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Surface plasmons and topological insulators
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We study surface plasmons localized on interfaces between topologically trivial and topologically nontrivial
time reversal invariant materials in three dimensions. For the interface between a metal and a topological insulator
the magnetic polarization of the surface plasmon is rotated out of the plane of the interface; this effect should
be experimentally observable by exciting the surface plasmon with polarized light. More interestingly, we argue
that the same effect also is realized on the interface between vacuum and a doped topological insulator with
nonvanishing bulk carrier density.
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I. INTRODUCTION

Surface plasmons are localized excitations traveling along
the interface between two materials.1,2 Classically they are
only possible if one of the two materials has a real but negative
permittivity ε, while the other material has real and positive
permittivity, for example, can be taken to be vacuum. A typical
example of a material with negative ε is an idealized metal
described in terms of a gas of free electrons with

ε(ω)

ε0
= 1 − ω2

p

ω(ω + iγ )
, (1)

where ω2
p = nee

2

mε0
is the plasma frequency (with ne being the

number density of electrons and m their effective mass). The
γ damping term is a small positive quantity setting the dc
conductivity of the metal. For the ideal (γ = 0) Drude gas, this
frequency dependent ε is negative for ω < ωp. The description
in terms of a free electron gas is typically a good description
of metals for sufficiently large ω.

In this work we study the properties of these surface
plasmons when they are localized on a topologically nontrivial
interface. In three spatial dimensions a time reversal invariant
band insulator is characterized by a Z2 valued index charac-
terizing the topology of the band structure.3,4 The low-energy
effective description of such a material contains a topological
θ �E · �B term5 leading to modified constitutive relations for
Maxwell’s equations in matter. The parameter θ is quantized
to take values that are integer multiples of π . By a topologically
nontrivial interface we mean an interface across which θ

jumps.
The simplest topologically nontrivial interface that supports

surface plasmons is the interface between a topological
insulator and a metal. ε is real and positive in the insulator
and, for a range of frequencies, can be taken to be real
and negative in the metal. We show that in this case the
polarization of the surface plasmon experiences a nontrivial
rotation due to the jump in θ across the interface: while for
a standard metal/insulator interface the surface plasmon is
entirely “transverse magnetically” (TM) polarized, with both
�B and �H lying in the plane of the interface (as well as
orthogonal to the direction of propagation of the surface wave),
in the topologically nontrivial case the magnetic field is rotated
out of the plane of the interface by an angle νp ∝ α	θ .

A much more interesting realization of a topological
interface is possible if the material with nonvanishing θ itself
is displaying a permittivity of the form (1). This may occur
if a material exhibiting the topological band structure of a
topological insulator has, via doping, acquired a finite bulk
carrier density. In fact, basically all experimentally realized
3d TI materials, such as BI1−xSbx alloys,6,7 Bi2Se3, and
Bi2Te3

8–10 have a nonvanishing bulk carrier density. This is
often seen as a major obstacle to observing the effects predicted
by the low-energy description of a topological insulator in
terms of an effective theory containing the topological θ �E · �B
term. It has however recently been argued11,12 that even in
gapless materials one can still meaningfully define topological
indices based on the band structure; so correspondingly the
topological term in the low-energy effective action should still
survive. These doped topological insulators (or “topological
metals”) should be described by a low-energy effective action
containing the standard quantized θ associated with the
topological band structure together with an ε(ω) appropriate
for a conductor, that is for example of the form (1). Latter is
accounting for the free charge carriers. As we will show, such
a description will lead to a unique modification of surface
plasmon properties, most notably a nonvanishing νp.

This effective field theory approach is limited to low
frequencies. First one has integrated out modes with energy
larger than some energy Egap = h̄ωgap. These high-energy
modes had a topological nontrivial band structure and so
generated a nontrivial θ term. The remaining dynamical
degrees of freedom, the free charge carriers, are taken into
account in terms of ε(ω). The main focus of our work is on
the range of frequencies where ε(ω) is real and negative. In
the Drude model we are for example looking at γ � ω < ωp.
As long as there is a hierarchy between γ and ωgap, that is
γ � ωgap, there exists a range of frequencies for which our
effective description is valid for the range of frequencies in
which the novel surface phenomena we describe here occur.
Furthermore, the effective field theory description is only
valid if the massless surface modes are in fact gapped by
an external T-breaking deformation. One simple experimental
way to introduce such a deformation is an external magnetic
field Bz orthogonal to the interface. Surface plasmons in the
presence of external magnetic fields are well understood.13–15

In particular, for an external field orthogonal to the interface
one also finds a nonzero νp which vanishes as Bz is taken
to zero. By measuring νp as a function of Bz one can find
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the topological νp as the constant offset one approaches as
Bz → 0. This offset has equal magnitude but opposite sign
depending on whether Bz approaches zero from above or
below. The experimental signature for identifying νp is hence
in complete parallel to the proposal of Ref. 5 for measuring
the Faraday and Kerr rotations associated with topologically
nontrivial interfaces between two insulators.

The organization of this paper is as follow. In the following
section we will review the classical theory of surface plasmons.
In Sec. III we then work out the corresponding equations for the
case of a topologically nontrivial interface. Most importantly,
we obtain an expression for νp . In Sec. IV we discuss important
generalizations. In particular, we discuss external magnetic
fields and discuss the behavior of νp as a function of Bz.
We also discuss the Kerr effect in the case of a topological
nontrivial metal/insulator interface.

II. REVIEW OF SURFACE PLASMON PROPERTIES

To find a surface plasmon mode we look for a solution to
Maxwell’s equations that propagates along the interface but
is exponentially damped away from the interface. With the
interface at z = 0 we can take the direction of propagation of
the wave, without loss of generality, to be the x direction.

There are two polarizations of surface plasmon modes that
can in principle be constructed, even though typically only
one of them is possible, as we will explain. Let us first look
at “transverse magnetic” (TM) modes. That is we are looking
for a solution of the form

�Hi = H0 êy ei(kxx−ωt)eikz
i z = H0 êy ei(kxx−ωt)e−κz

i |z|, (2)

where the subscript i=>, < refers to the two regions z > 0 and
z < 0. We indicated that for the plasmon to be localized we
need kz

i = iκz
i to be purely imaginary with positive (negative)

imaginary part for z > 0 (z < 0). Solving Maxwell’s equations
with this ansatz yields the standard dispersion relation

k2
x + (

kz
i

)2 = k2
x − (

κz
i

)2 = ω2

c2
i

= εiμiω
2. (3)

To completely specify the solution we need to impose
the standard interface boundary conditions following from
Maxwell’s equations, requiring continuity of H‖, E‖, D⊥,
and B⊥. Continuity of H‖ was built into our ansatz. For
topologically trivial materials we have the simple constitutive
relations

�D = ε �E, �H =
�B
μ

(4)

so �B is aligned with �H and �D with �E. The transverse magnetic
mode B⊥ vanishes and so continuity is trivial. From Maxwell’s
equations we finally have

�E = −k̂ × (c �B), �D = −k̂ ×
�H
c

(5)

so (using k̂ = c�k/ω)

�Di =
(
kz
i H0

)
êx − (kxH0) êz

ω
ei(kxx−ωt)eikz

i z. (6)

As the coefficient of êz is identical on both sides of the
interface, continuity of D⊥ is automatically satisfied. Last but
not least, continuity of E‖ demands

kz
>

ε>

= kz
<

ε<

. (7)

To get the desired solution localized at the defect with opposite
signs for kz

i , we clearly need one of the εi to be negative
(assuming they are real). As we will see, a propagating surface
plasmon solution (meaning kx real, kz purely imaginary) can
only be found if we do not just have opposite signs for the two
ε but satisfy the slightly stronger condition that

ε> + ε< < 0. (8)

The analysis for the transverse electric polarization starts with

�Ei = E0 êy ei(kxx−ωt)e−|κz
i |z (9)

and proceeds in parallel to above. One finds that this time
μ will have to take opposite signs on the two sides of the
interface for this mode to exist. This is much harder to achieve
in practice (even though for certain frequencies it can be done
in metamaterials). For the rest of this work we are going to
assume that all μ are real and positive and so no transverse
electrically polarized surface plasmons exist.

Once the surface plasmon condition (7) is met, one can solve
for the properties of the surface plasmon using (7) together
with the dispersion relation (3):

kx = ω

√
ε>ε<(ε>μ< − ε<μ>)

(ε> + ε<)(ε> − ε<)
≈ ω

√
μ

ε>ε<

(ε> + ε<)
, (10)

where in the last step we specialized to the case μ> ≈ μ< = μ.
Last but not least (for equal μ)

κi =
√

−με2
i

ε> + ε<

. (11)

We see that, as we advertised above, propagating surface
plasmons exist for real εi when ε>ε< < 0 (the two have
opposite signs) and in addition ε> + ε< < 0 (the negative ε

is larger in magnitude).
As an example, take an interface between vacuum (ε> = ε0,

μ> = μ0) and a simple ideal Drude metal, that is μ< = μ0

and ε< being given by the Drude relation (1) with γ = 0. The
resulting surface plasmon dispersion relation is

kx(ω) = ω

c

√
ω2 − ω2

p

2ω2 − ω2
p

,

(12)

ω2(kx) = ω2
p

2
+ c2k2

x −
√

ω4
p/4 + c4k4

x.

This solution describes the propagating surface plasmon which
exists for 0 < ω < ωp/

√
2. There is a second propagating

solution for ω2 with a + sign in front of the root that exists for
ω > ωp. This is simply a propagating bulk wave in the Drude
metal, which for ω > ωp has a positive ε. No propagating
solutions exist in the window ωp/

√
2 < ω < ωp. The whole

spectrum is displayed in Fig. 1. For small nonzero γ the very
low-frequency region with ω ∼ γ experiences some damping.
For sufficiently small γ the ideal Drude analysis of the surface

245432-2



SURFACE PLASMONS AND TOPOLOGICAL INSULATORS PHYSICAL REVIEW B 83, 245432 (2011)

0.0 0.5 1.0 1.5 2.0
c kx

0.5

1.0

1.5

2.0

ω
ωp

FIG. 1. (Color online) Dispersion relation for the surface plasmon
(thick solid red line) and the bulk plasmon (thin solid blue) for a planar
interface between an ideal Drude metal (γ = 0) and vacuum. Also
indicated are the lines ω = ckx (black dotted line), ω = ωp (thin
dashed blue line), and ω = ωp/

√
2 (thick dashed red line).

plasmon applies in the regime γ � ω � ωp/
√

2. For very
large kx (of order of the Fermi momentum kf of the free
charge carriers), where ω → ωp/

√
2, the simple model also

breaks down. We can no longer treat the metal in terms of
a local permittivity ε and need to take into account nonlocal
effects.

III. SURFACE PLASMONS IN TOPOLOGICAL
INSULATORS

In SI units the constitutive relations for a topological
insulator read

�D = ε �E − ε0α
θ

π
(c0 �B),

(13)

c0 �H = c0 �B
μ

+ α
θ

π

�E
μ0

with c−2
0 = μ0ε0 being the vacuum speed of light. The

description of a TI in terms of the modified constitutive
relations incorporating the topological magnetoelectric effect
is only valid when the massless topological surface modes are
gapped. One option for a time-reversal breaking deformation
that gaps the surface modes is an external magnetic field in
the z direction. In this section we will first demonstrate the
effect of the modified constitutive relations without explicitly
including an external magnetic field. As for Faraday and Kerr
rotation, measuring the surface plasmon dispersion relation
as a function of external magnetic field is an experimentally
easy to define way to pinpoint the topological properties of the
material.

There are two configurations we are interested in: (A)
the interface between a genuine topological insulator and a
metal and (B) the interface between vacuum and a topological
“insulator” with a nonvanishing bulk conductivity. For (A) we
have a positive ε inside the TI while ε in the metal can be
negative, supporting the surface plasmon. For (B) we have
ε = ε0 positive for vacuum, but ε< inside the conducting
TI can be negative, again supporting a surface plasmon.

Doing the analysis for general ε> and ε< and 	θ = θ< − θ>

automatically includes both cases.
We start with the most general wave ansatz for �E, allowing

both for TE and TM polarizations; it is easy to see that a ansatz
that is purely TM or purely TE on both sides of the interface
is too restrictive to allow solutions:

�Ei =
[
E0 êy + ciE

i
1

ω
(kx êz − kz

i êx)

]
ei(kxx−ωt)eikz

i z. (14)

Once more we are interested in a solution where kz
i is purely

imaginary with opposite signs on the two sides of the interface.
Our ansatz builds in continuity of Ey , continuity of Ex gives
us a nontrivial condition on the TM polarization:

c>E>
1 kz

> = c<E<
1 kz

<. (15)

Maxwell’s equations themselves are unmodified (only the
constitutive relations were changed). Furthermore, we still
have plane wave solutions with the dispersion relation (3) and
the relations between �E and �B ( �D and �H ) of (5). So we get in
analogy with (6)

�Bi =
[

(kxE0) êz − (
kz
i E0

)
êx

ω
− Ei

1

ci

êy

]
ei(kxx−ωt)eikz

i z, (16)

where we had to use the dispersion relation (3). Continuity of
B⊥ = Bz is automatically satisfied. �D and �H follow from the
constitutive relation (13). Continuity of D⊥ requires

ε>c>E>
1 − ε0α

θ>

π
(c0E0) = ε<c<E<

1 − ε0α
θ<

π
(c0E0) (17)

which, using our earlier relation (15) can be used to solve for
the TE to TM amplitude ratio (	θ = θ< − θ>) :

E<
1 = α(	θ/π )ε0c0

c<[ε< − ε>(kz
</kz

>)]
E0. (18)

Last but not least, continuity of H‖ gives us two more
conditions, one for the x

kz
>

(
E0

μ>

+ α
θ>

π

c>E>
1

μ0c0

)
= kz

<

(
E0

μ<

+ α
θ<

π

c<E<
1

μ0c0

)
(19)

and one for the y component

− E>
1

c>μ>

+ α
θ>

π

E0

μ0c0
= − E<

1

c<μ<

+ α
θ<

π

E0

μ0c0
. (20)

Reassuringly the condition on Hy is redundant with what
we found above in (18) from the continuity of D⊥. The Hx

condition can be solved by a relation similar to (18) for the TE
to TM amplitude ratio:

E<
1 = μ<(kz

>/kz
<) − μ>

α(	θ/π )μ>μ<c<

μ0c0 E0. (21)

For the two equations relating TE and TM amplitude, (18) and
(21) to be simultaneously satisfied we need(

α	θ

π

)2
ε0μ>μ<

μ0
= [ε< − ε>(kz

</kz
>)][μ<(kz

>/kz
<)−μ>].

(22)
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For 	θ = 0 this nicely yields two polarizations, the standard
equations for our TM polarized surface modes (7) as well as
the magnetic analog with TE polarization and

μ<kz
> = μ>kz

<. (23)

As mentioned before, latter would require negative μ and so
typically this TE surface plasmon is not realized. Including the
effects of 	θ the two solutions become:

x ≡ kz
<

kz
>

= 1

2

{ (
α	θ

π

)2
ε0μ<

ε>μ0
+ ε<

ε>

+ μ<

μ>

±

√√√√−4
ε<μ<

ε>μ>

+
[(

α	θ

π

)2
ε0μ<

ε>μ0
+

(
ε<

ε>

+ μ<

μ>

)]2}
.

(24)

For 	θ = 0 this correctly reduces to kz
</kz

> = ε</ε> and
kz
</kz

> = μ</μ>, respectively. For materials with no signif-
icant magnetism (μ ∼ μ0) the latter does not give rise to a
propagating surface plasmon. Specializing to μ> = μ< = μ0,
(24) simplifies to

x ≡ kz
<

kz
>

= 1

2

{(
α	θ

π

)2
ε0

ε>

+ ε<

ε>

+ 1

±

√√√√−4
ε<

ε>

+
[(

α	θ

π

)2
ε0

ε>

+
(

ε<

ε>

+ 1

)]2}
. (25)

To see how this affects the dispersion relation note that for
any surface plasmon-like solution with μ> = μ< = μ0 we
get directly from the dispersion relations (3)

kx = ω

√
μ0

ε< − x2ε>

1 − x2
, (26)

where for us x will be given by the negative sign solution of
(25). Taking α = 1/137, 	θ = π and one ε to be ε0, while the
other is given by the ideal (γ = 0) Drude formula (1) leads to
a dispersion spectrum that is almost indistinguishable from the
one plotted in Fig. 1 for the topological trivial case (as απ �
1). One can however notice some quantitative differences. One
interesting effect is that the asymptotic (large kx) frequency
of the surface plasmon shifts from its Drude value of ω∞ =
ωp/

√
2 to

ω∞ = ωP√
2

1√
1 + (

α	θ
2π

)2
. (27)

The most notable and probably experimentally most easily
accessible feature is that the polarization of the surface
plasma wave is altered. Unlike the O(α2) modifications to the
dispersion relation this change in polarization occurs already
at O(α). Furthermore, it is sensitive to the sign of 	θ and so it
will change direction as the external T-breaking deformation
that gapped the massless fermionic surface modes changes
sign. While in the topological trivial case the surface plasmon
wave is completely polarized in the TM direction and corre-
spondingly �E · êy ∼ E0 = 0 in the topological nontrivial wave

the surface plasmon acquires a nonvanishing TE component
given by (18)

tan(νp) ≡ E0

E<
1

= c<(ε< − ε>x)

α(	θ/π )c0ε0

= α	θ

π

c<ε<

c0(ε> − ε<)
+ O

[(
α	θ

π

)2
]

. (28)

This angle should be measurable experimentally by trying to
couple polarized light into surface plasmons. Surface plasmons
cannot directly be excited by light; the plasmon dispersion
curve always lies below the dispersion of light, so there is
no direct coupling of light into plasmons. But it is well
known how to circumvent this problem: coupling the light
via a grating16 or, equivalently, through a rough surface
allows Umklapp processes that can change the momentum
of the photon to couple to the surface plasmon. Alternatively,
“attenuated total reflection” can be employed17,18 to provide
the incoming radiation with an imaginary wave vector in the
direction perpendicular to the surface. In either case, tuning
the polarization of the incoming radiation one should find a
maximum in the light-plasmon coupling when the polarization
of the external light has maximal overlap with the polarization
of the allowed plasmon modes as characterized by νp.

IV. GENERALIZATIONS: EXTERNAL FIELDS AND KERR
EFFECT

A. External magnetic fields

The effective field theory description in terms of the
modified constitutive relations (13) is only valid if the surface
modes are gapped by an external, T-breaking perturbation. In
particular, whether θ should be taken to be +π or −π depends
on the sign on the external perturbation. Note that while the
modification of the plasmon dispersion relation only depends
on (	θ )2 and so is insensitive to the sign of θ , the plasmon
polarization angle νp of (28) actually changes sign as θ changes
from π to −π and so is sensitive to the external T-breaking
perturbation.

A simple way to gap the surface modes is to turn on an
external magnetic field perpendicular to the interface �Bext =
Bzêz in our case. The sign of Bz determines the sign of θ

and hence the sign of νp. An external magnetic field will
also give rise to a nontrivial νp that grows with the magnetic
field.13–15 The effect of the orthogonal magnetic field is to
modify the constitutive relations, as ε depends on Bz. Most
notably, magnetic fields force us to treat ε as a tensor and,
in particular, give rise to a nontrivial εxy . For the ideal Drude
metal one has for example

ε = ε0

⎛
⎜⎜⎜⎝

1 + ω2
p

ω2
c−ω2 i

ωcω
2
p

ω(ω2−ω2
c ) 0

−i
ωcω

2
p

ω(ω2−ω2
c ) 1 + ω2

p

ω2
c−ω2 0

0 0 1 − ω2
p

ω2

⎞
⎟⎟⎟⎠ . (29)

The resulting linear equations for the surface plasmon turn out
to be rather cumbersome, but the general solution has been
presented quite comprehensively in Ref. 15. The details of the
analysis are not important for us, but the crucial point is that

245432-4



SURFACE PLASMONS AND TOPOLOGICAL INSULATORS PHYSICAL REVIEW B 83, 245432 (2011)

νp is nonzero at finite Bz. While it in general depends on Bz

in a nonlinear fashion, it does nicely go to zero as Bz goes to
zero.

So in order to experimentally measure the topological
properties of the plasmon we can follow the same strategy
as proposed in Ref. 5: one needs to measure νp as a function
of external magnetic field. For topologically trivial interfaces
(	θ = 0) νp will go to zero linearly with Bz for small Bz,
whereas for a topologically nontrivial interface it will tend
to a constant. This constant has opposite sign depending on
whether we dial Bz to zero from Bz > 0 or from Bz < 0.
Around Bz ∼ 0 the polarization experiences a rapid transition
from νp given by (28) to −νp.

B. Kerr effect

For constant (that is frequency independent) ε and μ it
was shown5,19 that light reflecting off a topological nontrivial
interface experiences a nontrivial Kerr rotation of its polariza-
tion. In addition, the light transmitted through the interface
also experienced a nontrivial Faraday rotation. A suitable
linear combination of the two angles has been shown20,21 to
be quantized in units of α. This quantization is robust even
after the effects of the finite thickness of the film are taken
into account. In our case, where the frequency dependent ε in
the frequency range of interest (ω < ωp) is negative, there is
clearly no transmitted wave (the only propagating degrees of
freedom with ω < ωp are the surface plasmons). Light with
ω < ωp is completely reflected. (To couple it into surface
plasmons one needs to utilize a grating, as we mentioned
before. Without the grating, light is completely reflected.) This
reflected light of course still experiences a Kerr rotation. The
angle of the Kerr rotation θK is still given by the identical

expression as in Refs. 5 and 19. For a light incoming at
orthogonal incidence from (say) z > 0 we have (in SI units)

tan(θK ) = Y>

2α	θ
π

Y0

Y 2
< − Y 2

> + (
α	θ
π

)2
Y 2

0

, (30)

whereYi ≡ √
εi/μi is the admittance of the two media and

vacuum, respectively. As long as ε> and μ> are real and
positive, we can send in such an incoming wave. For negative
ε< we have Y 2

< real and negative as well, but this still yields
a perfectly real and well defined θk . The main difference
to the case of a wave reflecting of a dielectric is that wave
vector �k = kzêz is purely imaginary for z < 0 and there is no
transmitted wave. This does not affect the calculation of the
Kerr angle. Kerr effect and the polarization of surface plasmons
however are clear experimental signatures of a topological
metal.

For ω > ωp the ideal Drude metal behaves like a dielectric
with both μ and ε real and positive. In this case, transmitted
and reflected wave do exist and light experiences the stan-
dard Kerr and Faraday rotations associated with topological
insulators. Unless the material has a built in hierarchy
with ωgap 
 ωp, this high-frequency regime of the Drude
metal is however beyond the validity of our effective field
theory.
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