman frequencies of wII-Si3N4 could not
match many strong peaks appearing in the measurements,29,30

e.g., two observed peaks at about 500 and 550 cm−1 at 38.2
GPa are absent for the wII phase.

Meanwhile, β-Ge3N4, which is isostructural to β-Si3N4, is
found to transform into the metastable polymorph δ-Ge3N4

with hexagonal P 3 symmetry at RT.31 An ab initio calculation
from Dong et al. showed that a β → P 6̄ → P 3 transition
sequence could occur in Ge3N4 at pressures of about 20 and
28 GPa, respectively,32 which are of second order driven by
soft phonons. If β-Ge3N4 directly transforms into the P 3
structure, the transition was predicted to be first order and Pt =
∼23 GPa. Dong et al. also pointed out that the β → P 6̄
transition originated from a soft silent Bu mode. From the
experimental side, McMillan et al. published the Raman
studies,33 and Soignard et al. carried out the x-ray work.31

These RT experiments confirmed the direct β→P 3 transition
which is associated with a 5%–7% volume reduction. The
Raman data they observed exclude the intermediate P 6̄
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FIG. 1. Polymorphs of Si3N4 and synthesis conditions.

structure. Based on density considerations, Soignard et al.
suggested that the new polymorph is a “postphenacite” phase,
in stead of “postspinel.” Comparison of the x-ray diffraction
and Raman data between Ge3N4 and Si3N4 shows similarities
which may suggest a P 3 or related structure for δ-Si3N4. It
is still unclear whether there are intrinsic differences between
the HP-RT behaviors of Si3N4 and Ge3N4, or the experimental
results may be interpreted differently.

In this paper, we present a series of systematic first-
principles studies for thermodynamic properties of Si3N4

polymorphs over a wide pressure-temperature range based
on the statistical QHA. The current knowledge of pressure-
temperature (P -T ) conditions for various experimentally con-
firmed and theoretically hypothesized polymorphs is sketched
in Fig. 1. In our study, the three main focuses are these: 1)
What is the HP and HT equilibrium solid phase diagram in
Si3N4? Is the α phase always a metastable phase relative to the
β phase in Si3N4? What is the phase boundary between the β

and γ phases? 2) Does the HP δ phase have a “postphenacite”
or “postspinel” structure? Which role does the vibrational
instability (i.e. softening phonons) play in the RT β → δ

phase transitions? 3) How do the vibrational instabilities affect
equilibrium thermal properties in the two hexagonal phases
of Si3N4? Does the cubic spinel-structured Si3N4 have any
negative thermal expansion at low temperatures?

The rest of this paper is organized as follows. In Sec. II,
we introduce the methods of our calculations and experiments.
In Sec. III, we compare the thermodynamic stability among
the three known phases (α, β, and γ ) using the first-
principles-calculated thermodynamic potentials, and predict
the equilibrium T -P phase transition conditions. Next, we
investigate the structural instabilities and possible metastable
phase transitions from both theory and experiment for β-Si3N4

at HPs and RT. The stability of the α phase under HP is also
discussed on theoretical grounds. Then, we further obtain the
measurable thermal properties of Si3N4, such as the thermal
expansion coefficient (TEC), heat capacity and bulk Grüneisen
parameter at zero pressure and HPs. Our zero-pressure results
are compared with available experimental data34–41 and previ-
ous calculations.21,22,42,43 Conclusions are drawn in Sec. IV.

II. COMPUTATIONAL AND EXPERIMENTAL METHODS

A. First-principles calculation

In this paper, the equilibrium T -P phase diagrams and
thermodynamic properties are predicted using first-principles-
calculated thermodynamic potentials. As an insulator, the
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Helmholtz free energy of a bulk crystalline Si3N4 system
consists of two parts:

F (T ,V ) = Estatic (V ) + Fvib (T ,V ) , (1)

where Estatic (V ) is the static binding energy of the system
and Fvib (T ,V ) is the vibrational free energy. Free energy
associated with the electronic thermal excitation is neglected.
Estatic (V ) for α-, β-, and γ -Si3N4 are calculated with unit-cell
models of respective crystal symmetries. We adopted the
density functional theory (DFT) with a plane-wave basis set
and ultrasoft pseudopotentials (US-PPs),44 which is imple-
mented in the VASP code.45 The exchange and correlation
functional is treated with the local density approximation
(LDA). Plane-wave basis functions with energies up to
347.9 eV were used. A total energy change of 10−9 eV
per unit cell was chosen as the convergence criterion for
the self-consistent iterations. The Brillouin zone integration
in our total energy calculations was approximated with the
Monkhorst–Pack method, with grids of 4 × 4 × 6, 4 × 4 × 12,
and 6 × 6 × 6 for α-, β-, and γ -Si3N4, respectively. The
calculated total energies at several chosen volumes were
fitted to the third-order Birch-Murnaghan equations of state
(BM-EOS)46,47 by the least-squares fitting algorithm.

The vibrational free energy in Eq. (1) is evaluated within
the statistical QHA, which can be expressed as

Fvib (T ,V ) =
∫ ∞

0

[
1

2
h̄ω + kBT ln

(
1 − exp

(−h̄ω

kBT

))]

× g (ω) dω, (2)

where ω is the harmonic phonon frequency at a given q
point and g (ω) is the vibrational density of state (VDOS).
The calculations of VDOS require the frequencies of phonon
modes at arbitrary q points in the reciprocal q space, which are
derived based on the real-space finite-displacement method.
Simply speaking, a small yet finite displacement is first added
to a single atom in the fully relaxed large supercell model.
Then, the Hellmann–Feynman (HF) forces on all the atoms are
calculated for the displaced structure. Neglecting the fourth-
and higher order terms, at the condition that the j th atom in
the �′th unit cell is displaced by � in the β direction, the α

component of the HF force on the ith atom in the �th unit cell
can be expressed as a Taylor expansion in terms of �

Fα,i(�) = −	αi,βj (�,�′) · � − 1
2Aαi,βj,βj (�,�′,�′) · �2 − · · ·

(3)

here 	αi,βj (�,�′) is the element of the force constant matrix.
Aαi,βj,βj (�,�′,�′) is the third-order anharmonic term, which
can be canceled out with two force calculations using
positive and negative displacements of equal magnitudes.
The full set of real-space force constants is generated by
the irreducible one, which is derived from group-theoretical
analysis based on crystal symmetry. Only the irreducible force
constants are calculated directly. In this study, we adopted
168-atom, 168-atom, and 112-atom supercell models for the
α, β, and γ phases, respectively. The sizes of the supercell
models are large enough to minimize the finite-size artifacts
in the calculated real-space force constant matrices.

Phonon frequencies and eigenvectors are yielded from
diagonalization of dynamical matrices Dαi,βj (q), which are

obtained from the Fourier transformation of the real-space
force constant matrices. In an ionic crystal, lattice vibrations
of optic phonon modes induce dipole-dipole interactions,
which in turn affect the phonon frequencies around the 


point (q = 0). The interaction causes the so-called LO-TO
splitting in optic phonon modes. However, this effect is not
taken into account in the supercell calculations. We corrected
the LO-TO splitting effects with a simple interplanar force
constant method proposed by Kunc and Martin.48

Within the QHA, the bulk Grüneisen parameter can be
obtained from the weighted average of mode Grüneisen ratios
[γξ (q) = −∂(ln ωξ (q))/∂ (ln V )]:

γ =
∑

k,ξ γξ (q) cv,ξ (q)∑
k,ξ cv,ξ (q)

, (4)

where cv,ξ (q) is the mode-specific isochoric heat capacity.
The mode Grüneisen parameter can be calculated using the
HF theorem.

γξ (q) = − V

2ω2
ξ (q)

〈
e (q,ξ )

∣∣∣∣∂D (q)

∂V

∣∣∣∣ e (q,ξ )

〉
; (5)

here V is the volume, D (q) is the dynamical matrix, and
e (q,ξ ) is the eigenvector of the ξ th normal mode at reciprocal
lattice point q. In practice, we evaluate the first-order derivative
of D (q) with respect to the volume approximately using the
finite-difference method. This methodology has been applied
successfully to our previous study of type II Si clathrate.49

B. High-pressure experiment

Polycrystalline β-Si3N4 was obtained from Aldrich
(>99.99% purity). Powdered samples were loaded into
cylindrical screw-driven or membrane diamond anvil cells
for Raman and synchrotron x-ray diffraction studies using
4:1 methanol/ethanol or N2 as pressure-transmitting media.
We used preindented Re gaskets with 200–300 holes drilled
by electroerosion. Pressure was measured by the ruby fluores-
cence method.50 Raman spectra were obtained at University
College London using a home-built system.51 Early x-ray
diffraction experiments were carried out at beamline 9.1
at Daresbury SRS (Synchrotron Radiation Source).52 Later
studies were completed at Diamond I15 using λ = 0.444
Å radiation. The two-dimensional diffraction data were ana-
lyzed and transformed to one-dimensional diffraction patterns
using Fit2D.53 Unit-cell parameters and atomic positions were
refined by Rietveld and LeBail techniques using Powdercell
and GSAS (General Structure Analysis System).54,55

III. RESULTS AND DISCUSSION

In this section, we present results from first-principles
calculations and HP experiments that were independently con-
ducted. According to our computational methodologies, the
static total energies and vibrational frequencies are required to
obtain the thermodynamic potentials at finite temperature. The
full phonon spectra can also reveal the structural instabilities
at desired conditions (e.g., HP). In the following, we will
first present our results on the relative stabilities of the three
know phases at varied pressures and temperatures, while the
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emphasis of our study is the pressure-induced metastable phase
transition at room temperature.

A. Crystal structures, static binding energies,
and vibrational spectra

Atomic structures of α-, β-, and γ -Si3N4 are shown in
Fig. 2. Both α- and β-Si3N4 have hexagonal symmetry,
and they contain similar local bonding: Each Si atom is
tetrahedrally bonded to four N atoms (Si-N4) and each N
atom has a threefold trigonal coordinates (N-Si3). All the
SiN4 tetrahedra are slightly distorted and connected by corner-
sharing. The difference between these two phases can be
characterized by the stacking sequence along the c axis. The
periodicity of α- and β-Si3N4 in that direction can be described

FIG. 2. (Color online) Crystal structures of (a), (b) α-Si3N4;
(c), (d) β-Si3N4; and (e), (f), (g) γ -Si3N4. In the panel of α- and
β-Si3N4, the first graph illustrates the unit-cell model and the second
graph is the 2 × 2 × 1 supercell model viewed in the direction of the
c axis. In the panel of γ -Si3N4, the first graph shows the conventional
cubic cell of the spinel structure and the following two graphs show
the fourfold and sixfold coordinated Si units (SiN4 and SiN6) with
tetrahedra and octahedra, respectively.

as ABCDABCD . . . and ABAB . . . stacking, respectively.
From another point of view, α-Si3N4 can be interpreted as
a complex network formed with nonplanar six-membered (6-
atom) rings, whereas β-Si3N4 is composed of nonplanar 6-, 8-
and 12-membered rings. There are two types of trigonal N-Si3
units: those with N atoms at the 2a and 2b sites of α-Si3N4 or
the 2c site of β-Si3N4 located at the basal plane perpendicular
to the c axis, while the rest of the N-Si3 units are in the
vertical or near-vertical orientations. Most basal N-Si3 units are
perfectly planar with three bonds of equal length and three 120◦
Si-N-Si bond angles, except that the N-Si3 units with N at the
2b sites of α-Si3N4 form triangular pyramids (i.e., three bonds
still have equal length, but the bond angles are less than 120◦).
The vertical N-Si3 units are distorted in bond lengths and bond
angles which yield distorted pyramidal units. The γ phase has a
distinctively different structure, in which Si atoms occupy both
tetrahedral (1/3 of Si atoms, 8a sites) and octahedral (2/3 of
Si atoms, 16d sites) sites, and all the N atoms are tetrahedrally
bonded. This is consistent with the fact that γ -Si3N4 is the
HP phase which has a larger coordination number. The spinel
structure is named after the mineral MgAl2O4 which has a fcc
lattice with space group Fd3̄m. For γ -Si3N4, there are two
formula units in the primitive unit cell and eight units in the
conventional cubic cell.

The calculated E-V data sets of α-, β-, and γ -Si3N4 are
shown in Fig. 3, and the corresponding fitting parameters
from the third-order BM-EOS (E0, V0, B and B ′) are listed
in Table I, together with reported experimental3,6,8,57–59,61–64

and other theoretical results.20–22,56,60 As the measurements
were usually made at RT, our predicted parameters at 300 K
within the QHA are also presented. Our calculation has a good
overall agreement with other theoretical and experimental
results. Compared with the experiments, our calculated static
equilibrium volumes are consistently underestimated by about
1%–3%, and the calculated bulk moduli are within the
range of reported experimental data, which contain about
5%–15% differences among different reports. The predicted
thermal equations of states at 300 K are slightly closer to the
measurement. Our results are within the typical accuracy of
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FIG. 3. (Color online) Energy-volume curves for α-, β- and
γ -Si3N4 in the scale of per atom. The β phase has an equilibrium
energy of 3 meV lower than that of the α phase. E0 of the γ phase is
93 meV higher than the β phase.
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TABLE I. Summary of calculated and measured crystal parameters of α-, β-, and γ -Si3N4. V0 is the equilibrium volume per atom, B is
the bulk modulus and B ′ is the first-order pressure derivative.

Si3N4 Source V0 (Å3/atom) B(GPa) B ′

α-Si3N4 LDA (this paper, static) 10.260 232 2.583
LDA (this paper, 300 K) 10.328 226 2.576

LDA22 10.325 240 4.0 (fixed)
LDA56 10.237 257

OLCAO20 10.542 257
Force fields (300 K)21 10.806 246

Experiment57 10.455
Experiment58 10.445
Experiment59 10.465 223.4 (±15) 4.5 (±1.3)

β-Si3N4 LDA (this paper, static) 10.199 241 3.439
LDA (this paper, 300 K) 10.267 237 3.440

LDA22 10.268 252 4.0 (fixed)
GGA60 237.2–241.5
LDA56 10.183 225

Force fields (300 K)21 10.661 266
Experiment61 10.396
Experiment62 10.411 270 (±5) 4.0 (±1.8)
Experiment63 10.452 232.7
Experiment8 10.356

γ -Si3N4 LDA (this paper, static) 8.140 308 3.898
LDA (this paper, 300 K) 8.220 297 3.898

LDA22 8.137 320 4.0 (fixed)
OLCAO20 8.595 280

Experiment64 8.270 290 (±5) 4.9 (±0.6)
Experiment6 8.286 308 4.0
Experiment23 8.261
Experiment63 300 (±10) 3.0 (±0.1)
Experiment3 8.474 (±0.26)

OLCAO, orthogonalized linear combination of atomic orbitals; GGA, generalized gradient approximation.

the LDA calculation and they are consistent with the fact that
the LDA tends to underestimate the equilibrium volume and
overestimate the bulk modulus by a few percent.

Our static total energy calculation shows that the β phase is
only slightly energetically more stable (i.e., about 3 meV/atom
lower) than the α phase at their respective static equilibrium
volumes. Such a small energy difference is consistent with
the fact that both α and β phases are found to coexist during
different synthesis routes. Also, in agreement with experiment,
we find that the calculated β phase has larger density and lower
compressibility compared with the α phase. This suggests that
the α phase is even less favored thermodynamically at higher
pressure relative to the β phase. The relative stability between
these two phases will be further examined in later text with
the consideration of temperature and pressure effects. For the
γ phase, our calculation yields a static equilibrium energy
which is 93 meV/atom higher than that of the β phase, and
a static equilibrium volume of 2 Å3/atom smaller than that
of the β phase. These results agree with the fact that the
spinel-structured γ phase is a HP phase in Si3N4.

Figure 4 shows the phonon dispersion curves and VDOS
plots of α-, β-, and γ -Si3N4 at their respective static equilib-
rium volumes. All three phases studied here are dynamically

stable, i.e., no soft-phonon modes are present. The α and β

phases have very similar VDOSs which reflect the similarity
in their crystal structures and Si-N bonding. On the other
hand, the spinel-structured γ -Si3N4 shows some distinctively
different characters in its VDOS, comparing with those of
α and β phases. HP phases usually have higher vibration
frequencies. Yet we find that the top phonon branches in the γ

phase have frequencies which are apparently lower than those
of α or β phases.

Mode Grüneisen ratios along some high symmetry direc-
tions are shown in Fig. 5. Although there are many similarities
in the mode Grüneisen ratios between the α and β phases, for
example, their low-frequency phonon modes are found to have
negative mode Grüneisen parameters while all the HP modes
have positive ratios with the upper limit of about 1.5, there are
some noticeable differences for phonons around the M-point
transverse acoustic (TA) mode and the 
 point optic Bu mode.
The phonons close to these two modes in the β phase are found
to have large negative Grüneisen ratios, which suggest possible
structural instability of the β phase upon compression. On the
other hand, the γ -Si3N4 shows no negative mode Grüneisen
ratios at all, and the values of its mode Grüneisen ratios range
from 0.24 to 1.66 at zero pressure.
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FIG. 4. Phonon dispersion curves and VDOS of (a) α-Si3N4;
(b) β-Si3N4; and (c) γ -Si3N4 at zero pressure.

B. Equilibrium thermodynamic stability and phase transitions

To illustrate the relative thermodynamic stability between
the α and β phases, we plot the LDA-calculated Gibbs
free-energy differences between the two phases at 0, 5, and
10 GPa in Fig. 6. A positive value of �Gα−β means
that α-Si3N4 is thermodynamically metastable. At isobaric
conditions, the calculated �Gα−β are almost constant over
the temperature range from 0 to 2000 K. At zero pres-
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FIG. 5. (Color online) Calculated dispersion curves (scattered
circles) of mode Grüneisen parameter of (a) α-Si3N4, (b) β-Si3N4,
and (c) γ -Si3N4 at zero pressure. (Red) horizontal line is present to
separate the positive and negative values.

sure, our calculated �Gα−β is 2.8 meV/atom at 0 K
which agrees with Kuwabara’s (DFT with PAW+LDA,
where PAW is the projector augmented wave) �Fα−β

of 2.6 meV/atom at 0 K. At 2000 K, our �Gα−β is
2.6 meV/atom, while Kuwabara’s �Fα−β decreases to
1.3 meV/atom. The results of Wendel and Gaddord were based
on empirical force field models and they gave an opposite
trend of temperature dependence, 0.1 meV/atom at 300 K and
0.7 meV/atom at 2000 K. At elevated pressures, we predict
an increasing �Gα−β . At 5 and 10 GPa, �Gα−β is about 4.6
and 5.9 meV/atom, respectively. We do not predict �Gα−β
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FIG. 6. (Color online) Gibbs free energy of α-Si3N4 relative to
that of the β phase as a function of temperature. Solid, dashed, and
dotted lines represent the pressure of 0, 5, and 10 GPa, respectively.

at pressures higher than 10 GPa because the β phase starts
to show signs of structural instability (see discussion in later
text). We conclude that the α phase is metastable compared
with the β phase in the temperature range from 0 to 2000 K
and at least up to 10 GPa.

Upon compression, both the ground-state β phase and
metastable α phase transform into the γ phase. Our predicted
equilibrium T -P phase boundaries are shown in Fig. 7. The
Clapeyron slopes for the β → γ (solid line) and α → γ

(dashed line) transitions are both positive, which suggests that
the HP γ phase has a lower vibrational entropy. Consequently,
the transition pressure (Pt ) increases with temperature. The
predicted Pt of the β → γ transition is 7.5 GPa at 300 K, and it
increases to 9.0 GPa at 2000 K. The Pt of the α → γ transition
is about 0.5 GPa lower than that of β → γ transition. Togo
and Kroll26 and Kuwabara et al.22 also predicted a positive
Clapeyron slope for the β → γ transition. The small calculated
Clapeyron slopes (dP/dT ) means that the transitions are
primarily volume driven and the equilibrium Pt is not sensitive
to the temperature. For example, Pt changes by less than
2 GPa when the temperature rises from 300 to 2000 K. On the
experimental side, the transition pressures are scattered from
10 to 36 GPa (Table II). This could be ascribed to the different
compositions or impurities of the starting samples being used.

FIG. 7. (Color online) T -P phase diagram of Si3N4. Solid curve
denotes the phase boundary between β- and γ -Si3N4. Dashed curve
denotes the phase boundary between α- and γ -Si3N4.

Nonetheless, in situ heating is required for the synthesis of
γ -Si3N4 in all experiments. This is a clear indication that large
kinetic barriers exist. For better comparison between theory
and experiment, we list here only the theoretical results at
T = 2000 K.

C. Phonon-softening-induced structural instability in β-Si3N4

at high pressures

Although β-Si3N4 transforms into the γ phase at HPs
and HTs, the β phase is stable at the RT up to at least
30 GPa. To investigate the structural stability of the β phase, we
calculated the pressure dependence of lattice vibration. First,
we examined the phonon modes at the zone center 
 point. Our
technique was adopted previously to study the structural and
vibrational properties of Ga2O3 and Ga3O3N.66,67 For β-Si3N4

with space group P 63/m, there are in total 42 vibrational
modes. Using group theory, the irreducible representation for

-point phonon modes is


acoustic = Au + E1u, (6)


optic = 4Ag + 2Au + 3Bg + 4Bu + 2E1g

+ 5E2g + 4E1u + 2E2u. (7)

TABLE II. Summary of phase-transition pressure and temperature for γ -Si3N4.

Method Starting material Pt (GPa) Temperature (K)

Experiment
diamond cell3 Si, amorphous Si3N4 and polycrystalline α + β 15 2100
Shock compression5 β+2 wt% (Nd2O3+Y2O3)β 36 1990
Diamond anvil cell65 α + 1%β 17.5 –
Multianvil4 α + β 17 2100
Shock wave7 β 10 2073
Theory
PAW + GGA26 β 13 2000
PAW + LDA22 β 6.3 2000
US-PP + LDA (this paper) α 8.5 2000
US-PP + LDA (this paper) β 9.0 2000
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FIG. 8. (Color online) (a) Raman, (b) IR, and (c) silent mode frequencies as a function of pressure up to 60 GPa for β-Si3N4. Experimental
pressure dependencies of Raman modes up to 30 GPa are also presented in discrete symbols as a comparison.68 Solid squares denote
measurements upon compression and open squares denote measurements upon decompression. Several low-frequency modes are found to
decrease with increasing pressure. One Bu branch of the silent modes is found dropping to zero at about 60 GPa.

For the optic modes, 11 modes (4Ag + 2E1g + 5E2g) are
Raman active, 6 modes (2A2u + 4E1u) are infrared (IR)
active, and the rest (3Bg + 4Bu + 2E2u) are silent modes,
among which Raman and IR spectra can be detected in
experiments. Figure 8 shows our calculated Raman, IR,
and silent modes of the β phase as a function of pressure
up to 60 GPa. Experimental pressure dependencies up to
30 GPa are presented for comparison. For the measured
Raman modes from Zerr et al.,68 one Ag mode is missing,
possibly due to the weak intensity. The rest of the Raman
modes match well with our calculation. Our prediction tends
to underestimate the frequencies by about 2%–4%, which is
typical for calculations of this type. The calculation shows a
clear pattern that all low-frequency modes (400 cm−1 and
below) have zero- or negative-pressure dependencies. The
lowest Bu silent mode decreases much faster than the others
and eventually vanishes at about 60 GPa. The predicted
negative-pressure dependencies in these modes are consistent
with the calculated negative mode Grüneisen ratios [Fig. 5(b)].
The calculated 
-point phonon softening pattern in β-Si3N4

is in agreement with our previous results for β-Ge3N4.32

Next, we extended our study to all the phonon modes in
the reciprocal space. Our calculated phonon dispersion curve
of β-Si3N4 at 48 GPa (Fig. 9) shows that two low-frequency
branches decrease dramatically upon compression, i.e., one
TA branch along the 
-M direction and the lowest optic Bu

branch. The TA mode goes soft at the Brillouin zone boundary
M point, i.e. q = 2π

a
( 1√

3
,0,0), and the optic mode goes soft at

the zone center 
 point, i.e. q = (0,0,0). A vanishing phonon
frequency results from the vanishing restoring force against the
atomic displacement for the corresponding vibrational mode.
Consequently, the crystal structure may undergo a displacive
transition to reach a new minimal-energy configuration with
lower symmetry. Our calculated ω2 of the two most significant
soft modes as a function of pressure are shown in Fig. 10.

The two ω2 are found to exhibit linear pressure dependencies.
Compared with the the M-point TA mode, the softening Bu

mode has a higher frequency at ambient pressure, yet it
decreases much faster with the increase of pressure. Phonon
frequencies of both softening modes reach zero at around
60 GPa. Although the frequency of the M-point TA phonon
vanishes before the Bu branch, the predicted difference is,
however, small. We thus consider both softening phonon
modes as two competing mechanisms that may be responsible
for the structural instability of β-Si3N4 at HPs. It is worth
pointing out that α-Si3N4 does not show any signs of structural
instability in our calculation, which is consistent with the
observed differences in the calculated mode Grüneisen ratios
[Fig. 5(a)].

The atomic displacements according to the soft M-point
TA mode are in the x–y plane and the symmetry of the unit
cell is reduced from hexagonal P 63/m to monoclinic P 21/m

after the distortion. The magnitude of one lattice vector of the
P 21/m primitive unit cell (28 atoms) is about twice that of
the a vector of the original hexagonal unit cell. Constrained
with the P 21/m symmetry, we calculated the minimized total
energies of the distorted structure for several volumes by
allowing further relaxation of both unit cell shapes and internal
coordinates. The calculated E-V curve is shown in Fig. 11.
According to our LDA total energy-minimization calculations,
the P 21/m structure relaxes back to the original β structure at
volumes larger than the 8.75 Å3/atom. Yet at volumes smaller
than the 8.75 Å3/atom, the P 21/m phase yields a lower energy.
The relaxed structure with a volume of 8.25 Å3/atom is shown
in Fig. 12(b). After further energy minimization, for volume
8.25 Å3/atom, the lattice the parameters are a = 13.912 Å,
b = 6.674 Å, and c = 2.777 Å. The length of a is slightly
larger than twice that of b. The angle between a and b becomes
116.4◦ from the original 120◦ in β phase. The c/b ratio is
getting larger compared with that in β-Si3N4. This is consistent
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FIG. 9. Phonon dispersion of β-Si3N4 at a pressure of 48 GPa.
Two competing soft-phonon modes are found: one TA branch at the
M point and one optic branch at the 
 point. No LO-TO splitting
correction is added for the interests of low-frequency modes only.

with the fact that it becomes more difficult to compress along
the c axis than in the x–y plane after the structural distortion.
The displacements of internal coordinates can be described in
terms of N atoms. Around each 2c N atom in β-Si3N4 there are
three nearest 6h N atoms which are in the same basal plane.
During the distortion, the 6h N atoms move in a way that it
causes the previous planar vertical N-Si3 units to pucker. The
puckering pattern can be seen in Fig. 12(b). In the P 21/m

structure, two of the nearest N atoms become closer to the
“centered” 2c N atom (no longer the 2c site in the P 21/m

symmetry, but it is convenient to label it consistently) but the
third one moves away from it. Consequently the “centered”
2c N atom is “pushed” away by the two closer N atoms,
which breaks the hexagonal symmetry and causes the three
Si-N-Si bond angles to be distorted from the perfect 120◦. More
important, the interatomic distance between the Si atoms at
the 2e site and one of their second nearest neighbors decreases
rapidly upon compression. At the volume of 8.25 Å3/atom,
this distance is only 1.988 Å which is slightly larger than

FIG. 10. (Color online) The square of vibrational frequency
(ω2) as a function of pressure for two competing soft-phonon
branches: one TA branch at the M point and one Bu branch at the

 point. Solid squares and circles represent data from calculation.
Solid and dashed lines are from a linear fitting.

FIG. 11. (Color online) The total energy of P 63/m (β), P 6̄,
P 21/m, P 3, and P 6̄′ structures as a function of volume.

that of previous Si-N bonds (less than 1.7 Å). This tendency
of forming an extra bond may help to stabilize the distorted
structure under HPs. The new P 21/m phase is dynamically
stable at pressures at least up to 75 GPa.

A similar distortion calculation was performed for the
soft Bu mode at the 
 point. The atomic displacements
based on the corresponding vibrational pattern yields a new
structure which has a hexagonal P 6̄ symmetry. The size of
the primitive unit cell is the same as β-Si3N4 (i.e., 14 atoms)
and the displacements are still within the x–y plane. The E-V
curve and data points of P 6̄ phase are shown in Fig. 11 as the
(red) dashed line. Its structure returns to the β phase after fully
relaxation for volumes larger than 8.75 Å3/atom. Its energy is
slightly lower than the β phase at a smaller volume; however, it
is higher than that of the P 21/m phase. Figure 12(c) shows the
relaxed P 6̄ structure at the volume of 8.25 Å3/atom. The c/a

ratio increases slightly compared with that of the β-Si3N4, and
this may again be ascribed to less compressibility along the
c axis. The structure of P 6̄ phase can be interpreted in terms
of the puckering pattern of 6h N atoms. Unlike the P 21/m

structure, as shown in Fig. 12(c), three “in-plane” 6h N atoms
move clockwise and become closer to one of the “centered”
2c N atoms that has a z coordinate of 3/4 in term of c in
our case. At the same time, the other three 6h N atoms move
counterclockwise and become away from the other “centered”
2c N atom (z = 1/4).

We further calculated the phonon spectrum of the P 6̄ struc-
ture which contains 14 atoms per unit cell and discovered an
optic soft-phonon mode at its 
 point. From the corresponding
eigenvector, we obtained a new structure with hexagonal P 3
symmetry. The size of its primitive unit cell is the same as that
of the β phase, i.e., two formula Si3N4 units per cell. The E-V
relation of P 3 phase is shown in Fig. 12 as the (green) dashed
dotted line. Its structure returns to the β phase beyond a volume
of 8.75 Å3/atom and remains stable at a smaller volume. For
volumes smaller than the 8.37 Å3/atom, the P 3 phase has the
lowest energy among the four structures considered here. A
structure model of the P 3 phase at the volume of 8.25 Å3/atom
is shown in Fig. 12(d). The c/a ratio of the P 3 structure is
very close to that of β phase.
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FIG. 12. (Color online) Ball-stick models of (a) P 63/m, (b) P 6̄,
(c) P 21/m, and (d) P 3 structures viewed along the z axis. Balls in a
dark color (blue) represent N atoms, and Si atoms are in a light color
(yellow).

The P 3 structure can be understood as a further distortion
of the P 6̄ phase. Relative to the P 6̄ structure, the major
difference in P 3 phase is the z coordinate of the “centered”
2c N atom which is surrounded by three closer N atoms. This
“centered” 2c N atom, denoted hereafter as the puckering 2c
N, is “pushed” up or down by three approaching N atoms.
As the volume becomes smaller, the puckering 2c N is
“pushed” by the three approaching 6h N atoms eventually
to the middle of two “closer-N-atoms” layers (z = 1/4) and
becomes six coordinated. The other “centered” 2c N atom
remains its z coordinate because there is no “push” effect. For
a volume between the 8.00 Å3/atom and 8.75 Å3/atom, which
is before the puckering 2c N atom reaches its final position

(z = 1/4), the z coordinates of other atoms deviate slightly
from their previous values. However, these z coordinates
recover their previous values perfectly (z = 1/4 and 3/4)
when the puckering 2c N atom is stabilized at z = 1/4. It
is interesting to note that when the 2c N atoms are on the same
level (z = 1/4), the P 3 structure falls into the category of P 6̄
symmetry. However, this new P 6̄ phase is different from the
former P 6̄ structure. To distinguish them, the latter is labeled as
P 6̄′. Using the same criterion to verify the formation of bonds,
there are six extra bonds being formed within a primitive unit
cell, i.e., three extra bonds per formula unit. And for the P 21/m

phase, it is only 1/2 extra bonds per formula unit. To show the
differences among the β, P 6̄, P 3, and P 6̄′ structures, Wyckoff
positions of these phases are listed in Table III.

D. Room-temperature metastable phase

From the E-V curves shown in Fig. 11, the transition from
β-Si3N4 to one of the three candidates is determined by the
common tangent line between them. The smallest magnitude
of the slope (negative) corresponds to the lowest transition
pressure, and this is made by the P 3 phase. However, at the
transition point, the structure belongs to the P 6̄′ phase. Both
P 21/m and P 6̄ phases are likely bypassed. The transition
pressure is estimated to be 38.5 GPa, which is comparable
to the experimentally observed 35 GPa for the unidentified δ

phase.29 The transition pressure is much smaller than 60 GPa,
at which one phonon frequency becomes zero in the β-Si3N4.
It indicates that the predicted β → P 6̄′ transition is of first
order, and the predicted volume reduction is about 10.8%.

To estimate the kinetic barrier height in the β → P 6̄′
transition, we calculated the enthalpy landscape in terms of the
atomic displacements in the x–y plane and the z coordinate
of the puckering 2c N atom. At the transition pressure, we
took the β phase as the starting structure and the P 6̄′ phase
as the ending structure. Two transition parameters, i.e., fx−y

and fz, were used to linearly interpret the phase transition.
Initial internal coordinates of the intermediate structure can be
expressed as

x = xi + (xf − xi)fx−y,

y = yi + (yf − yi)fx−y, (8)

z = zi + (zf − zi)fz,

TABLE III. Atomic coordinates (Wyckoff positions) of the β, P 6̄, P 3, and P 6̄′ structures at specified volumes. For comparison, the Wyckoff
sites are grouped according to the β phase.

β P 6̄ P 3 P 6̄′

Space group P 63/m P 6̄ P 3 P 6̄
Z 2 2 2 2
Volume (Å3/atom) 8 8 8.25 8
N1 2c (1/3,2/3,1/4) 1c (1/3,2/3,0) 1b (1/3,2/3,0.300) 1c (1/3,2/3,0)

1f (2/3,1/3,1/2) 1c (2/3,1/3,0.333) 1e (2/3,1/3,0)
N2 6h (0.324,0.013,1/4) 3j/ (0.269,0.013,0) 3d (0.270,0.003,0.277) 3j/ (0.261,0.005,0)

3k (0.630,0.994,1/2) 3d (0.625,0.021,0.795) 3k (0.623,0.021,1/2)
Si 6h (0.155,0.748,1/4) 3j/ (0.148,0.741,0) 3d (0.136,0.733,0.293) 3j/ (0.136,0.734,0)

3k (0.853,0.257,1/2) 3d (0.860,0.294,0.773) 3k (0.860,0.293,1/2)
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FIG. 13. (Color online) Enthalpy landscape and its contour plot
as a function of fx−y and fz at the transition pressure of 38.5 GPa.

where the subscripts i and f denote the starting (initial) and
ending (final) structures, respectively. Both fx−y and fz range
from 0 to 1, and they can be set independently. 10×10 uniform
grids were adopted for the intermediate structures. In the total
energy calculation of each structure, by fixing the internal
coordinates, we allowed the external parameters to relax.
Because this transition is observed to occur at RT, it is a good
approximation to use enthalpy instead of Gibbs free energy to
investigate the phase transition. The enthalpy landscape and
its contour plot as functions of fx−y and fz at 38.5 GPa are
shown in Fig. 13. Two minimum points correspond to the β

(0,0) and P 6̄′ (1,1) structures. The transition path is given
by the gradient curve connecting the two minimum points. It
passes the saddle point which provides the transition barrier
height. The pathway we predict is close to the linear path that
fx−y and fz vary at similar paces. The calculated saddle point
is located at (0.6,0.5) and the corresponding enthalpy barrier is
67.23 meV/atom. To overcome this barrier, certain activation
temperature is necessary to stimulate the atomic vibrations
to a level that is comparable to �H . Using the Dulong and
Petit law E = 3kBT , the “threshold” activation temperature
is estimated to be 260 K, which is lower than the RT. Since
all the internal coordinates were fixed in our calculation, the
activation temperature should be considered as an upper limit
to its actual value. The β → P 6̄′ transformation should be
interpreted as a low-barrier transition induced by softening
phonon modes. The method adopted here for calculating the
kinetic enthalpy barrier has been successfully applied to the
Corundum → Rh2O3(II) transition in Al2O3 previously.69

It is interesting to point out that the new P 6̄′ phase
is dynamically stable above the transition pressure (i.e.,
38.5 GPa). However, one of its TA branches shows a tendency
to vanish at the K point below the transition pressure. The
atomic displacements according to the K-point softening mode
suggest a structure which belongs to P 3 symmetry, but the
unit cell is three times larger than the previous P 3 phase, i.e.,
six formula units per primitive unit cell. To distinguish this
from the previous P 3-Si3N4, we will denote this second P 3
structure as the P 3′ phase later on. Taking the P 3′ structure
as the initial structure, we performed total energy calculations
with both internal and external parameters being fully relaxed.

P 3′ phase is found to exist only between the volume of the
8 Å3/atom and the 8.75 Å3/atom. Its structure relaxes back to
the β structure for volumes larger than the 8.75 Å3/atom and
becomes P 6̄′ phase for volumes smaller than the 8 Å3/atom.
Its energy is slightly lower than that of the P 3 phase by merely
a few meV/atom. The structure of the P 3′ phase is very similar
to that of the P 3 phase except the z coordinates of each
P 3 Wyckoff site split into three different values with small
deviations. In another words, the P 3 phase is a special case
of the P 3′ structure. As indicated in the calculated enthalpy
landscape shown in Fig. 13, the transition path is close to the
linear path along which fx−y and fz vary cooperatively. We
take the P 3′ phase as, an intermediate state connecting β and
P 6̄′ structures; the enthalpy barriers at 30 and 38.5 GPa are
shown in Fig. 14, together with the barriers from direct β →
P 6̄′ transition as a comparison. The barrier heights along these
two paths are very comparable. The �H in β → P 3′ → P 6̄′
path is lower than the β → P 6̄′ path by only 5.6 meV/atom at
38.5 GPa and 9.8 meV/atom at 30 GPa.

Our predicted P 6̄′ phase has a hexagonal symmetry which
is different from what Zerr proposed based on the EDXD
pattern.29 However, the interplanar spacings for the six peaks
he observed could also be assigned to a crystal system with
hexagonal symmetry. Supportive evidence is that Soignard
et al.31 observed a similar β → P 3 metastable transition
in Ge3N4. They claimed that Zerr’s δ-Si3N4 is likely to be
analogous to their observed δ-Ge3N4 based on comparison of
the x-ray diffraction and Raman data. Next, we will examine
the structure of δ-Si3N4 from a HP experiment.

E. High-pressure experiment

Our RT compression studies of β-Si3N4 using synchrotron
angle-dispersive x-ray diffraction (ADXRD) techniques and
Raman scattering confirmed the results of Zerr that a phase
transition into a δ-Si3N4 polymorph occurs at P = 35 −
36 GPa that is reversible upon decompression.29 However,
the x-ray diffraction peaks of the HP δ-Si3N4 phase do not

FIG. 14. (Color online) Enthalpy barrier (relative to the β phase)
as a function of linearly interpreted transition parameter at 30 GPa
(red, gray) and the transition pressure of 38.5 GPa (black). The solid
curves denote the β → P 3′ → P 6̄′ path, and the dashed curves denote
direct β → P 6̄′ path. The horizontal axis is defined as qualitative
structural similarity. The left end represents the β structure, and the
right end represents the P 6̄′ structure.
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FIG. 15. x-ray diffraction patterns of the compression of the β-
Si3N4 phase from 26 GPa and the formation of the δ-Si3N4 phase
emerging at 37 GPa and continuing to 41 GPa. The arrows highlight
the positions of the peaks associated with the formation of the δ

phase. The wavelength used in the monochromatic synchrotron x-ray
diffraction was λ = 0.444 Å

correspond to those of predicted “postspinel” polymorphs,
including the wII structure. Instead the x-ray patterns closely
resemble those of the starting β-Si3N4 material, and they
can be readily indexed to a P 3 or P 6̄ structure as predicted
theoretically (Figs. 12, 15, 16). The behavior is similar to that
reported for β-Ge3N4 in which a sequence of two soft mode
transitions or a first-order transformation occurs between the
β and δ phases during compression, resulting in a variation
of the starting phenacite structure.32 That interpretation is
consistent with the results of the present theoretical study.
The x-ray diffraction results provide evidence that the β and
δ polymorphs coexist over a pressure range providing support
for a first-order nature of the phase transition (Fig. 15). The
volume reduction at the transition pressure is about 9.25%,
which is close to the theoretically predicted value (10.8%).

This coexistence between the two phases and the diffraction
features of the δ structure only emerging as shoulders on β

structure peaks demanded a comparative Rietveld refinement
approach. As no defining feature owing to the δ structure is
isolated and easy to refine as a stand-alone peak, the refinement
procedure was carefully undertaken. Figure 16 shows two
different refinements of the same diffraction data but using
in (a) just the fixed atomic coordinates as generated by the
DFT calculations for describing the δ-Si3N4. This produced
wRp and Rp values of 0.1420 and 0.1025, respectively. In
(b) the general atomic coordinates were hand picked but were
then permitted to refine. This gave rise to wRp and Rp values
of 0.1263 and 0.0895 respectively. The approach in (a) allowed
us to validate the consistency of the theoretical model to
the experimental results observed. Importantly, although the
model with the refined atomic coordinates of the δ phase in
(b) produced a better fit, the fact that the refinement package
was trying to fit only undefined diffraction features does
not produce a convincing enough case to publish the refined
positions but in fact strengthens the importance of the reliance
on theory for when looking at powder diffraction data from
high-energy sources at elevated pressures.

4 5 6 7 8 9 10 11 12 13 14 15 16
Two theta (degrees)
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FIG. 16. (Color online) Rietveld refinements of diffraction data
obtained of both the δ and β phases of Si3N4 in a lithium fluoride
pressure-transmitting medium at 41 GPa. Data points and Rietveld
fit are overlaid in black and red (gray), respectively, the difference
plot is shown. The red (gray) tick marks indicate peaks for δ-Si3N4,
the top black tick marks indicate peaks for β-Si3N4, and the middle
black tick marks are of the Rhenium gasket, and the bottom black
ones are of the LiF pressure medium. (a) Data obtained at 41 GPa
of both the δ and β phases of Si3N4. The internal atomic coordinates
used for the refinement are fixed according to the values generated
from the DFT calculations. (b) The same data set as (a) at 41 GPa
but with the atomic coordinates refined. The wavelength used in the
monochromatic synchrotron x-ray diffraction was λ = 0.444 Å

Raman spectra obtained during compression of the β-Si3N4

phase in a 4:1 methanol-ethanol medium to 43 GPa followed
by subsequent decompression are shown in Fig. 17(a). Up
to 30 GPa, the observed pressure shifts closely match those
predicted in the theoretical study (Fig. 8). Above 34 GPa a new
set of peaks is observed to appear in the spectrum, indicating
the onset of the transition into the δ-Si3N4 phase (Figs. 17,
18). The low-frequency peaks match closely those described
by Zerr in his first study documenting the occurrence of
δ-Si3N4.29 On decompression, the characteristic spectrum of
the β-Si3N4 phase is recovered below 30–33 GPa, indicating
some hysteresis and likely coexistence of the β and δ

forms already noted from the analysis of the synchrotron
x-ray diffraction results. The behavior in the high-frequency
region is unusual, in that a broad band appears in the range
expected for Si-N stretching vibrations (900-1150 cm−1) at
above 34–36 GPa, which disappears upon decompression.
No such broad feature was shown in the data presented by
Zerr,29 during Raman spectroscopy carried out within an Ar
pressure-transmitting medium (PTM). It is possible that this
broad band might arise from the methanol-ethanol mixture that
has become an amorphous solid at these HPs, but that does not
appear to be the case in recent studies of B4C compressed in
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FIG. 17. Raman spectra of (a) the compression and decompres-
sion of the β-Si3N4 phase up to 43 GPa, using 4:1 methanol-ethanol
as the PTM. (b) The compression of the β-Si3N4 phase up to 52 GPa,
using N2 as the PTM.

the medium to the same pressure range.70 Another possibility
is that the broadened high-frequency peaks might appear due
to the nonhydrostatic nature of the PTM. We also obtained data
using N2 as a PTM [Fig. 17(b)]. In this case the high-frequency
modes resemble more closely those reported by Zerr,29 but
there is still a significantly broadened feature in the 900–
1150 cm−1 range.

The appearance of this broad feature, occurring throughout
the range expected for Si-N stretching vibrations, might be
due to some disordering mechanism occurring within the
Si3N4 sample, experienced as it undergoes its “β → δ” tran-
sition. Theoretically, a metastable phase with P 3 symmetry
(P 3′ phase) was found to be competitive with the P 6̄′ structure
in the vicinity of the pressure-induced transition from the
β-Si3N4 structure. Competition between the two potential
structure solutions could result in disorder in the N sites
and perhaps also Si positions, resulting in broadening of
the high-frequency vibrational bands. Any deviations from
a hydrostatic compression environment could significantly
affect such slight, modifications to sampling the stable vs.
metastable structures predicted to be present, and we believe
that this is the case here. Interestingly, however, the methanol-
ethanol pressure medium used in our first study is expected to
remain a hydrostatic fluid until ∼10 GPa, whereas N2 and Ar
undergo solidification transitions that result in nonhydrostatic
behavior above the 2–3 GPa range.71,72

F. Thermal properties

Using our first-principles-calculated thermodynamic poten-
tials, we further derived thermal properties of Si3N4 over a
wide T -P range. Since currently the experimental thermal

FIG. 18. Pressure dependencies of the observed Raman peaks for
compression of the β-Si3N4 up to 43 GPa. Additional Raman peaks
above ∼34 GPa are associated with the formation of the δ phase.

properties data are available for only β- and γ -Si3N4, we
mainly focus on discussion of these two phases.

Figure 19 shows the volume TECs of β-Si3N4 as a
function of temperature at zero pressure. The experimental
data (measured at ambient pressure) are widely scattered in
both low T and high T regions which may be attributed to the
differences in samples and experimental techniques. Above
RT, our predicted TEC is closer to the measured data of
Schneider (except a couple of scattered data points above 1200
K), which is the lower bound of all the reported experimental
data. Compared with the calculation of Kuwabara et al.,22 our
predicted TEC are slightly lower. Nevertheless, the difference
is noticeable at both low and high temperatures. At present,
there is only one experimental report on the TECs at low
temperatures.37 However, the measured data are significantly
higher than both calculations at low temperatures. And, more
important, no trend of negative TEC is revealed near 0 K,
which is questionable. A negative TEC at low T is predicted
by both calculations, and is related to the instability of β phase
under pressure, as discussed later in the paper. The difference
between the two calculations at high temperatures can be
partially attributed to the fact that static energies are fitted
to the second-order and third-order BM-EOS, respectively,
in Kuwabara’s and our calculations (in both calculations, the
thermal free energies are fitted to the second-order BM-EOS).
The second-order BM-EOS model assumes that the pressure
derivative of the bulk modulus is fixed to 4. Adopting the same
type of second-order BM-EOS for the static energies, we find
that our calculated TECs (not shown in the figure) increase
moderately at high temperatures, about half way between
the two calculated TECs shown in the figure. At the same
time, the order of BM-EOS, for the static energies does not
affect the prediction below RT. Therefore, the discrepancy
between the two theoretical TEC curves likely also originates
from the differences in the calculated phonon density of
states.
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FIG. 19. (Color online) Temperature dependence of volume
TEC of bulk β-Si3N4 at zero pressure. Solid line denotes present
work, dashed line (red) denotes the first-principles calculation
from Kuwabara et al.,22 and discrete symbols denote experimental
data.34–37

Another thermal property that is closely related to the TEC
(α) is the bulk Grüneisen parameter (γ ): α = γCV /(BT V ),
where CV , BT , and V are heat capacity, bulk modulus,
and volume, respectively. Figure 20 shows our calculated
Grüneisen parameter of β-Si3N4, together with reported exper-
imental data.36 Our calculated bulk Grüneisen parameter is in
excellent agreement with Bruls’ measurement. The estimated
percentage difference between experiment and calculation is
within 10% for 300 K < T < 500 K, and the difference
is gradually reduced to about 2% at T = 1300 K. The
excellent theory-experiment agreement in the temperature
range between 300 and 1300 K validates our calculation and
supports our theoretical prediction that the bulk Grüneisen
parameter (γ ) turns negative below 200 K in β-Si3N4. Since
CV , BT , and V are all positively defined, TEC (α) always has
the same sign as the bulk Grüneisen parameter (γ ). Within
the QHA, γ is the weighted average of mode Grüneisen ratios
[Eq. (4)]. At low temperaturs, only low-frequency phonons are
thermally excited and contribute to the bulk Grüneisen ratios.
In the case of α and β phases, many low-frequency phonons
have negative mode Grüneisen ratios (Fig. 5). This yields the

FIG. 20. Temperature dependence of bulk Grüneisen parameter
of β-Si3N4 at zero pressure. Solid line denotes present work, and
discrete symbols denote experimental data.36

FIG. 21. (Color online) Temperature dependence of volume TEC
of bulk β-Si3N4 at pressures of 0, 10, 20, and 30 GPa.

negative overall bulk Grüneisen parameters, and consequently
leads to the negative TEC at low temperatures. For the β phase,
the two branches that correspond to the most negative mode
Grüneisen parameters are found to be the softening M-point TA
and 
-point Bu modes, which are responsible for the instability
of β-Si3N4 at HPs.

We also examined the pressure effects on TEC of β-Si3N4.
As pressure increases from 0 to 30 GPa, our calculated TEC
decreases from 1.11 × 10−5 to 0.69 × 10−5 K−1 at 2000 K
(Fig. 21). At the same time, the negative TEC range extends
from below 150 K at 0 GPa to 220 K at 30 GPa. The magnitude
of the negative TEC value also increases from −3.11 × 10−7

to −5.09 × 10−7 K−1. This pressure effect of TEC in β-
Si3N4 is in agreement with the calculated pressure effect on
low-frequency phonon modes and the soft-phonon-associated
structural instability discussed in earlier sections.

Figure 22 shows the experimental and calculated TEC of
γ -Si3N4 at ambient pressure.22,40–42 As a contrast, we also
plot the calculated TEC of the two hexagonal phases of Si3N4.
Although the cubic γ phase is nearly 20% denser and more
than 20% less compressible than the two hexagonal phases,
its TEC is more than twice as large as those of the hexagonal
phases, indicating that there is a significantly stronger lattice
anharmonicity in the cubic γ phase. This may also be related

FIG. 22. (Color online) Temperature dependencies of volume
TECs of α-, β-, and γ -Si3N4 at zero pressure. The inset shows the
low-temperature TEC of the γ phase from 0 to 300 K.
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to the fact that the Si-N bond lengths in the γ phase are larger
than those in the α and β phases.

The TECs of γ -Si3N4 remains significantly larger than
those hexagonal phases over the wide T -P ranges in our
calculations. For example, at 30 GPa, the TECs of the most
stable γ phase is still about twice as large as that of the β phase.
It is also interesting to mention that, although our calculation
predicts that the ground state β phase has lower TECs than the
meta-stable α phase at zero pressure, the order of the TECs in
the two hexagonal phases switches upon compression, At 30
GPa, the α phase is predicted to have the lowest TECs.

The two sets of experimental TECs of γ -Si3N4 are relatively
close below 500 K, but they differ significantly at higher
temperatures, which may originate from the differences in
samples and measurement methods. Overall, our calculation is
in better agreement with the experimental data of Paszkowicz
et al.,41 and the theoretical data of Fang et al.42 The
calculation reported by Paszkowicz et al., which is based on
a simplified Debye model to approximate the phonon density
of states,41 is consistent with our data at temperatures below
500 K. However, their predicted TECs at high temperatures
is apparently lower than all other three calculations that are
based on the first-principles phonon density of states. At low
temperatures, the prediction of γ -Si3N4 from the Kuwabara
et al. is noticeably larger than other calculations, including
ours. The same type of overestimation also occurs for the
low-T TEC of the β phase (Fig. 19).

As illustrated in the inset of Fig. 22, Paszkowicz et al.
reported that the measured TEC of γ -Si3N4 drops below zero
for T < ∼70 K.41 However, this is in disagreement with all the
reported calculations. From the discussion in the above text,
the TEC at low temperatures is affected by the mode Grüneisen
ratios of the low-frequency phonon modes. As shown in
Fig. 5(c), no negative mode Grüneisen ratios are found in the
γ -Si3N4. The bulk Grüneisen parameter of γ -Si3N4 must be
positive at all temperatures, and consequently, TEC of γ -Si3N4

must be positive at all temperatures.

IV. CONCLUSION

In this paper, first, we have theoretically studied the
equilibrium thermodynamic stability and high-pressure phase
transitions among the α-, β- and γ -Si3N4 within the frame of
density functional theory (DFT) and quasi harmonic approxi-

mation (QHA). We find that α-Si3N4 remains as a metastable
phase at temperatures up to 2000 K and pressures up to 10 GPa.
The equilibrium β → γ transition pressure is predicted as
7.5 GPa at 300K and it increases to 9.0 GPa at 2000 K, and the
α → γ transition pressure is about 0.5 GPa lower than that of
the β → γ transition.

Next we have combined first-principles calculation and
high-pressure experiments (x-ray diffraction and Raman) to
understand the pressure-induced β → δ transition at RT. From
our calculated phonon dispersion, both α- and β-Si3N4 are
dynamically stable at low pressurs. However, two competing
phonon-softening mechanisms are found in the β phase at
HPs. β-Si3N4 is predicted to undergo a first-order β → P 6̄′
transition above 38.5 GPa, while α-Si3N4 shows no signs of
dynamical instability. The predicted metastable high-pressure
P 6̄′ phase is structurally related to the β-Si3N4. The enthalpy
barrier height is estimated as only 67.23 meV/atom. The
predicted results are consistent with the observed β →
δ transition at RT. Our experimental x-ray diffraction and
Raman scattering measurements confirm the transition at about
34 GPa, and support the postphenacite nature of the structure
of the δ phase. The β → δ transition in Si3N4 is analogous to
the β → δ transition in Ge3N4. The possibility for the δ phase
to adopt the postspinel structure has been excluded.

Furthermore, we have clearly demonstrated that softening
of phonon modes upon compression also affects the thermal
properties at low temperatures. We have shown that the low-
frequency phonon modes that have negative mode Grüneisen
ratios lead to negative calculated TEC in both α- and β-Si3N4,
and we have predicted that no negative TEC exists in γ -Si3N4.
Our predicted thermal properties, including TEC and bulk
Grüneisen parameters, are in good agreement with available
experimental data at ambient pressure.
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