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Pressure-induced transitions in solid nitrogen: Role of dispersive interactions
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We have investigated the transition from molecular to fully covalent phases of solid nitrogen with an advanced
ab initio quantum-mechanical method for crystals that rigorously describes weak dispersive interactions. It is
demonstrated that the thermodynamic domain of stability of the cubic gauche phase (a promising high-energy-
density material) extends down to pressures of about 60 GPa and that the high experimental transition pressure
of 110 GPa is largely due to kinetic barriers which prevent the dissociation of triply bonded N2 molecules. The
role of temperature is complex: it helps the kinetics of the transition to fully covalent phases while it stabilizes
the molecular phases through the entropic term.
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Nitrogen is the only element of the fifth group of the
periodic table that crystallizes into molecular instead of fully
covalent phases at standard conditions. So far, the existence
of 10 different molecular phases of nitrogen can be inferred
from the experiment, even if a reliable structural refinement is
available just for 5 of them: α, β, γ , δ, and ε.1 Such phases
consist of triply bonded N2 monomers, held together by weak
van der Waals interactions. The pressure-induced dissociation
of N2 molecules into “polymerized” fully covalent phases
of solid nitrogen was suggested to occur at relatively low
pressures by means of ab initio simulations;2,3 in particular,
the cubic gauche (cg) structure was predicted to become
more stable than the ε one at ∼30 GPa within the simplest
formulation (local density approximation) of density func-
tional theory (DFT) at the zero-temperature limit.4 Nitrogen
is commonly considered to be an inert element because of
the extraordinary stability of the triple bond of its diatomic
molecules. Precisely because of the large difference in energy
between a single N−N and a third of a triple N≡N bond, the
fully covalent cg phase has been proposed as a high-energy-
density material (HEDM) for applications such as propellant
and explosive.5 The potentialities of cg nitrogen as a practical
HEDM were early supported by simulations that proved its
metastability at ambient pressures6 and have been recently
confirmed by a study that highlights its exceptional mechanical
properties.7

These predictions have stimulated a lot of experimental
work aimed at the synthesis of polymeric nitrogen8,9 and in
2004, Eremets and et al. finally succeeded in synthesizing the
cg structure at high pressure, 110 GPa.10 Simulations have
predicted a much lower value of the transition pressure from
the molecular phases to the cg fully covalent one. In particular,
two independent studies,11,12 where a more sophisticated
formulation of the DFT (generalized gradient approximation)
is adopted, report a transition pressure of ∼55 GPa in the
low-temperature region of the phase diagram.

Before drawing any conclusion concerning the large dis-
crepancy between the observed and the predicted transition
pressures, three aspects have to be critically discussed:12 (i)
Is standard DFT a reliable technique for the investigation of
such a transition? (ii) Is ε the proper molecular phase to be
adopted in the simulations? (iii) Can the effect of temperature

be considered purely kinetic? These questions arise from three
facts: (i) standard DFT is known to describe incorrectly the
dispersive (i.e., van der Waals) interactions that play a clearly
crucial role here; (ii) there is evidence of the existence of at
least another molecular phase (ζ ) that is more stable than ε

at high pressures;13 (iii) in principle, temperature could play a
relevant thermodynamic role as well.

In this Brief Report, we study theoretically the transition
from molecular to fully covalent phases of solid nitrogen
by analyzing all the above-mentioned open points with two
quantum-mechanical methods for crystals, which are capable
of a correct description of weak dispersive interactions.

To achieve accurate dispersion energies, correlated
ab initio methods are required. The Hartree-Fock (HF) method
correctly describes the Fermi correlation among electrons
with the same spin while it does not take into account the
instantaneous Coulomb correlation of the electronic motions,
that is the source of dispersive interactions. The standard DFT
formalism, which is commonly adopted in solid state physics
to get rid of the limitations of the HF approximation, includes
an approximate treatment of electron correlation but not
dispersion, due to the short-ranged nature of the functionals.

Wave-function-based techniques can recover a significant
portion of the missing Coulomb correlation: this is the case,
for instance, of many-body-perturbation-theory, truncated at
order n (i.e., Møller-Plesset method, MPn), or coupled cluster
techniques. At variance with DFT, these techniques provide
a good description of weak dispersive interactions,14–17 also
when transitions between chemically different phases are
considered (see, for instance, the case of cubic and hexagonal
boron nitride).18 While this strategy is quite routinely used
in molecular quantum chemistry, only recently, it has become
feasible also for solid-state applications.

Two quantum-mechanical methods are used here that
explicitly embody the description of dispersive interactions:
(i) a fully periodic MP2 method;19–22 (ii) the hybrid DFT
technique in its B3LYP formulation, augmented with a recently
proposed empirical dispersion term (D),23 reparametrized for
molecular crystals (to be referred to in the following as DFT-
D).24,25 The latter method can serve as an independent check of
the results obtained with the ab initio MP2 scheme and it allows
for the solution of the nuclear motion equation in a harmonic
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approximation and for the evaluation of the corresponding
temperature-dependent thermodynamic properties.

We have recently applied both methods to the study of
the experimentally well-characterized low-temperature low-
pressure region of the phase diagram of nitrogen (i.e., where
molecular phases are stable), in order to investigate their
merits and limitations in describing dispersive interactions.26

Reference is made to that work for computational details;
in particular, the role of the quality of the basis set of
Gaussian functions has been extensively discussed. Three
molecular phases have been considered which are stable
at zero temperature: the cubic α, the tetragonal γ , and
the rhombohedral ε with 4, 2, and 8 molecules per cell,
respectively. The computed equilibrium geometries, cohesive
energies (corrected for zero-point motion), bulk moduli,
Grüneisen’s parameters, pressure-volume curves, and volume
losses at the transition have been found in a good agreement
with the experiment. Of particular relevance to our discussion
are the MP2 simulated transition pressures between such
purely dispersively bonded crystals: 0.42 GPa for the α → γ

and 2.25 GPa for the γ → ε transition with experimental
values of 0.36 and 2.00 GPa, respectively.27,28

The thermodynamic state function which dictates phase
transitions is the Gibbs free energy. Its estimate in the present
work can be expressed as follows:

GX(V,T ; φ) = EX
el (V ; φ) + Evib(V,T ; φ)

+PV − T Svib(V,T ; φ). (1)

Here X is the technique adopted (MP2 or DFT-D) for
computing the electronic energy EX

el (V ; φ) of a given phase
(φ) for a given volume (V );29 Evib(V,T ; φ) and Svib(V,T ; φ)
are the vibrational contributions to the internal energy and
entropy at the temperature T , respectively, estimated using the
harmonic model and the vibrational spectrum resulting from
the DFT-D calculations; finally, pressure (P ) and volume are
related to each other through the relationship:

P = − ∂

∂V

[
EX

el (V ; φ) + Evib(V,T ; φ)
]
S
. (2)

The derivative is analytically evaluated after fitting the energy-
versus-volume data with the Murnaghan’s equation of state.30

Figure 1 is indicative of the kind of calculations performed
in the present work. Ten configurations, corresponding to
different volumes, have been considered for both the ε and cg
phases; for each configuration, EMP2

el (V ; φ) has been computed
with a correlation-consistent triple-ζ basis set, as discussed in
Ref. 26. After fitting both experimental and computed data to
Murnaghan’s equation of state, our theoretical determination
of the bulk modulus B0 and the zero-pressure atomic volume
V0 of the cg phase (327 GPa and 6.61 Å3) can be compared
with their experimental counterparts (298 GPa and 6.59 Å3);10

the agreement is noteworthy. As is clear from Fig. 1 and
from Eqs. (1) and (2), the ε → cg transition pressure at zero
temperature can be graphically represented by the slope of
the tangent to the two curves, by neglecting the difference
in the zero-point energy between the two phases.31 The MP2
estimated value is 62 GPa that is, ∼10–30 GPa higher than
that predicted by standard DFT in several formulations.32

FIG. 1. Energy versus volume curves as obtained by fitting
the computed MP2 data to the Murnaghan’s equation of state. The
reported data for the ε molecular phase (thin solid line) and for the
cg fully covalent phase (thick solid line) are energy differences with
respect to the equilibrium energy of the α phase. The values (E1,V1)
and (E2,V2) are those where the two phases have the same Gibbs
energy. The transition pressure Pt is graphically represented by the
slope of the tangent to the two curves (dashed line). All data are per
atom.

For a comprehensive discussion of the various points raised
above, reference will now be made to the data in Fig. 2.
The various curves report, as a function of pressure, the
difference 
GX in Gibbs free energy with respect to the
cg phase, estimated using the same method and at the same
temperature.

Let us first discuss the influence of the quantum-mechanical
method adopted, by comparing the zero-temperature data
concerning the ε phase, obtained with the two theoretical
models. From inspection of Fig. 2, it is clear that the description
of the pressure dependence of the enthalpies of the two
phases is equal for MP2 (thick solid line) and DFT-D (thin
solid line), the only difference between the two being a
slight rigid shift in the energy axis. The transition pressure,
graphically represented by the crossing with the zero line in
the figure, is 62 and 63 GPa in the two cases. The effect
of taking into account van der Waals interactions is that
of widening the thermodynamic domain of stability of the
molecular phases, but not to an extent that could explain the
high transition pressure observed experimentally (>110 GPa),
thus suggesting that large kinetic barriers could be responsible
for such a discrepancy. Nevertheless, as mentioned above,
before validating such a conclusion, both the effect of the
considered molecular phase and the role of temperature should
be rigorously investigated.

We now address the problem of the adopted molecu-
lar phase in the simulations. The transition pressure from
molecular to fully covalent phases of solid nitrogen is
largely dominated by the different typologies of bonding
interactions which take place in the structures involved; as
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FIG. 2. (Color online) Gibbs free energy per atom as a function of
the pressure. The reported data are differences with respect to the cg
phase. The MP2 curves for the ε and ζ phases are represented by the
thick solid and dashed lines, respectively. DFT-D data for the ε phase
are reported as a red thin solid line. Data are also reported for some
finite temperatures as obtained at DFT-D level for the ε phase (red
thin solid lines in the low-pressure region where they have actually
been computed). The two insets show the crystalline structure of the
rhombohedral ε phase (space group R3c) and the fully covalent cg
phase (space group I213).

already pointed out by other authors,12 it sounds implausible
that another molecular phase could exist with an enthalpy
so different from the other molecular phases to justify a
transition pressure above 100 GPa. However, through infrared
and Raman spectroscopy, there are evidences of the existence
of an intermediate molecular phase, ζ , between ε and cg in the
low-temperature region of the phase diagram.13 The structure
of the ζ phase is still unknown; nevertheless, experimental
observations indicate a group-subgroup relation with the ε

phase and the same number of molecules per primitive cell.
A monoclinic C2/c symmetry has recently been proposed for
that phase along with a description of the possible structural
transition mechanism which links the ε to the cg phase,
through ζ .1

We have calculated the GX(V,0; ζ ) function using both the
MP2 and the DFT-D method. The resulting 
GMP2 data are
reported in Fig. 2 as a dashed line. In the low-pressure region
of the figure, a crossing between the ε and the ζ curves occurs
at 19 GPa which represents the ε → ζ transition pressure in
the zero-temperature limit (the experimental value is known
to be in the range 16.5–19 GPa).1,13 Beyond this crossing, the
two curves run almost parallel, thus confirming the expected
similarity between the pressure dependence of the enthalpies of
these two molecular phases. The ζ curve crosses the horizontal

line at 64 GPa which represents the MP2 ζ → cg transition
pressure (the corresponding DFT-D value is 66 GPa). The
thermodynamic transition pressures computed for the ε → cg
and for the ζ → cg transitions are found to be almost identical,
thus proving that the structure of the starting molecular phase
cannot reliably be considered a significant factor in explaining
the high experimental transition pressure from molecular to
fully covalent phases of solid nitrogen.

The last factor to be discussed is temperature. From the
experiments, its effect is known to be relevant as concerns the
kinetics of the molecular → fully covalent phase transition in
solid nitrogen: (i) there is a strong dependence from T of the
observed transition pressure (to a fully covalent amorphous
phase) in the low-temperature (T < 700 K) region of the
experimental phase diagram;33 (ii) the transition to the cg phase
occurs only at T > 2000 K.10 In Fig. 2, we report 
GDFT-D

data obtained for the ε phase at different temperatures: 300,
600, 1000, and 2000 K in a range of pressures from 0 to
20 GPa where our computed data are maximally reliable. It has
been suggested that the entropic term −T S would favor fully
covalent with respect to molecular phases of solid nitrogen as
they are more “dissociated”.33 From Fig. 2, however, it clearly
emerges that with increasing temperature, the molecular phase
is strongly stabilized by the entropic term with respect to the
fully covalent phases. The role of temperature is then found
to be complex: from the one hand, it helps the transition by
favoring its kinetics while from the other hand, it stabilizes the
molecular phases through the entropic term. From the relative
slope of such curves, we can argue that the entropic gain of
the molecular phases reduces while the pressure increases.

In conclusion, this paper shows how the MP2 technique for
the ab initio description of weak van der Waals interactions
provides a reliable insight on the transition from molecular to
fully covalent phases of solid nitrogen. The thermodynamic
domain of stability of the fully covalent cg phase (a potential
HEDM) is found to extend down to 63 GPa in the low-
temperature region of the phase diagram. The high transition
pressure that is observed in the experiments is reproduced
neither by accurately describing dispersive interactions nor
by considering a different starting molecular phase. These
findings help to strengthen the hypothesis of the kinetic
origin of such a high transition pressure, due to the large
activation barriers which prevent the dissociation of strongly
bonded N2 molecules. Let us stress that, within the frame of
ab initio solid-state quantum chemistry, the possibility of
directly handling the kinetics of such a transition (i.e., of
estimating its activation energy) usually passes through the
search of an adequate transition state, following standard
techniques described in Ref. 34. From this work, it appears
that the values of 110 GPa and 2000 K in the transition from
molecular to fully covalent phases can be considered as the
result of a balance between two opposite effects: a temperature
increase hinders the transition from an entropic point of view
while working kinetically in the opposite direction by favoring
the dissociation of triply bonded N2 molecules.
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