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Electrical current driven by a coherent spin wave in a bulk ferromagnetic semiconductor
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We theoretically investigate the effect of electrical current generation by a coherent spin wave propagated in
a bulk ferromagnetic semiconductor. This is one of the effects in conductive magnetic materials that are based
on spin-transfer torque concept first proposed by J. C. Slonszewski [J. Magn. Magn. Mater. 159, L1 (1996)]
and L. Berger [Phys. Rev. B 54, 9353 (1996)]. Due to the relatively simple description of interaction between
conduction electrons and a coherent spin wave (in the framework of s-d exchange), the spin-transfer torque
effect is considered here ab initio. A systematic analysis of current generation effect is done by quantum kinetics
methods; relaxation processes are considered within the τ approximation. We derive an analytical expression for
the stationary current density and make estimations for a ferromagnetic semiconductor of the CdCr2Se4 type.
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Conductive magnetic materials with a strong s-d exchange
interaction have the mutual influence of electronic and
magnetic properties, resulting in rather “significant” effects.
Thus the effects, which we call direct effects (DEs), have
been a focus of attention from the midnineties until the
present (Refs. 1–7 and references therein). DEs consist in
manipulation of conductive magnetic material magnetization
by electrical current. Also of great interest are inverse effects
(IEs), consisting in current (voltage) generation in conductive
magnetic materials as a result of temporal inhomogeneous
magnetization variation.8–16 The interpretation of both effects
is based on the “spin-transfer torque” (STT) concept proposed
by Slonszewski3 and Berger.1 The corresponding theoretical
models have various approximations and constraints due to
certain “scenarios”of experiments where DEs, as well as
IEs, are observed. The main problem here is to find an
exact solution of the time-dependent Schrodinger equation
describing electron behavior in an s-d exchange field.

However, in some particular cases, the exact solution of the
corresponding Schrodinger equation can be obtained and STT
can be considered ab initio. A solution to the time-dependent
Schrodinger equation describing an electron in an s-d exchange
field of a coherent spin wave (CSW) propagated in a bulk
magnetic material can be easily found. The present work,
taking advantage of the possibility of finding such an exact
solution, is dedicated to one of the IE variants corresponding
to this case: this is the current generation effect in a bulk
ferromagnetic material by a CSW. Let us note here that
the work (Ref. 6; see also Ref. 2) studies DEs as an STT
effect specifically for bulk systems. This effect consists in
planar spin spiral (SS) rotation around its axis driven by
electrical current. The analysis carried out in Ref. 6 also
applies to conical SS. Rotation of conical SS around its axis
is described mathematically similarly to the description of a
CSW propagated in a spontaneous magnetization direction.
Therefore, the effect studied in the present work is considered
the inverse of the effect in question in Ref. 6.

In the present work, as a conductive magnetic material
we consider a ferromagnetic semiconductor (FMS). We
describe an exchange interaction of conduction electrons with
lattice magnetization in the framework of the Vonsowsky s-d

exchange model,17,18 which is based on the Schubin-
Vonsowsky polar model.19–22 For definiteness, we assume
that conduction electrons in the FMS are degenerate and
completely spin-polarized. We consider time-dependent lattice
magnetization due to CSW propagation as a classical quantity
(given function of co-ordinate and time) and describe it in
the continuous medium approximation by introducing a unit
vector �S(�r,t) aligned with the local magnetization direction.
Let us remark here that the classical picture of a CSW
corresponds to large occupation numbers of magnon states,
that is, a sufficiently high amplitude of CSW.23 As we consider
CSW propagation along the positive direction of the oz axis,
the Cartesian components of Sx,y,z(�r,t) are

Sx(�r,t) = S⊥
1

2
[exp i(qz − ωt) + c.c.],

Sy(�r,t) = S⊥
i

2
[exp i(qz − ωt) − c.c.], (1)

Sz(�r,t) = S‖,

where S2
⊥ + S2

‖ = 1, ω > 0 is the CSW frequency, �q = q�κ
is the CSW wave vector, and �κ is a unitary vector of the
Cartesian coordinate system corresponding to the oz axis. In
our consideration of the dispersion relation for CSW we keep
to the approach stated in Ref. 23. Thus we are restricted to
consideration of the exchange interactions between the lattice
spins only and neglect the relativistic interactions as relatively
weak. In this case and under the condition that the CSW length
is sufficiently large, aq � 1 (a is a magnetic lattice constant),
the quadratic dispersion relation is true:

ω �
(

2μBkBTc

h̄aM0

)
q2, (2)

where Tc is the Curie temperature, M0 is the saturation
magnetization, and μB is the Bohr magneton.

The one-electron s-d Hamiltonian for conduction electrons
is written as follows [with the use of Eq. (1)],

Ĥ (t) = − h̄2

2me

� + S⊥A

2
{(σ̂x − iσ̂y) exp[−i(qz − wt)]

+ (σ̂x + iσ̂y) exp[i(qz − wt)]} + S‖Aσ̂z, (3)

012402-11098-0121/2011/84(1)/012402(4) ©2011 American Physical Society

http://dx.doi.org/10.1016/0304-8853(96)00062-5
http://dx.doi.org/10.1103/PhysRevB.54.9353
http://dx.doi.org/10.1103/PhysRevB.84.012402


BRIEF REPORTS PHYSICAL REVIEW B 84, 012402 (2011)

where 2A > 0 is the s-d exchange splitting value of the
conduction band, σ̂x,y,z are Pauli matrices, and me is the
effective mass of the conduction electron. It is easily seen
that [(

p̂z − 1
2qh̄σ̂z

)
,Ĥ (t)

] = 0, (4)

where p̂z is the z component of the momentum operator,
and square brackets denote the commutator. Therefore, the
operator P̂ ≡ p̂z − 1

2qh̄σ̂z represents a conserved quantity.24

It is obvious that the existence of a conserved quantity
corresponding to operator P̂ means that there is an effective
interaction between the orbital motion of the electrons and
their spin.

Without a spin wave, that is, when S⊥ = 0, S‖ = 1, the
Hamiltonian takes the form

Ĥ (t) = − h̄2

2me

� + Aσ̂z. (5)

For its eigenfunctions and corresponding eigenvalues we get

ψ�k↓ = V −1/2

⎛
⎝ 0

−1
a

⎞
⎠ exp(i�k�r), ε�k↓(t) = ε�k − A,

(6)

ψ�k↑ = V −1/2

(
1
0

)
exp(i�k�r), ε�k↑(t) = ε�k + A,

where �k = �ikx + �jky + �κkz and �r = �ix + �jy + �κz; �i, �j , and
�κ are unitary vectors of the Cartesian coordinate system; the
arrows ↑ and ↓ correspond to positive and negative projection
of electron spin along the spontaneous magnetization direction
of the FMS, ε�k = h̄2k2/(2me); and V is the normalizing
volume. We use ψ�k↓, ψ�k↑ as base functions. In this basis for
matrix elements of Hamiltonian (3), we have

H (t)�k↑;�k↑ = ε�k + (S‖A); H (t)�k↓;�k↓ = ε�k − (S‖A),

H (t)�k1↑;�k2↓ = −(S⊥A)e−iωt δ�k1;�k2+�q, (7)

H (t)�k1↓;�k2↑ = −(S⊥A)eiωt δ�k1;�k2−�q,

and for matrix elements of the velocity operator υ̂z =
−i(h̄/me)(∂/∂z),

(υz)�k↑;�k↑ = (υz)�k↓;�k↓ = h̄

me

kz. (8)

For consideration of the many-electron problem we introduce
Heisenberg operators a+

�k↑,↓(t) and a�k↑,↓(t), corresponding to
the states defined by (6). Then the Hamiltonian of the many-
electron system takes the form

Ĥ(t) =
∑
�k1,�k2

{[
ε�k1

+ (S‖A)
]
n̂�k1↑(t) + [

ε�k1
− (S‖A)

]
n̂�k1↓(t)

− (S⊥A)e−iωt Ŝ+
�k1↑,�k2↓(t) − (S⊥A)eiωt Ŝ�k2↓,�k1↑(t)

}
. (9)

The operators of current density and electron magnetization
are determined by the formulas

Ĵz(t) = −V −1
∑

�k

h̄|e|
me

kz{n̂�k↑(t) + n̂�k↓(t)}, (10)

M̂z,el(t) = −V −1
∑

�k
μB{n̂�k↑(t) − n̂�k↓(t)}, (11)

where

n̂�k↑,↓(t) ≡ â+
�k↑,↓(t)â�k↑,↓(t),

Ŝ�k2↓;�k1↑(t) ≡ â+
�k2↓(t)â�k1↑(t)δ�k1−�q;�k2

, (12)

Ŝ+
�k1↑;�k2↓(t) ≡ â+

�k1↑(t)â�k2↓(t)δ�k1−�q;�k2
.

and e is the electron charge.
Our final task is to calculate statistical average values of

operators (10) and (11):

Jz(t) = 〈Ĵz(t)〉 = −V −1
∑

�k

h̄|e|
me

kz{〈n̂�k↑(t)〉 + 〈n̂�k↓(t)〉},
(13)

Mz,el(t) = 〈M̂z,el(t)〉 = −V −1
∑

�k
μB{〈n̂�k↑(t) − n̂�k↓(t)〉},

where angle braces denote the statistical average values of
the corresponding operators. In this connection, statistical
averaging is carried out with a density matrix corresponding
to thermodynamic equilibrium, which, as we assume, takes
place in the absence of a CSW at t = −∞. We also assume
that interaction between conduction electrons and the CSW
starts adiabatically slowly from t = −∞ until the current
moment of time. Here, we point out that we are interested in
the stationary value of the current, reached within a time period
much longer than the relaxation time which we consider later.
Therefore, this stationary value of the current is “not sensitive”
to the starting “scenario” of interaction between conduction
electrons and the CSW.

Equations of motion for the statistical average values of
operators (12) can be written as

∂〈n̂�k↑,↓(t)〉
∂t

= ih̄−1〈[Ĥ(t),n̂�k↑,↓(t)]〉 + I rel{〈n̂�k↑,↓(t)〉},
∂
〈
Ŝ�k2↓;�k1↑(t)

〉
∂t

= ih̄−1〈[Ĥ(t),Ŝ�k2↓;�k1↑(t)]〉+ I rel
{〈

Ŝ�k2↓;�k1↑(t)
〉}

,

∂
〈
Ŝ+

�k1↑;�k2↓(t)
〉

∂t
= ih̄−1

〈[
Ĥ(t),Ŝ+

�k1↑;�k2↓(t)
]〉 + I rel

{〈
Ŝ+

�k1↑;�k2↓(t)
〉}

.

(14)

The last terms in (14) represent relaxation terms. The system
of equations (14) can be easily solved if we do not consider
relaxation terms. Taking into account the relaxation processes,
we assume that in each moment of time t the system of
electrons relaxes to the thermodynamic equilibrium state. This
state corresponds to an instantaneous “frozen” distribution of
magnetization in the CSW. A similar approach to relaxation
processes is used for consideration of magnetic resonance
problems.25,26

We denote thermodynamic equilibrium magnitudes in (14)
corresponding to an instantaneous magnetization distribution
in the CSW

〈n̂�k↑,↓(t)〉, 〈
Ŝ�k2↓;�k1↑(t)

〉
,

〈
Ŝ+

�k1↑;�k2↓(t)
〉
. (15)

Relaxation includes both the relaxation proñcess of con-
ductivity electron momentum and the relaxation process of its
spin. We assume that relaxation processes are characterized by
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a common time τ . Therefore the relaxation terms in (14) take
the following forms:

I rel{〈n̂�k↑,↓(t)〉} = − 1

τ
(〈n̂�k↑,↓(t)〉 − 〈n̂�k↑,↓(t)〉),

I rel{〈Ŝ�k2↓;�k1↑(t)
〉} = − 1

τ

(〈
Ŝ�k2↓;�k1↑(t)

〉 − 〈
Ŝ�k2↓;�k1↑(t)

〉)
, (16)

I rel
{〈

Ŝ+
�k1↑;�k2↓(t)

〉} = − 1

τ

(〈
Ŝ+

�k1↑;�k2↓(t)
〉 − 〈

Ŝ+
�k1↑;�k2↓(t)

〉)
.

To find the explicit form of Eqs. (14), it is neces-
sary to derive electron wave functions, corresponding to
an instantaneous magnetization distribution in the CSW.
These functions are eigenfunctions of the Schrodinger
equation,

Ĥ (t)��k,�q,±(t) = ε�k,�q,±��k,�q,±(t), (17)

where t should be read as a parameter, and eigenvalues ε�k,�q,±
are time independent.

The solutions of Eq. (17) are

��k,�q,+(t) = ei�k�r

V 1/2

(
(1 + N2)−1/2eiqz/2

N (1 + N2)−1/2ei(−qz/2+ωt)

)
, (18)

��k,�q,−(t) = ei�k�r

V 1/2

(
N (1 + N2)−1/2eiqz/2

−(1 + N2)−1/2ei(−qz/2+ωt)

)
, (19)

where

N = (S⊥A)−1

{
− h̄2

2

[
kzq

me

+ 2
(S‖A)

h̄2

]

+
√

h̄4

4

[
kzq

me

+ 2
(S‖A)

h̄2

]2

+ (S⊥A)2

}
.

Functions (18) and (19) correspond to the energy bands:

ε�k,�q,± = ε�k + h̄2q2

8me

±
√

h̄4

4

[
kzq

me

+ 2
(S‖A)

h̄2

]2

+ (S⊥A)2.

(20)

In the thermodynamic equilibrium state, only the lower
band ε�k,�q,− is occupied. This corresponds to the situation
when conduction electrons are completely spin polarized in
the initial state (at t = −∞). Based on this fact and using
expressions for ��k,�q,−(t) (19) and for ψ�k↑↓ (6), we can easily
get an explicit expression for (15). Therefore, using (9), (15)
and (16), all the expressions in the system of kinetic equations
(14) will get an explicit form.

The expression for the electrical current density in the limit
t � τ has the form

Jz = −2|e|qω

me

(AS⊥)2τ 2
∫ {

1 +
[ (

h̄2kzq

me

+ 2S‖A − h̄ω

)2

+ 4(S⊥A)2

]
τ 2

h̄2

}−1[(
h̄2kzq

me

+ 2S‖A
)2

+ 4(S⊥A)2

]− 1
2 d�k

(2π )3
. (21)

The expression for Mz,el magnetization in the same limit is

Mz,el = Mz,el |τ=0 −2μBme

|e|h̄q
Jz ≡ μB

∫ (
h̄2kzq

2me

+ S‖A
)

×
[(

h̄2kzq

2me

+ S‖A
)2

+ (S⊥A)2

]− 1
2

d�k
(2π )3

− 2μBme

|e|h̄q
Jz. (22)

In (21) and (22) the domain of integration by �k is limited by
the surface ε�k,�q,− = const, where the value of const is defined
by the electron concentration. The integral term in (22) does
not depend on ω and represents the electron gas magneti-
zation Mz,el |τ=0 corresponding to “frozen” magnetization in
CSW.

Expressions (21) and (22) are the solution of the problem.
As may be shown, Jz is an odd function of ω and q. It is
evident from (21) that Jz|τ=0 = 0, that is, in the case of “strong”
relaxation (τ → 0), the steady current is 0. Let us note that
electron gas magnetization depends directly on the electrical
current, (22). This demonstrates an interaction between the
orbital motion of the conduction electrons and their spin. It
constitutes the physical essence of the effect.

Under the condition

h̄

τ
,h̄ω,

h̄2kzq

me

� 2A, (23)

the formulas for electrical current (21) and magnetization (22)
are simplified:

Jz � −|e|nυF

(
q

kF

) (
h̄ω

A

)
S2

⊥, (24)

Mz,el � μBnS‖ − 2μBn

(
h̄ω

A

)
S2

⊥, (25)

where υF = h̄kF /me is the Fermi velocity. We can see that
expression (24) corresponds to the first nonzero term in (21)
in the case of small values of h̄qω/(kF A). The physical sense
of conditions (23) is discussed in Ref. 18.

The first term on the right-hand side of (25) is Mz,el |τ=0.
The second term on the right-hand side of (25) represents the
contribution of �S(�r,t) vector rotation (with ω frequency around
the z axis) to Mz,el magnetization. This contribution does not
depend on q. It is similar to the well-known contribution to
the spin system magnetization under the action of a rotating
uniform magnetic field.25 To avoid ambiguity, we note that the
absence of dependence on τ in expressions (24) and (25) is
the direct consequence of relations (23). It makes sense to
rewrite (24) using the CSW power flux density expression,
which we can easily get by using (2):

Pz �
(

2μBk2
BT 2

c S2
⊥

a2M0h̄

)
q3. (26)

As a consequence of (26), the current density expression (24)
takes the compact form

Jz �
( |e|h̄2na

4mekBTcA

)
Pz. (27)
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Let us carry out numerical estimations for the considered
effect in a degenerate FMS, CdCr2Se4, where 2A � 0.5 eV,
Tc ∼ 130 K, a = 10−7 cm, me � 10−27 g, and M0 ∼ 3.5 ×
102 G.18,27 For an electron concentration n ∼ 1020 cm−3, kF

is about 107 cm−1. A typical value of spin relaxation time τ

is 10−14 s at T ∼ 102 K and τ increases with decreasing T .27

As can be observed for a CSW, q < 106 cm−1,27 we assume
that q � 106 cm−1; then from (2) we get ω � 1010 Hz at
q � 106 cm−1. For such parameters, conditions (23) are true.

We assume that Pz ∼ 1 W/cm2, which corresponds to S⊥ ∼
10−1 at q ∼ 106 cm−1, and we get Jz ∼ 1 A/cm2. Note that
S⊥ ∼ 10−1 corresponds to a sufficiently high amplitude of the

CSW, and this justifies the initial consideration of the CSW as
the classical object.

Thus the magnitude of the effect is quite sufficient for
experimental observation. In conclusion, let us note that
our calculation procedure can be easily modified to make
it appropriate for calculation of the corresponding effect in
ferromagnetic metals, where the Fermi energy exceeds the
energy of the s-d exchange.
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