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Form factor, standard deviation, and skewness of the field distribution in a hard type-II
heavy-fermion superconductor from the Ginzburg-Landau model
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We compute the form factor and the standard deviation and skewness of the field distribution for a hard
type-II heavy-fermion superconductor using an approximate analytical solution of the Ginzburg-Landau model.
Our results are relevant if the temperature is such that T > T ∗ = 0.56Tc, where Tc is the superconductivity
temperature. Instead of decreasing monotonically as the field is ramped up to the upper critical field as usually
found, reflecting the influence of the Zeeman currents the form factor and standard deviation are predicted to
display a maximum at an intermediate applied field intensity if the effective electron mass is sufficiently large.
This behavior has been observed for the CeCoIn5 form factor at T � T ∗ and is explained qualitatively by our
computation. Contrary to the form factor and standard deviation, the skewness of the field distribution is not
strongly influenced by the Zeeman currents.
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The investigation of the vortex lattice of a type-II su-
perconductor is a method for studying the basic physical
properties of the superconductor itself. Basically, two exper-
imental types of methods exist. Either the lattice is probed,
mainly with small-angle neutron-scattering (SANS), or the
field distribution generated by the vortex lattice is measured.
Nowadays this latter distribution can be determined using
the muon spin rotation (μSR) technique. Both methods give
access to information on the space-Fourier components of the
magnetic field inside the vortex lattice. The SANS technique
measures the modulus of the form factor associated with a
Fourier component at a given location in the reciprocal vortex
lattice, whereas the μSR technique enables the determination,
amongst other characteristics, of the standard deviation of the
field distribution. One expects a form factor and the standard
deviation to monotonically decrease as a function of the
applied external field intensity.1 Contrary to this expectation,
for the heavy-fermion superconductor CeCoIn5 theses two
quantities were found to increase with the magnetic field
and then to fall down as the upper critical field Bc2 is
approached. The maximum was detected very near Bc2 at low
temperature2,3 but at 1.25 K the maximum of the measured
form factor occurs around 2.5 T.4 The purpose of this report is
to study the form factors and the field distribution predicted by
the Ginzburg-Landau functional, the Zeeman currents being
taken into account.

Approaching Tc from below, superconductivity in a ma-
terial is suppressed by the orbital currents and possibly
by the Zeeman currents (i.e., the direct coupling of the
magnetic field with the superconducting order parameter).
This latter mechanism may exist for sufficiently heavy-fermion
superconductors.

The form factor and therefore the field distribution can
be described microscopically starting from a BCS-type
Hamiltonian,5 or using the BCS-Gor’kov equations in the
quasiclassical limit (i.e., the Eilenberger equations). This latter
method has traditionally been used to compute the form
factor when the Zeeman currents are negligible. Their role
has recently been considered.6 However, for the first method
diagrams need to be evaluated and the processing of the

Eilenberger equations can only be performed numerically.
Therefore it is still of interest to describe the vortex lattice
using a Ginzburg-Landau (GL) functional because it enables
an easy analytical study of the effect of the parameters entering
the theory. Generally speaking, as an expansion of the free
energy in terms of the superconducting order parameter and
its gradient, the GL theory is expected to be valid in the vicinity
of a second-order phase transition, and its range of validity is
known to be broader in superconductors which are not in the
clean limit.

Let us consider a superconductor with a large GL parameter
κ = λL/ξGL � 1 (i.e., a so-called hard superconductor). Here
λL is the London penetration depth and ξGL the GL coherence
length. Let us assume an external magnetic field Bext applied
on the superconductor along the Z axis of the laboratory
reference frame such that Bc1 < Bext < Bc2, where Bc1 and
Bc2 are the lower and upper critical fields, respectively.
Under such conditions a flux-line lattice (FLL) appears in
the superconductor. We shall neglect any disorder of the FLL.
We shall consider that the induction at the reciprocal space
position specified by the vector K has only a component
along the Z direction, and denote it as BZ

K . This is justified,
for instance, when Bext is applied along an axis of, at
least, twofold symmetry. Some years ago a simple enough
formula was proposed for the orbital contribution to BZ

K , that
is BZ

K;orb:1

BZ
K;orb = �0

sc

(
1 − b4

nor

) vK1(v)(
λX

L KY
)2 + (

λY
LKX

)2 . (1)

Here �0 is the magnetic flux quantum (�0 =
2.06783×10−15 T m2), sc the area of the vortex
lattice unit cell, that is, sc = �0/BZ � �0/Bext, and
bnor = BZ/Bc2 � Bext/Bc2, where BZ is the mean value of
the induction in the FLL. We specify the two components
of K in the plane perpendicular to the Z axis (i.e., KX and
KY ), and introduce the two London penetration depths which
model the superconducting anisotropy. Kn(x) is the modified
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Bessel function of the second kind of index n. We have
defined the anisotropic cutoff factor vK1(v) with

v2 = 2
[(

ξX
GLKX

)2 + (
ξY

GLKY
)2]

× (
1 + b4

nor

)
[1 − 2bnor(1 − bnor)

2]. (2)

The anisotropy of a vortex core is modeled by (ξX
GL,ξY

GL). If
needed, bnor can be written in terms of GL coherence lengths
since

Bc2 = �0

2π ξX
GLξY

GL

. (3)

It is assumed that the large κ limit applies. The result given in
Eqs. (1) and (2) was obtained from an approximate solution
of the GL functional based on the Clem educated guess for
the functional form of the order parameter of an isolated
vortex,7 and extended to take into account the interaction
between the vortices.8 Obviously this extension is not expected
to be valid very near the superconducting phase transition. The
comparison between the proposed BZ

K formula and the results
of the numerical solution of the GL equations showed the
formula to be a good approximation.1 A full discussion of
BZ

K;orb has recently been given.9

Based on the conventional GL method, the coupling of the
magnetic field with the superconducting order parameter being
described, and identifying the GL parameters to microscopic
parameters, according to Michal and Mineev10 it is a fair
approximation to take

BZ
K = BZ

K;orb + BZ
K;Zee, (4)

with

BZ
K;Zee = CZee

(
1 − b4

nor

)
b2

norK0(v), (5)

where we have defined the Bext-independent constant,

CZee = 7ζ (3)

π3
kFre

εF

kBT

μ

kBT
B2

c2. (6)

According to Ref. 10 the expression for BZ
K;orb can still be

taken from the theory available for orbital currents. Here ζ (x)
is the Riemann zeta function (ζ (3) � 1.202), kF is the Fermi
wave vector, re = e2/(4πε0mec

2) is the classical radius of
the electron, εF = (m∗

ev
2
F)/2 denotes the Fermi energy with

m∗
e the conduction electron effective mass, and μ = gμB/2

(g = 2.002) is the electron magnetic moment assuming a free
electron. Relative to Ref. 10, we take phenomenologically into
account the influence of the vortex interaction with the factor
(1 − b4

nor), and the effect of the interaction and anisotropy in
the vortex cores through the dependence of the argument of
the Bessel function K0(v) on bnor and ξα

GL, respectively.
There are two limitations to the application of the above

formalism. The description of the Zeeman effect is only
strictly valid for T > T ∗ = 0.56Tc because the GL expansion
is unstable at low temperature.10 Therefore a quantitative
interpretation of data with the GL model is not justified at
low temperature. In addition, as usual, the GL description is
only strictly valid near the phase transition and in a larger
temperature range if the sample is not too clean, preventing
the effects of the electron diffraction on the vortex cores.11

At this juncture we need to specify K. For simplicity we
shall assume a triangular vortex lattice. It is straightforward

to adapt the result given here to the case of the square lattice.
Since K is perpendicular to Bext, Kp,q = pa∗ + qb∗, where
p and q are integers and {a∗,b∗} define the unit cell in the
reciprocal space. Introducing the anisotropy ratio,

t2
K = 3

4

(
λX

L

λY
L

)
, (7)

and using the result of Ref. 12, we derive1,9

KX
p,q = 2πp

√
tK

sc

and KY
p,q = 2π

(
q − p

2

)√
1

sctK
. (8)

We are now in a position to express the two components of a
form factor in terms of basic parameters. As already published,
but with an adapted notation, we derive1

BZ
Kp,q ;orb = BL bp,q (bnor), (9)

where (p,q) �= (0,0). We have defined

BL =
√

3

8π2

�0

λY
LλX

L

, (10)

and

bp,q(bnor) = (
1 − b4

nor

) vp,qK1(vp,q)

p2 − pq + q2
with

vp,q = 2
√

2π

31/4
b1/2

nor

(
1 + b4

nor

)1/2

× [1 − 2bnor(1 − bnor)
2]1/2(p2 − pq + q2)1/2. (11)

For the Zeeman component we derive

BZ
Kp,q ;Zee = CZee

(
1 − b4

nor

)
b2

norK0(vp,q). (12)

We find it convenient to write a form factor labeled by the
couple of index (p,q) in a normalized form as follows:

BZ
Kp,q

BL
= bp,q (bnor) + R

(
1 − b4

nor

)
b2

norK0(vp,q), (13)

with the definition R = CZee/BL. Since K0(x) ≈ −ln(x/2) −
γ when x → 0+, where γ is the Euler-Mascheroni constant, as
expected the second term on the right-hand side of the previous
equation vanishes with bnor. The ratio BZ

Kp,q
/BL depends only

on bnor and the ratio R. For a given temperature, this latter
ratio is a material parameter.

It is now interesting to estimate an upper bound forR. Since
a value of 600 nm for λL is reasonable for a heavy-fermion
superconductor (this is approximately the value measured
at low temperature for UPt313,14), we compute BL = 1.26 ×
10−4 T. Since for typical heavy-fermion superconductors kFre

is on the order of 10−5 and εF/(kBT ∗) is 103 at most, we get
as a rough upper bound CZee = 3.3 × 10−2 T, assuming for μ

the free electron magnetic moment value. This leads to R of
about 260 for T = T ∗.

In Fig. 1 we present |BZ
K1,0

|2/B2
L as a function of bnor or b

1/2
nor ,

and R. The most striking result is the predicted maximum of
|BZ

K1,0
|2/B2

L when R is large, approximately larger than 25.
For example, if R = 260 as estimated above, we find
|BZ

K1,0
|2/B2

L = 21 at bnor = 0.44.
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FIG. 1. (Color online) The normalized squared form factor modu-
lus |BZ

K1,0
|2/B2

L as a function of either the reduced external field inten-

sity bnor (bnor � Bext/Bc2) on the left or b1/2
nor on the right, and the ratio

Rwhich gauges the relative weight of the Zeeman and orbital currents
to a form factor. When bnor approaches 0, the limit of |BZ

K1,0
|2/B2

L is 1
irrespective of the R value. Bc1 is usually so small relative to Bc2 that
Bc1/Bc2 � 0 and therefore it is justified to consider very small bnor

values. The two upper panels display the data in the whole R range,
whereas the two lower panels focus on the small R range.

A field map can be computed with the help of Eq. (13)
and the related distribution can be derived from a histogram
of the map. The result can be compared with measured
distributions.15 It is important to note that the μSR measure-
ments only give access to the field component along the Z

axis.9 While the computation of the distribution is certainly
of interest, to get a feeling of the effect of Bext on the field
distribution, it is interesting to determine its standard deviation
and skewness parameter, �Z and ϑZ , respectively.16 While ϑZ

is more conveniently obtained numerically from a distribution,
it is possible to provide a simple analytical formula for �Z , in
fact, the variance �2

Z .1 We have

�2
Z =

∑
(p,q)�=(0,0)

∣∣BZ
Kp,q

∣∣2
. (14)

In Fig. 2 we display �Z/BL and ϑZ in Fig. 3 as a function of
bnor or b

1/2
nor , and R. We note that the shapes of |BZ

K1,0
|2/B2

L and
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FIG. 2. (Color online) Same caption as in Fig. 1 but for the
normalized standard deviation �Z/BL. By definition �Z/BL = 1
when bnor → 0, no matter the R value.
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FIG. 3. (Color online) The skewness parameter ϑZ as a function
of either the reduced external field intensity bnor on the left or b1/2

nor on
the right. Here we limit the drawings to 0 � R � 50 since forR > 50
the field dependence of ϑZ is similar to the one found at R = 50.
When bnor tends to 0 we have ϑZ = 1.44 no matter the R value.

�Z/BL in Figs. 1 and 2, respectively, are quite similar. This
is not surprising given the fact that �2

Z is mainly determined
by the |BZ

K1,0
|2 and five equivalent terms corresponding to the

six nearest neighbors vectors K to the origin in the flux-line
reciprocal lattice.1 The skewness parameter, defined as

ϑZ = [(BZ − BZ)3]1/3
/

[(BZ − BZ)2]1/2, (15)

measures the asymmetry of the FLL distribution: It would
be zero if the distribution was symmetric. It is known to be
strongly field dependent in the orbital limit, ϑZ decreasing by
about 30% as Bext varies from Bc1 to Bc2.16 We find that ϑZ

depends on R for values up to �30, and above this value it is
almost R independent.

In the remaining part of this report we apply the
|BZ

K1,0
(Bext)|2 prediction for the data obtained at T = 1.25 K for

CeCoIn5.4 Since T = 1.25 K = 0.545Tc � T ∗, the supercon-
ducting phase transition is second order at that temperature and
the FLL lattice is rhombic,17,18 it is reasonable to attempt the
comparison of the data with the model in Eq. (13). The result is
presented in Fig. 4. At first sight, the GL model provides a fair
description of the measurements, in particular, a description
of the observed |BZ

K1,0
(Bext)|2 maximum. This analysis clearly

shows that the Zeeman currents rather than the orbital currents
drive the field contrast in the mixed phase of CeCoIn5. The
curve is obtained with λL = 570 nm andR = 85, but also with
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FIG. 4. (Color online) Comparison of the measured squared form
factor |BZ

K1,0
|2 for CeCoIn5 at 1.25 mT (Ref. 4) with the prediction

of the approximate analytical solution of the GL model developed in
this report.
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Bc2 = 5.5 T. Our λL value is consistent with μSR estimates,3,19

but not with values derived from microwave surface impedance
and tunnel diode oscillator methods.20,21 This may be due to
the fact that SANS and μSR are bulk methods, in contrast
to the other two techniques. While R is also reasonable, the
inferred Bc2 value at 1.25 K is somewhat large, as clearly seen
in Fig. 4 which indicates Bc2 � 4.2 T. As possible reasons
for this discrepancy in the higher critical field, one may
suggest that the temperature of the measurement is not high
enough. We recall that T � T ∗ rather than T > T ∗. Another
possibility is to suppose our solution of the GL equations to
be too rough. While we believe that measurements closer to
Tc would certainly be more relevant for a comparison with
the GL prediction, and a numerically exact solution of the GL
model with the Zeeman currents included would be useful, as
it was done for the GL functional in the absence of Zeemen
currents,22 the main reason for the failure is probably rooted
in the inadequacy of the GL model for modeling the physics
of CeCoIn5. The compound is in fact extremely clean with a
mean-free path  which is much larger than the coherence
length.20,23 Therefore  is also much larger than the FLL
parameter a	 ≈ √

�0/Bext � 30 nn for Bext = 2.5 T (i.e., the
field at which |BZ

K1,0
(Bext)|2 displays a maximum). This means

that the electron diffraction due to the vortex cores should be
strong.11 This is not described by the GL functional.

In this work we have shown that Zeeman currents can be at
the origin of a dramatic increase in the value of |BZ

K | or �Z .
Hence, it is possible that even if these parameters are so small
as to preclude the detection of a signal at low field, they may
sufficiently increase in an intense field to yield a measurable
signal. The heavy-fermion superconductor UBe13 could offer
such a possibility.24 The fact that Bc2 is only ∼9 T is quite
favorable in inducing a Zeeman contribution for |BZ

K | and �Z

at a currently available field intensity.
In conclusion, we provide a simple method for obtaining the

FLL form factors and field distribution of a hard heavy-fermion
superconductor. Our results are quantitatively valid if the
temperature is sufficiently large or if the superconductor is not
too clean. The field dependence of the measured form factor
for CeCoIn5 at high temperature is explained qualitatively.
Following our work, it seems worthwhile to attempt an
extension of Delrieu’s analytical work11 to the case of a
heavy-fermion superconductor. Relative to the works which
focus on the numerical solution of the Eilenberger equations,
Delrieu found an approximate analytical solution valid for a
clean superconductor at any temperature for Bext relatively
close to Bc2.

We thank V.P. Michal and V.P. Mineev for useful discus-
sions.
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Relaxation, and Resonance: Applications to Condensed Matter
(Oxford University Press, Oxford, 2011).

10V. P. Michal and V. P. Mineev, Phys. Rev. B 82, 104505
(2010).

11J. M. Delrieu, J. Low Temp. Phys. 6, 197 (1972).
12V. G. Kogan, Phys. Lett. A 85, 298 (1981).

13R. N. Kleiman, C. Broholm, G. Aeppli, E. Bucher, N. Stücheli,
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