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Frustrated Heisenberg antiferromagnet on the honeycomb lattice:
A candidate for deconfined quantum criticality
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We study the ground-state (gs) phase diagram of the frustrated spin- 1
2 J1–J2–J3 antiferromagnet with J2 =

J3 = κJ1 on the honeycomb lattice using coupled-cluster theory and exact diagonalization methods. We present
results for the gs energy, magnetic order parameter, spin-spin correlation function, and plaquette valence-bond
crystal (PVBC) susceptibility. We find a Néel antiferromagnetic (AFM) phase for κ < κc1 ≈ 0.47, a collinear
striped AFM phase for κ > κc2 ≈ 0.60, and a paramagnetic PVBC phase for κc1 � κ � κc2 . The transition at κc2

appears to be of first-order type, while that at κc1 is continuous. Since the Néel and PVBC phases break different
symmetries our results favor the deconfinement scenario for the transition at κc1 .

DOI: 10.1103/PhysRevB.84.012403 PACS number(s): 75.10.Jm, 03.65.Ca, 75.50.Ee

Frustrated quantum Heisenberg magnets are paradigms of
systems that may be used to study quantum phase transitions
(QPTs) between quasiclassical magnetically ordered phases
and magnetically disordered quantum phases. In particular, if
the quasiclassical phase and the quantum phase spontaneously
break different symmetries, the Landau-Ginzburg-Wilson sce-
nario of continuous phase transitions does not hold and the
concept of deconfined quantum criticality1 becomes relevant.
A canonical model for studying such QPTs is the spin- 1

2
Heisenberg antiferromagnet (HAFM) with antiferromagnetic
(AFM) nearest-neighbor (nn) J1 coupling and frustrating AFM
next-nearest-neighbor (nnn) J2 coupling (namely the J1–J2

model) on the square lattice (see, e.g., Refs. 2–7). This model
undergoes a transition from a quasiclassical Néel state at
J2/J1 � 0.4 to a quantum paramagnetic (QP) phase, which is
not magnetically ordered, for 0.4 � J2/J1 � 0.6, and thence
to a collinear striped phase for J2/J1 � 0.6. The synthesis
of layered magnetic materials that might be described by
the square-lattice J1–J2 model8,9 has also encouraged further
theoretical studies of this model. Although the square-lattice
spin- 1

2 J1–J2 HAFM has been intensively studied for over
20 years, no consensus yet exists on such fundamental issues
as the nature of the QP phase and of the type of transition
into it. In particular, there is still controversy over whether the
scenario of deconfined criticality holds for this model (see,
e.g., Refs. 4 and 5).

Related magnetic systems may shed light on this contro-
versy and one related model that has received attention recently
has been the HAFM on the honeycomb lattice. One reason
for this interest is that a spin-liquid phase has been found
for the exactly solvable Kitaev model,10 in which the spin- 1

2
particles reside on a honeycomb lattice. The honeycomb lattice
is also relevant to the active research field of graphene, where
Hubbard-like models on this lattice may be appropriate to
describe the relevant physics.11 Interestingly, Meng et al.12

found clear evidence that the quantum fluctuations are strong
enough to establish an insulating spin-liquid phase between
the nonmagnetic metallic phase and the AFM Mott insulator
for the Hubbard model on the honeycomb lattice at moderate

values of the Coulomb repulsion U . At very large values of
U , the latter phase corresponds to the HAFM on the bipartite
honeycomb lattice that contains a ground state showing Néel
long-range order (LRO). However, higher-order terms in the
t/U expansion of the Hubbard model may lead to frustrating
exchange couplings in the corresponding spin-lattice model
where the HAFM with nn exchange is the leading term in the
large-U expansion. This unexpected result,12 and other similar
work,13 have stimulated interest in the frustrated HAFM on
the honeycomb lattice (see, e.g., Refs. 14–17). Indeed, the
available literature suggests a frustration-induced QP phase
for the frustrated spin- 1

2 HAFM on the honeycomb lattice.14–19

These theoretical findings are consistent with the recent
experimental observations that the spin- 3

2 honeycomb-lattice
HAFM Bi3Mn4O12(NO3) shows a spin-liquid-like behavior at
temperatures much lower than the Curie-Weiss temperature.20

One approach to shed additional light on the QP regions
of such J1–J2 models is to extend its parameter space by the
inclusion of next-next-nearest-neighbor (nnnn) couplings J3

as well. This yields the J1–J2–J3 model (see, e.g., Ref. 21 and
references cited therein)

H = J1

∑

〈i,j〉
si · sj + J2

∑

〈〈i,k〉〉
si · sk + J3

∑

〈〈〈i,l〉〉〉
si · sk, (1)

where i runs over all lattice sites, and j runs over all nn sites,
k over all nnn sites, and l over all nnnn sites to i, respectively,
counting each bond once and once only. Each site i of the
lattice carries a spin- 1

2 particle with spin operator si . Here we
study the spin- 1

2 J1–J2–J3 HAFM model of Eq. (1) on the
honeycomb lattice.14–19 The lattice and the exchange bonds
are illustrated in Fig. 1 (right panel), where the quasiclassical
Néel and collinear striped phases are also shown. Classically,
this system exhibits the two collinear phases illustrated in
Fig. 1 (right panel) as well as a spiral phase. These phases
meet in a triple point at J2 = J3 = J1/2 (see, e.g., Refs. 14
and 19). Henceforth we set J1 ≡ 1 and restrict ourselves to
the case J2 = J3 ≡ κJ1. The motivation to focus on J2 = J3

also comes from the classical case, where the honeycomb-
lattice model and the square-lattice J1–J2 HAFM model have
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FIG. 1. (Color online) Left: Results for the gs energy, E/N (J1 ≡
1 and J3 = J2) via ED (N = 32), CCM LSUBm (m = 6,8,10,12),
and extrapolated m → ∞ (see text). Right: The J1-J2-J3 honeycomb
model for the Néel and the collinear striped model states. The arrows
represent spins located on lattice sites •.

similar ground-state (gs) properties, namely: (i) there is a direct
transition between the Néel and the collinear striped states at
κ = 0.5; and (ii) the classical ground state is highly degenerate
at the transition point. Hence, the two systems are very similar
classically, and so the honeycomb system is a likely candidate
to exhibit a QP phase and possibly also a deconfined critical
point between this QP phase and the quasiclassical phases.
Moreover, we note again that non-zero J3 bonds are likely
from higher-order terms in the t/U expansion of the Hubbard
model at moderate U values.12

The treatment of highly frustrated quantum magnets is
notoriously challenging since only a relatively few accurate
methods exist. Recent approaches such as those based on
projected entangled pair states22 are not yet accurate enough.
The finite-size extrapolation of numerical exact data for
finite-lattice systems, used successfully for the square-lattice
model,2,7 is also less efficient for the honeycomb lattice since
(i) the unit cell contains two sites, (ii) nnnn couplings J3 are
included, and (iii) there are only a few finite lattices with
full point group symmetry.19 Naturally, quantum Monte Carlo
methods are severely limited in the presence of frustration due
to the infamous “sign problem.” The coupled-cluster method
(CCM) when evaluated to high orders of approximation
provides a reasonably accurate approach to determine the
position of QPT points,5,21,23–26 as well as providing evidence
on the nature of such QP phases.5 Here we use this method
together with complementary results provided by the exact
diagonalization (ED) technique for a finite lattice of N = 32
sites.

The CCM is a size-extensive method that provides results
in the limit N → ∞ from the outset. The CCM requires us to
input a model (or reference) state,27–29 with respect to which
the quantum correlations are expressed. Here we use the Néel
and striped model states shown in Fig. 1 (right panel). We use
also the well-tested localized lattice-animal-based subsystem
(LSUBm) truncation scheme in which all multispin correla-
tions are retained in the CCM correlation operators over all
distinct locales on the lattice defined by m or fewer contiguous
sites. The method of solving for higher orders of LSUBm

approximations is discussed in detail in Refs. 27 and 28. The

number of independent spin configurations taken into account
in the correlation operator increases rapidly with the truncation
index m. For example, at the highest level of approximation
used here, namely LSUB12, we take into account 750 490 such
configurations. To obtain results in the exact m → ∞ limit the
raw LSUBm data must be extrapolated. Although there are no
exact extrapolation rules, a great deal of experience has been
garnered by now for the gs energy and for the magnetic order
parameter (sublattice magnetization) M . For the gs energy
per spin a well-tested and very accurate extrapolation ansatz
(see, e.g., Refs. 5,6,23–26,28,30) is E(m)/N = a0 + a1m

−2 +
a2m

−4 , while for the magnetic order parameter M different
schemes have been employed for different situations.31 Here
we use M(m) = b0 + b1m

−1/2 + b2m
−3/2. This scheme has

been found to be appropriate for systems showing a gs
order-disorder QPT (see, e.g., Refs. 5,21,25,26). Since the
hexagon is an important structural element of the honeycomb
lattice we use for the extrapolations only LSUBm data with
m � 6.

CCM results for the gs energy per spin E/N are shown
in Fig. 1 using both the Néel and collinear striped model
states. They are clearly well-converged for all values of
J2 shown. The corresponding extrapolated LSUB∞ results
are also shown in the regimes where real solutions exist
for the entire data set, for each choice of reference state.
These results compare well to those from ED calculations
for N = 32, also shown in Fig. 1. As is usually the case the
CCM LSUBm results for finite m values for a given phase
extend beyond the actual LSUB∞ transition point. If the
CCM results in Fig. 1 are terminated at the LSUB∞ critical
points obtained from Fig. 2 as discussed below, the agreement
between the CCM and ED gs energy results is even more
striking (and recall too that the ED results have undergone no
finite-size scaling to the infinite-lattice limit). The CCM results
show a clear intermediate region around κ = 0.5 in which
neither of the quasiclassical AFM states is stable. The ED
results demonstrate a “kink-like” behavior in E/N at κ ≈ 0.6,
(cf. Refs. 7 and 14), which is a first hint of a first-order QPT
(and see the discussion below).
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FIG. 2. (Color online) CCM results for the gs order parameter, M
(J1 ≡ 1 and J3 = J2) for the Néel and striped phases using LSUBm

(m = 6,8,10,12), and extrapolated m → ∞ (see text).
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FIG. 3. (Color online) CCM LSUB12 and N = 32 ED results for
the spin-spin correlation function 〈s(0) · s(r)〉 (J1 ≡ 1 and J3 = J2).
Values r = 1,1.732,2 correspond, respectively, to nn, nnn, and nnnn
pairs of spins.

We now discuss the magnetic order parameter M to
investigate the stability of quasiclassical magnetic LRO. CCM
results for M are shown in Fig. 2. The extrapolated Néel
order parameter vanishes at κc1 ≈ 0.466, whereas its collinear
striped counterpart goes to zero at κc2 ≈ 0.601. These values
can be considered as CCM estimates for the QCPs of the
model.32 They are in good agreement with those recently
obtained by the Schwinger-boson approach14, the functional
renormalization group approach,17 and by an ED approach.16

From the shape of the order-parameter curve in Fig. 2 it seems
probable that the transition at κc1 is continuous, whereas the
very steep fall near κc2 may indicate a first-order transition.
This is supported by the spin-spin correlations functions shown
in Fig. 3, which also show a similar “smooth” versus “steep”
behavior near the points κc1 and κc2 , respectively. Moreover,
the CCM and ED data presented in Fig. 3 are in good
quantitative agreement, which supports the conclusions that
have been drawn above regarding the likely nature of the
QPTs.

Hitherto we have gathered strong evidence about the region
of the intermediate nonmagnetic quantum phase by using the
high-order CCM and ED techniques. However, the question
remains as to what is the nature of this phase. We note that
numerical evidence was found very recently of a plaquette
valence-bond crystal (PVBC) phase near κ = 0.5 (Ref. 16).
Note that such a PVBC phase is a strong candidate for the
QP phase of the J1–J2 model on the square lattice.3–5 To
analyze the possibility of such a PBVC phase we first consider
a generalized susceptibility χF that describes the response of
the system to a “field” operator F (see, e.g., Refs. 4 and 5).
We thus add a field term F = δ Ô to the Hamiltonian (1),
where Ô is an operator that in our case corresponds to the
possible PVBC order illustrated in Fig. 4 (right panel), and
which hence breaks the translational symmetry of H . We
now calculate the energy per site E(δ)/N = e(δ) for the
perturbed Hamiltonian H + F , by using the CCM for both
the Néel and the collinear striped reference states, and define
the susceptibility as χF ≡ −[∂2e(δ)/∂δ2]|δ=0. Rather less
empirical experience is available regarding the extrapolation
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FIG. 4. (Color online) Left: Results for the inverse plaquette
susceptibility, 1/χ (J1 ≡ 1 and J3 = J2) via CCM LSUBm (m =
6,8,10,12), and extrapolated (m → ∞) for both χ and 1/χ (see
text). Right: The perturbations (fields) F = δ Ô for the plaquette
susceptibility χ . Thick (red) and thin (black) lines correspond,
respectively, to strengthened and weakened nn exchange couplings,
where Ô = ∑

〈i,j 〉 aij si · sj , and the sum runs over all nn bonds, with
aij = +1 and −1 for thick (red) and thin (black) lines, respectively.

of the CCM LSUBm data for χF than for other quantities
such as the gs energy or M . However, we have tested several
extrapolation schemes and found that the extrapolation used
for the gs energy [i.e., χF (m) = c0 + c1m

−2 + c2m
−4] fits the

data most accurately. For a crosscheck of this extrapolation
scheme we also use corresponding extrapolation of the inverse
susceptibility [i.e., χ−1

F (m) = d0 + d1m
−2 + d2m

−4] and find
consistent results as shown in Fig. 4. An instability of the gs
against the perturbation F is indicated by a divergence of χF or
equivalently a zero point of χ−1

F . This fact might favor slightly
the extrapolation of χ−1

F when searching for such instabilities.
Our results are in accordance with those of Ref. 16 and they
clearly favor a PVBC intermediate quantum phase instead
of a structureless spin-liquid phase. The extrapolated inverse
susceptibility vanishes on the Néel side at κ ≈ 0.473 and on
the collinear striped side at κ ≈ 0.586. These values are in
very good agreement with the critical values κc1 ≈ 0.466 and
κc2 ≈ 0.601 already found by the CCM order parameter. Thus,
it is most likely that the PVBC phase occurs at (or is very close
to) the transition points where the quasiclassical magnetic LRO
breaks down. Although there is a steep downturn of χ−1

F at
κc2 , we find a smooth behavior for χ−1

F at κc1 . This evidence
strongly supports our conclusion drawn from Figs. 1, 2, and 3
that the phase transition is of first-order type at κc2 while that
at κc1 is of continuous type. We should point out, however,
that there exist generic arguments that the phase transitions
in models with SU (2)-symmetric deconfined critical points
should be first order.33 Nevertheless, these arguments are
based on effective field theories, while our own calculations
are based on the actual lattice model itself. While we can
never entirely exclude the possibility of a sufficiently weak
first-order transition rather than a continuous one, we find no
evidence that the transition at κc1 is first order, although that at
κc2 clearly is.

The possibility of deconfined quantum criticality for the
frustrated honeycomb HAFM was pointed out in Ref. 1.
Supporting evidence for the J1–J2–J3 model on the honey-
comb lattice has been found recently in Ref. 16. Our CCM
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results are seen to be highly converged and to agree well
with those of the ED method. Our results for the gs energy,
magnetic order parameter, spin-spin correlation function, and
plaquette susceptibility point to collinear phases separated
by a magnetically disordered phase for 0.47 � κ � 0.60. We
have shown that this intermediate phase is likely to be of
plaquette valence-bond crystalline (PVBC) type. Although
we find indications of a first-order transition at κc2 ≈ 0.60,
the transition between the Néel and the PVBC phases at κc1

appears continuous. Since the Néel and the PVBC phases break
different symmetries and we have shown that they are likely to

meet at κc1 ≈ 0.47, our results present strong evidence that the
frustrated spin- 1

2 HAFM on the honeycomb lattice contains
a continuous QPT described by the scenario of deconfined
quantum criticality.
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