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Variational method with scattering boundary conditions imposed by the Wigner distribution
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A functional form for electrons scattering off localized potentials with boundary conditions imposed through
the Wigner distribution function is formulated in a manner appropriate for the study of tunneling in nanoscale
junctions. Variation of the functional with respect to the electronic density matrix leads to stationary or critical
points respecting open-system boundary conditions. Examples are presented for single-electron and many-
(noninteracting) electron scattering and, in both instances, the usual outcome of a one-electron density matrix
comprised of scattering wave functions results. The examples highlight how the degrees of freedom associated
with imposing scattering boundary conditions can be constrained and removed from a variational determination
of the electronic wave functions on a scattering region. The form for the scattering functional is motivated in
terms of the maximum entropy principle.
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I. INTRODUCTION

The relationship of scattering to electrical resistance is the
hallmark of quantum electronic transport theories.1 The gen-
eral framework for variational treatments of time-independent2

and time-dependent3 scattering has been known for some time.
A many-electron correlated scattering (MECS) treatment for
the description of electric current in nanoscale systems has
been developed,4–6 including comparisons to experiment for
several molecular tunnel junctions.7–9 Prediction of electron
transport properties across nanoscale tunnel junctions requires
application of open-system boundary conditions, and these are
typically expressed from a single-particle picture. In addition
to the introduction of open-system boundary conditions for
nanoscale tunnel junctions and, in particular, for single-
molecule tunnel junctions, it is required that an explicit
treatment of electron-electron correlations is included in the
determination of electric current. Recent work in this area has
focused on improving transport theories from a single-electron
standpoint10,11 and directly for many-electron treatments by
correcting quasiparticle energies using the GW approximation
and related methods12–15 as well as directly correlated wave-
function methods.4,16

Theoretical description of electron current across nanoscale
junctions can be approached from either a nonequilibrium
statistical17–19 or dynamical theory.20,21 Statistical approaches
concentrate directly on the nonequilbrium density matrix,
whereas, if the time evolution for a system driven from
equilibrium is followed, attention is usually focused on the
nonequilibrium Green’s functions (NEGF) description of
electron propagation. As emphasized by Jaynes,19 expectation
values and ensemble averages from the two approaches should
agree to ensure physical consistency, but the actual means
used to build the averages and expectation values from the two
approaches are distinct. In this context, the single-particle limit
for many-electron correlated scattering4 will be investigated
and shown to be compatible with a wave-function description
of electron transport, and formally its relation to a statistical
determination of the density matrix for nanoscale junctions is
highlighted. In the limit in which electron-electron interactions
are ignored, the MECS transport description reduces to
noninteracting electrons injected onto a scattering region from

electron reservoirs. The MECS method relies on the use of the
Wigner phase-space distribution function22–25 to constrain the
system to open boundary conditions. Considering the nonin-
teracting version of the theory enables a direct demonstration
that application of scattering boundary conditions through the
use of the Wigner distribution function24 and a variational
Ansatz are consistent in the single-particle limit. To perform
the analysis, a model previously studied in terms of application
of the boundary conditions26 is revisited. The model is a
variant of simple analytical models whereby transmission in
one-dimensional channels can be investigated.27 The version
presented here consists of free electrons in left and right
electron reservoirs or electrodes described by parabolic energy
bands. Noninteracting electrons are incident from the left and
right onto a region in which a scattering potential is present,
and the form of the potential is chosen to ensure that a voltage
difference is found between the left and right electrodes. This is
achieved by introduction of the potential step of height V . For
the left and right electrode bands, which are filled to a number
of states nF corresponding to the Fermi level, a density matrix
for the problem may be immediately written as

ρ(q,q ′) = 1

l

[
nF∑
L

ψ̃L(q)ψ̃∗
L(q ′) +

nF∑
R

ψ̃R(q)ψ̃∗
R(q ′)

]
, (1)

where ψ̃L,ψ̃R are electron scattering states incoming from
the left and right, respectively, with an incoming normalized
flux of l−1 per state, q and q ′ are position variables, and the
summation is performed over left L and right R incident elec-
tronic states. Spin is not explicitly treated in the analysis, but its
inclusion is straightforward. This model is used to demonstrate
how a variational method with boundary conditions imposed
through the Wigner distribution can be applied to a solution of
this many (noninteracting) electron problem but, first, use of
the Wigner distribution to impose boundary conditions from
a variational treatment of a single-electron scattering problem
is presented.

II. VARIATIONAL SINGLE-ELECTRON SCATTERING

In this section, a functional is introduced for the scattering
of a single electron off a localized potential in analogy to
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previous works for interacting electrons.4–6 The functional
consists of the sum of the energy expectation value for a
single-electron Hamiltonian ĥ, particle number, and constraint
conditions relating the equilibrium or zero-voltage (V = 0)
and applied-voltage (V �= 0) density matrices as

L[ψ∗,ψ] = 〈ψ |ĥ|ψ〉 − μ(〈ψ |ψ〉 − η)

+
∫ +∞

0+
dp λL(p)[fψψ∗(qL,p) − f0(qL,p)]

+
∫ 0−

−∞
dp λR(p)[fψψ∗(qR,p) − f0(qR,p)], (2)

where |ψ〉 is in this example a single-electron state, μ is
a Lagrangian multiplier associated with normalization, the
λL and λR are Lagrangian multipliers associated with left
and right incoming momentum fluxes, and η is the value
for the electron wave-function normalization. For the sake
of presentation, Eq. (2) is referred to as a quantum transport
or electron-scattering (ES) functional. The constraint terms
in the functional fix the phase-space distribution functions
fψψ∗ as voltage is applied to the incoming momentum flux
f0 of left and right electron reservoirs or electrodes at their
equilibrium or zero-voltage difference distributions.28 As a
voltage between the left and right electrodes is applied by
introducing a potential energy difference across the scattering
region ĥ = ĥ0 + v̂, the incoming momentum distributions are
constrained to be those from reservoirs locally in equilibrium.
As usual, the two reservoirs are allowed to be driven away from
equilibrium with respect to one another by application of the
voltage difference. The resulting model of a nanoscale tunnel
junction is shown schematically in Fig. 1 with the electron
reservoirs approximated by free electrons (parabolic energy
bands). With this standard description of electrode behavior,
the incoming momentum distributions for the left and right
electrodes do not change with application of voltage.4,24,26
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FIG. 1. Electron scattering model. Electron reservoirs described
by a single parabolic band emit electrons on a scattering region. The
voltage across the scattering region is such that the two-electron
reservoirs are driven away from equilibrium with respect to one
another. (a) Without application of voltage. (b) With application of
voltage.

A. Wigner phase-space distribution function

For the functional equation (2), the phase-space distri-
butions must be specified to allow the incoming flux for
momenta to be fixed as needed to describe the open-system
boundary conditions. The incoming momenta are constrained
by applying the Weyl transformation to the one-electron
density matrix generating the Wigner distribution function
from the zero-voltage or equilibrium density matrix ρ̂0 =
|ψV =0〉〈ψV =0|:

f0(q,p) =
∫ +∞

−∞
ds dk e−ikq−isp〈ψV =0|eikq̂+isp̂|ψV =0〉, (3)

and similarly for the nonequilibrium or V �= 0 density matrix
ρ̂ = |ψ〉〈ψ | constructed from the one-electron wave functions
obtained in the presence of scattering due to the introduction
of a potential difference

fψψ∗(q,p) =
∫ +∞

−∞
ds dk e−ikq−isp〈ψ |eikq̂+isp̂|ψ〉, (4)

a caret is used to denote operators, and specifically is used
here to distinguish between position and momentum operators
and the Wigner positions and momenta; details of the Weyl
transformation as well as it relation to other choices for
quantum phase-space distributions are given in Ref. 25.

The Wigner distribution function expresses the density
matrix as a phase-space picture consistent with quantum me-
chanics. Although the choice of a phase-space representation
for quantum mechanics is not unique,25 the Wigner distribution
is an appropriate choice to enforce scattering boundary
conditions by permitting a description of the electrons emitted
from the reservoirs.24 Momentum expectation values can be
written with use of the Wigner distribution as

〈p〉 = 1

2π

∫ +∞

−∞
dp dq p fψψ∗(q,p). (5)

Equation (5) highlights the use of the Wigner quantum phase-
space distribution in analogy to a classical probability distri-
bution function. Unlike a probability distribution, the Wigner
function is not everywhere positive22–25 as a consequence of
the momentum-position uncertainty principle. However, in
regions where fψψ∗ behaves approximately classically, the
Wigner distribution function allows us to assign positions and
momenta to describe “electrons in the left or right reservoir,”
“the momentum of an electron emitted from a reservoir,” or “a
reservoir that is locally in equilibrium.” Within this context,
the net momentum flow out of a left electrode or electrons
incident on a scattering area from the left is approximated as

〈pL〉 = 1

2π

∫ +∞

0
dp p fψψ∗(qL,p), (6)

and similarly for the right electrode

〈pR〉 = 1

2π

∫ 0

−∞
dp p fψψ∗(qR,p), (7)

where qL and qR are positions appropriately chosen to describe
the equilibrium momentum flow into the scattering region.
Clearly, for the above approximations to be appropriate,
the Wigner distribution must be used in regions where it
well approximates a classical probability distribution. It is
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important to note that electrodes are independent of one
another as needed to separately maintain local equilibrium in
each electrode. In more physical models of tunnel junctions,
the density matrix decays rapidly, resulting naturally in a
decoupling of the electrodes. To introduce locality into the
model considered here, the wave functions will be taken to
be nonzero only on the scattering region [−l/2, + l/2]. By
choosing the electrode Wigner functions to be defined at
qL = −l/4 and qR = +l/4 allows decoupling between the
left and right “reservoirs” as seen from Eqs. (3) and (4); this
choice permits a model description that mimics decoupled
electrodes found in quantum transport experiments. To apply
the Wigner function to define open boundary conditions for
the quantum transport problem, these two conditions must be
considered: the application of the boundary conditions are to
be applied in regions where the Wigner function may be treated
as a semiclassical phase-space distribution function, and the
nonlocal character of the Weyl transform requires care when
partitioning the transport system into electrode and scattering
regions or when applying the Weyl transformation on finite
domains to obtain approximations to the Wigner function.24

Note that these issues are specific to a given description of a
model or to numerical calculation, but the one-electron Wigner
distribution function is a transformed representation of, and
equivalent to, the one-electron reduced density matrix.

B. Variation of the scattering functional

Solutions to the electron-scattering functional are obtained
as the stationary points of L against variation with respect to
the density matrix. The resulting variational equation is

δL = 〈δψ |(ĥ − μ)|ψ〉 + 〈ψ |(ĥ − μ)|δψ〉
+

∫ +∞

0+
dp λL(p)

∫ +∞

−∞
ds dk e−ikqL−isp

×(〈δψ |eikq̂+isp̂|ψ〉 + 〈ψ |eikq̂+isp̂|δψ〉)

+
∫ 0−

−∞
dp λR(p)

∫ +∞

−∞
ds dk e−ikqR−isp

×(〈δψ |eikq̂+isp̂|ψ〉 + 〈ψ |eikq̂+isp̂|δψ〉) = 0. (8)

A scattering region of length l defined between [−l/2, + l/2]
is chosen and the Wigner function constraints are applied at

qL = −l/4 and qR = +l/4 or in the middle of the “leads”
to ensure decoupling of the electrodes. The variation can be
written as

δL =
∫ +l/2

−l/2
dq [ψ∗(q)(ĥ − μ)δψ(q) + δψ∗(q)(ĥ − μ)ψ(q)]

+
∫ +∞

0+
dp λL(p)

∫ +l/2

−l/2
ds e−ips[δψ∗(qL − s/2)

×ψ(qL + s/2) + ψ∗(qL − s/2)δψ(qL + s/2)]

+
∫ 0−

−∞
dp λR(p)

∫ +l/2

−l/2
ds e−ips[δψ∗(qR − s/2)

×ψ(qL + s/2) + ψ∗(qR − s/2)δψ(qR + s/2)] = 0,

(9)

where δρ(q,q ′) = ψ(q)δψ∗(q ′) + δψ(q)ψ∗(q ′). A single-
particle Hamiltonian operator

ĥ = − 1
2∂2

q + V (q) (10)

is introduced with a potential V (q) assumed constant outside of
an interval (a,b) on [−l/2, + l/2] such that the single-electron
wave function satisfies

ψ(q)
q→qL−−−→ Aeikq + Be−ikq ,

(11)
ψ(q)

q→qR−−−→ Ceik′q + De−ik′q .

The scattering region defined on [−l/2,l/2] is open, variations
at the boundaries do not vanish, and, therefore, the turnover
rule is not satisfied, leading to

−1

2

∫ +l/2

−l/2
dq ψ∗(q)∂2

q δψ(q)

= −1

2
[∂q − ∂q ′ ]ψ∗(q ′)δψ(q)|q=q ′=+l/2

q=q ′=−l/2

− 1

2

∫ +l/2

−l/2
dq

[
∂2
qψ∗(q)

]
δψ(q)

≡ −i j [ψ∗,δψ]|+l/2
−l/2 − 1

2

∫ +l/2

−l/2
dq

[
∂2
qψ∗(q)

]
δψ(q).

(12)

The variation of L becomes

δL =
∫ +l/2

−l/2
dq

[
δψ∗(q)

(
− 1

2
−→
∂ 2

q + V (q) − μ

)
ψ(q) + ψ∗(q)

(
− 1

2
←−
∂ 2

q + V (q) − μ

)
δψ(q)

]
− i j [ψ∗,δψ]|+l/2

−l/2

+
∫ +∞

0+
dp λL(p)

∫ +l/2

−l/2
ds e−ips[δψ∗(qL − s/2)ψ(qL + s/2) + ψ∗(qL − s/2)δψ(qL + s/2)]

+
∫ 0−

−∞
dp λR(p)

∫ +l/2

−l/2
ds e−ips[δψ∗(qR − s/2)ψ(qR + s/2) + ψ∗(qR − s/2)δψ(qR + s/2)] = 0, (13)

where the arrows over the kinetic energy operators indicate
the direction in which they operate. A specific form for the
potential term is chosen as a step potential, consistent with the
requirement of potential energy difference between the left

and right electrodes:

ĥ = − 1
2∂2

q + V θ (q), (14)
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with θ (q) the Heaviside step function and V is the potential
step height. This choice for the electron Hamiltonian suffices
to demonstrate the use of the Wigner distribution to apply
boundary conditions for variational scattering problems; the
procedure can be generalized for arbitrary scattering potentials
leading to wave functions satisfying Eq. (11). An Ansatz for
the wave function is made consistent with the asymptotic form
[Eq. (11)] and potential energy choice [Eq. (14)] as

ψ(q) =
{
Aeikq + Be−ikq , q < 0
Ceik′q + De−ik′q, q > 0.

(15)

It is clear that the Ansatz may also be written in terms of
real expansion functions and appropriately redefined complex
coefficients. As usual, the trial wave function is required to be
continuous

A + B = C + D. (16)

The zero-voltage solution for the model as given is for a plane
wave incident from the left. The Wigner distribution for the
zero-voltage solution29 is

f0(q,p) = 2π

l
δ(p − k). (17)

For the wave-function Ansatz, the Wigner distribution
function is evaluated at qL = −l/4 and qR = +l/4 to
yield29

fψψ∗(qL,p) = 2π |A|2δ(p − k) + 2π |B|2δ(p + k)

+ 2π (A∗B + AB∗) cos(2kq)δ(p),

fψψ∗(qR,p) = 2π |D|2δ(p + k′) + 2π |C|2δ(p − k′)

+ 2π (C∗D + CD∗) cos(2k′q)δ(p). (18)

It is reiterated that that the wave functions are taken to
be nonzero only on the scattering region and the Wigner
distributions are determined at the center of the “leads”
resulting in the form of δL given in Eq. (13), with de-
coupling of the density matrix at qL and qR achieved as
needed for independent electrodes. The rapid decay of the
density matrix in metals ensures the decoupling26,30 found
for typical electrode configurations used in quantum transport
measurements.

The variation of L for the choice of V (q) becomes

δL =
∫ 0

−l/2
dq

[
δψ∗(q)

(
− 1

2
−→
∂ 2

q − μ

)
ψ(q) + ψ∗(q)

(
− 1

2
←−
∂ 2

q − μ

)
δψ(q)

]

+
∫ +l/2

0
dq

[
δψ∗(q)

(
− 1

2
−→
∂ 2

q + V − μ

)
ψ(q) + ψ∗(q)

(
− 1

2
←−
∂ 2

q + V − μ

)
δψ(q)

]
− i j [ψ∗,δψ]|+l/2

−l/2

+
∫ +∞

0+
dp λL(p)

∫ +l/2

−l/2
ds e−ips[δψ∗(qL − s/2)ψ(qL + s/2) + ψ∗(qL − s/2)δψ(qL + s/2)]

+
∫ 0−

−∞
dp λR(p)

∫ +l/2

−l/2
ds e−ips[δψ∗(qR − s/2)ψ(qL + s/2) + ψ∗(qR − s/2)δψ(qR + s/2)] = 0, (19)

which, when substituting the wave-function Ansatz (15) into Eq. (19) results in

δL =
(

1
2k2 − μ

)
(A∗δA + AδA∗ + B∗δB + BδB∗)l/2 + (

1
2k′2 + V − μ

)
(C∗δC + CδC∗ + D∗δD + DδD∗)l/2

−i(A∗δA − B∗δB)k + i(C∗δC − D∗δD)k′ + 2πλL(k)(A∗δA + AδA∗) + 2πλR(k′)(D∗δD + DδD∗) = 0. (20)

The constraint equations relate the zero- and applied-voltage
Wigner functions as follows:

fψψ∗(qL,p > 0) = f0(qL,p > 0)

= 2π

l
δ(p − k) (21)

and
fψψ∗(qR,p < 0) = f0(qR,p < 0)

= 0. (22)

The constraint equations for the the incoming momentum
distributions (21) and (22) require

|A|2 = 1

l
, p = k, |D|2 = 0. (23)

Considering only variations satisfying the constraint condi-
tions implies that A∗δA + AδA∗ = D∗δD + DδD∗ = 0 such

that only norm-preserving variations are allowed for these
terms. In addition to the momentum constraints, current
conservation imposed between the boundaries of the scattering
region results in

j [ψ∗,δψ]|+l/2
−l/2 = 0,

(24)
(A∗δA − B∗δB)k − C∗δCk′ = 0.

The variation of L becomes(− 1
2∂2

q − μ
)
ψ(q) = 0, q < 0

(25)(− 1
2∂2

q + V − μ
)
ψ(q) = 0, q > 0

or
1
2k2 − μ = 0,

1
2k′2 + V − μ = 0. (26)
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It follows that

μ = 1
2k2 = 1

2k′2 + V. (27)

Current continuity and the requirement that the single-particle
trial function is continuous leads to

B

A
= k − k′

k + k′ ≡ rL(k,k′),
C

A
= 2k

k + k′ ≡ tL(k,k′), (28)

where rL and tL denote the reflected and transmitted coeffi-
cients in a scattering wave function incident from the left:

ψ̃L(q) =
{
eikq + rL(k,k′)e−ikq , q < 0
tL(k,k′)eik′q, q > 0

(29)

and ψ(q) = 1√
l
ψ̃L(q). Similarly, if the Wigner boundary

conditions are chosen such that the incoming momentum is
nonzero on the right with no incoming component from the
left, the scattering solution takes the standard form for a right
incident wave function:

ψ̃R(q) =
{

e−ik′q + rR(k′,k)eik′q, q > 0
tR(k′,k)e−ikq , q < 0

(30)

with

rR(k′,k) = k′ − k

k + k′ , tR(k′,k) = 2k′

k + k′ , (31)

and ψ(q) = 1√
l
ψ̃R(q).

The preceding calculation demonstrates that a constrained
variation of the transport functional equation (2) is consistent
with standard textbook descriptions for electron scattering in
one dimension (see, e.g., Ref. 31). Use of the Wigner function
to impose boundary conditions removes the need for finding
a stationary solution for the energy, and then subsequently
choosing boundary conditions for the general solution. In
terms of mathematical complexity, it may be argued that the
procedure as described is no more complicated (or perhaps less
so) than applying Green’s function methods to the solution of
scattering off a potential step in one dimension.32,33 However,
the usefulness of the approach is that it opens the possibility
to use the one-electron reduced density matrix to define
scattering boundary conditions (as usually formulated within a
single-particle picture) to a many-electron wave function, and
the many (noninteracting) electron case is examined next.

III. VARIATIONAL MANY- (NONINTERACTING)
ELECTRON SCATTERING

The many-electron scattering (MES) model considered is
defined for a one-dimensional open system on [−l/2, + l/2]
and, at zero voltage, consists of nF electrons incident from the
left and nF electrons incident from the right, along with any
zero-mode terms. In the absence of the voltage, the system
consists of free electrons with momenta kn = 2π

l
n with n =

0,1,2,3, . . . with positive k states incident from the left, and
negative k states incident from the right.34 The lowest left and
right energy states are filled to the Fermi level as depicted in
Fig. 1(a) and, in the absence of a voltage difference between
electron reservoirs, the current is given by

I [V = 0] = −1

l

( nF∑
n∈L

kn −
nF∑

n′∈R

kn′

)
= 0. (32)

The free electrons are described by plane waves. In this
representation, the density matrix is diagonal, allowing it to
be constructed from the first nF left and right states and the k0

state (that does not contribute to the current) as

ρ0(q,q ′) = 1

l

[
1 +

nF∑
n∈L

exp[ikn(q − q ′)]

+
nF∑

n′∈R

exp[−ikn′ (q − q ′)]
]
. (33)

Introducing the Weyl transformation term by term, the result-
ing Wigner distribution function is readily found to be

f0(q,p) = 2π

l

[
δ(p) +

nF∑
n∈L

δ(p − kn) +
nF∑

n′∈R

δ(p + kn′)

]
,

(34)

with δ(p) the Dirac delta function.29 The many-electron
Hamiltonian for the model is

Ĥ = ĥ0 +
nF∑

n∈L

ĥn +
nF∑

n′∈R

ĥn′ (35)

with

ĥn = − 1
2∂2

qn
+ V (qn), (36)

and the potential function for each of the electrons taken
to be a step-function V θ (q) potential. The wave function
for this noninteracting electron system is written as a Slater
determinant


 = NAψk0

nF∏
n,n′=1

ψL,nψR,n′ ≡ det(ψk0 ; ψL,n; ψR,n′ ), (37)

with N the normalization and A denotes the antisymmetriza-
tion operator for the electrons. The many-electron version of
the scattering functional L is written4,5 as

L[
∗,
] = 〈
|Ĥ |
〉 − μ(〈
|
〉 − η)

+
∫ +∞

0+
dp λL(p)[f

∗ (qL,p) − f0(qL,p)]

+
∫ 0−

−∞
dp λR(p)[f

∗ (qR,p) − f0(qR,p)] (38)

with the single-electron Wigner function now calculated from
the reduced one-electron density matrix obtained from the
many-electron wave function 
:

ρ(q,q ′) =
∫ [ 2nF +1∏

n=2

dqn

]

(q,q2,q3, . . .)


∗(q ′,q2,q3, . . .).

(39)

A. Determining wave-function boundary conditions

To highlight features of the problem absent from the
single-electron example, but arising in the many-electron case,
the following Ansatz for the single-electron wave functions is
made:

ψL,n(q) = AL,nψ̃L,n(q) + DL,nψ̃R,n(q),
(40)

ψR,n(q) = AR,nψ̃R,n(q) + DR,nψ̃L,n(q),
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FIG. 2. Wave-function amplitudes for scattering with a degen-
erate energy pair. (a) Boxes are used to denote amplitudes for a
scattering wave function incident from the left, whereas the dashed
ovals are used to denote the amplitudes for a scattering wave function
incident from the right. (b) Boxes are used to denote amplitudes for a
scattering wave function incident from the right, whereas the dashed
ovals are used to denote the amplitudes for a scattering wave function
incident from the left.

where the ψ̃L,n and ψ̃R,n are left and right incident scattering
states, respectively,

ψ̃L,n(q) =
{

eiknq + rL(kn,kn′ )e−iknq , q < 0

tL(kn,kn′)eikn′q, q > 0
(41)

ψ̃R,n(q) =
{

e−ikn′q + rR(kn′,kn)eikn′q, q > 0

tR(kn′,kn)e−iknq , q < 0.
(42)

In this notation, left and right scattering states ψ̃L,n and
ψ̃R,n are degenerate in energy and, in terms of momentum,
the index n labels the value of the momentum for q < 0
for both left and right scattering states. The wave-function
amplitudes rL, tL, rR , and tR are defined as in Eqs. (28)
and (31). The momentum indices for electrons incident from
the left satisfy 1 � n � nF and, for right incident electrons,
the incident momenta are labeled 1 � n′ � nF . However,
with the notation chosen, the energy for a either a left or
right incident state is εn = 1

2k2
n. The relationship between the

wave-function amplitudes and momenta for this choice of
single-electron wave functions is displayed in Fig. 2. With the

Ansatz equation (40), no left or right asymmetry is introduced
in the sense that the single-electron trial functions are linear
combinations of left and right scattering states. Using this
form for the trial functions allows for a demonstration of
how open-system boundary conditions can be applied in the
many-particle case by removing the balance between left and
right states as voltage is applied. The scattering wave functions
are eigenfunctions of the single-particle Hamiltonian and the
task reduces to finding a set of coefficients in Eq. (40) satisfying
scattering boundary conditions.

As voltage is applied, the incoming momentum distribu-
tions are fixed, but outgoing momenta are not to be constrained.
The notation for the scattering wave functions is such that an
incident electron from the left with momentum kn scatters
into a lower momentum state kn′ , whereas an electron incident
from the right with momentum kn′ will scatter into a higher
momentum state kn where the two momenta are related by

kn =
√

k′
n

2 + 2V . Right incident states near the bottom of the
parabolic energy band will be shifted by the voltage, such that

1

2

(
nV

2π

l

)2

= V, nV =
√

V

2

l

π
. (43)

Right incident states near the Fermi energy will experience a
shift described by

1

2

(
nmax

2π

l

)2

= 1

2

(
nF

2π

l

)2

+ V,

(44)
nmax =

√
n2

F + n2
V .

The lowest left incident states states near the bottom of the
parabolic band n < nV are nonpropagating states. Left incident
states near the Fermi level become shifted down in momentum
such that the maximum outgoing momentum index becomes√

n2
F − n2

V . Thus, two cases arise in the many-electron version
of the transport model. If a left or right incident electron
scatters into a momentum state such that |kn| is unoccupied
for the right or left incident states, respectively, there is
no coupling between left and right scattering states and the
analysis reverts to a procedure as presented in the preceding
section. If the incident states scatter into a state such that their
wave functions couple through the constraint conditions, this
implies the left and right states are degenerate in energy, and
this case is examined next.

The many-electron scattering functional is written in terms
of the single-electron Hamiltonians ĥ and wave functions
ψL,n,ψR,n, and for states degenerate in energy, the contribution
to the functional is29

Ln[
∗,
] = 〈ψL,n|ĥn|ψL,n〉 + 〈ψR,n|ĥn|ψR,n〉 − μL,n[〈ψL,n|ψL,n〉 − ηL,n] − μR,n[〈ψR,n|ψR,n〉 − ηR,n]

+ 2π

∫ +∞

0+
dp λL(p)

[(
|AL,n|2 + |DR,n|2 − 1

l

)
δ(p − kn)

]

+ 2π

∫ 0−

−∞
dp λR(p)

[(
|AR,n|2 + |DL,n|2 − 1

l

)
δ(p + kn′)

]
, (45)
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with μ = ∑
(μL,n + μR,n) and η = ∑

(ηL,n + ηR,n). The con-
straints on the momentum distributions in this case yield

|AL,n|2 + |DR,n|2 = 1

l
,

(46)

|AR,n|2 + |DL,n|2 = 1

l
.

Scattering states ψ̃ are orthogonal35 and the single-particle
solutions [Eq. (40)] are to be constructed as orthogonal.
Requiring 〈ψL,n|ψR,n〉 = 0 for degenerate energy states in
Eq. (40) imposes a relationship for the trial wave-function
amplitudes

A∗
L,nDR,n + AR,nD

∗
L,n = 0,

(47)
AL,nD

∗
R,n + A∗

R,nDL,n = 0.

These relations are written, using the norms and arguments of
the complex amplitudes, as

|AL,n||DR,n| exp
[ − i(θAL,n

− θDR,n
)
]

+ |AR,n||DL,n| exp
[
i(θAR,n

− θDL,n
)
] = 0,

(48)
|AL,n||DR,n| exp

[
i(θAL,n

− θDR,n
)
]

+ |AR,n||DL,n| exp
[ − i

(
θAR,n

− θDL,n

)] = 0,

and together as

|AL,n||DR,n| cos
(
θAL,n

− θDR,n

)
+ |AR,n||DL,n| cos

(
θAR,n

− θDR,n

) = 0. (49)

Consistent with the assumption of independent electrodes,
only solutions not introducing phase correlations between
the electron reservoirs (see Fig. 2) need be considered,36

yielding that |AL,n| = 0 or |DR,n| = 0, and |AR,n| = 0 or
|DL,n| = 0. Selecting, for example, |DR,n| = 0 implies AL,n =

1√
l

exp(iθAL,n
) from the flux condition (46). Consequently,

from |ψR,n〉 �= 0 then AR,n �= 0 requiring DL,n = 0. Then,
AR,n = 1√

l
exp(iθAR,n

) from the flux condition.
The one-electron density matrix can now be written in terms

of the wave functions [Eq. (40)] as

ρ(q,q ′) =
∑

n

ρn(q,q ′). (50)

For nondegenerate states, the contribution to the density matrix
is

ρn(q,q ′) = |AL,n|2ψ̃L,n(q)ψ̃∗
L,n(q ′)

= 1

l
ψ̃L,n(q)ψ̃∗

L,n(q ′) (51)

or

ρn(q,q ′) = |AR,n|2ψ̃R,n(q)ψ̃∗
R,n(q ′)

= 1

l
ψ̃R,n(q)ψ̃∗

R,n(q ′). (52)

For degenerate states, the coupling introduced by the momen-
tum distribution constraints between the left and right states
and the orthonormality of ψL,n and ψR,n lead to

ρn(q,q ′) = (|AL,n|2 + |DR,n|2)ψ̃L,n(q)ψ̃∗
L,n(q ′) + (|AR,n|2

+ |DL,n|2)ψ̃R,n(q)ψ̃∗
R,n(q ′)

= 1

l
[ψ̃L,n(q)ψ̃∗

L,n(q ′) + ψ̃R,n(q)ψ̃∗
R,n(q ′)], (53)

resulting in

ρ(q,q ′) = 1

l
[

nF∑
L

ψ̃L(q)ψ̃∗
L(q ′) +

nF∑
R

ψ̃R(q)ψ̃∗
R(q ′)] (54)

ignoring zero-mode terms. The density matrix determined
from the energy functional with boundary conditions imposed
through the Wigner function is equivalent to solving the
Schrödinger equation for single-electron scattering states with
fixed incoming flux l−1 and occupying the first nF of these
right and left incoming states. As the one-electron reduced
density matrices for the two descriptions are equivalent,
all one-electron properties calculated will be equivalent. In
particular, the current density

j (q) = 1

2i
[∂q − ∂q ′ ]ρ(q,q ′)|q=q ′ (55)

will be identical for any solution to Eq. (38), satisfying
the form for single-particle wave functions [Eq. (40)], the
flux condition [Eq. (46)], and the orthogonality condition
[Eq. (47)] for degenerate energy states. A solution for electrons
with left and right scattering wave functions resulting from
the choice of AL,n = AR,n = 1√

l
and DL,n = DR,n = 0 is

equivalent to the set of solutions obeying the stationary
condition for the MES transport functional [Eq. (38)]. With
the single-electron wave-function Ansatz as chosen, variation
of L is not needed, although the resulting solution is stationary
against variations with respect to the density matrix. The scat-
tering boundary conditions as expressed through the Wigner
distribution are sufficient to select the appropriate solutions
and provide the standard description of electrons emitted from
reservoirs.

B. A more general wave-function Ansatz

Solution of the MES transport functional [Eq. (38)] with
an Ansatz for the single-particle wave functions with vari-
ational degrees of freedom that do not directly enter the
constraint equations is now performed. The following form
for the trial single-particle functions is made analogously to
Sec. II:

ψL,n(q) =
{

AL,ne
iknq + BL,ne

−iknq , q < 0

CL,ne
ikn′q + DL,ne

−ikn′q, q > 0
(56)

ψR,n(q) =
{

AR,ne
−ikn′q + BR,ne

ikn′ q, q > 0

CR,ne
−iknq + DR,ne

iknq , q < 0
(57)

and the trial wave functions are again required to be contin-
uous. To explicitly solve for the trial functions, stationarity
of the scattering functional is required. For nondegenerate
states, the many-electron variation leads to a sum of in-
dependent particle variations and these may be solved by
using the procedure given in Sec. II. However, as in the
preceding section, where the constraint conditions on the
momentum distributions introduce coupling between left and
right states degenerate in energy, a slightly modified approach
is required for degenerate states. The many-electron variation
leads to

245413-7
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δLn =
∫ +l/2

−l/2
dq [δψ∗

L,n(q)(ĥn − μL,n)ψL,n(q) + δψL,n(q) (ĥn − μL,n)ψ∗
L.n(q)

+ δψ∗
R,n(q)(ĥn − μR,n)ψR,n(q) + δψR,n(q)(ĥn − μR,n)ψ∗

R.n(q)]

− i{j [ψ∗
L,n,δψL,n] + j [ψ∗

R,n,δψR,n]}|+l/2
−l/2

+
∫ +∞

0+
dp λL(p)

∫ +l/2

−l/2
ds e−ips [δψ∗

L,n(qL − s/2)ψL,n(qL + s/2) + ψ∗
L,n(qL − s/2)δψL,n(qL + s/2)

+ δψ∗
R,n(qL − s/2)ψR,n(qL + s/2) + ψ∗

R,n(qL − s/2)δψR,n(qL + s/2)]

+
∫ 0−

−∞
dp λR(p)

∫ +l/2

−l/2
ds e−ips [δψ∗

L,n(qR − s/2)ψL,n(qR + s/2) + ψ∗
L,n(qR − s/2)δψL,n(qR + s/2)

+ δψ∗
R,n(qR − s/2)ψR,n(qR + s/2) + ψ∗

R,n(qR − s/2)δψR,n(qR + s/2)] = 0 (58)

for left and right states degenerate in energy. A single-particle Hamiltonian of the form ĥn = − 1
2∂2

qn
+ V θ (qn) is again selected

and the variation δLn becomes

δLn = (
1
2k2

n − μL,n

)
(A∗

L,nδAL,n + AL,nδA
∗
L,n + B∗

L,nδBL,n + BL,nδB
∗
L,n)l/2

+ (
1
2kn′ 2 + V − μL,n

)
(C∗

L,nδCL,n + CL,nδC
∗
L,n + D∗

L,nδDL,n + DL,nδD
∗
L,n)l/2

+ (
1
2kn′ 2 + V − μR,n

)
(A∗

R,nδAR,n + AR,nδA
∗
R,n + B∗

R,nδBR,n + BR,nδB
∗
R,n)l/2

+ (
1
2k2

n − μR,n

)
(C∗

R,nδCR,n + CR,nδC
∗
R,n + D∗

R,nδDR,n + DR,nδD
∗
R,n)l/2

− i(A∗
L,nδAL,n − B∗

L,nδBL,n − C∗
R,nδCR,n + D∗

R,nδDR,n)kn

− i(A∗
R,nδAR,n − B∗

R,nδBR,n − C∗
L,nδCL,n + D∗

L,nδDL,n)kn′

+ 2πλL(kn)(A∗
L,nδAL,n + AL,nδA

∗
L,n + D∗

R,nδDR,n + DR,nδD
∗
R,n)

+ 2πλR(kn′)(A∗
R,nδAR,n + AR,nδA

∗
R,n + D∗

L,nδDL,n + DL,nδD
∗
L,n) = 0. (59)

The constraint conditions for the momentum distributions
yield

|AL,n|2 + |DR,n|2 = 1

l
,

(60)

|AR,n|2 + |DL,n|2 = 1

l
,

leading to variations satisfying

A∗
L,nδAL,n + AL,nδA

∗
L,n + D∗

R,nδDR,n + DR,nδD
∗
R,n = 0,

A∗
R,nδAR,n + AR,nδA

∗
R,n + D∗

L,nδDL,n + DL,nδD
∗
L,n = 0.

(61)

Requiring the single-electron currents entering and leaving the
scattering region to cancel requires that

(A∗
L,nδAL,n − B∗

L,nδBL,n)kn

− (C∗
L,nδCL,n − D∗

L,nδDL,n)kn′ = 0,
(62)

−(A∗
R,nδAR,n − B∗

R,nδBR,n)kn′

+ (C∗
R,nδCR,n − D∗

R,nδDR,n)kn = 0.

The variation of L becomes(− 1
2∂2

q − μL,n

)
ψL,n(q) = 0, q < 0(− 1

2∂2
q − μR,n

)
ψR,n(q) = 0, q < 0

(63)(− 1
2∂2

q + V − μL,n

)
ψL,n(q) = 0, q > 0(− 1

2∂2
q + V − μR,n

)
ψR,n(q) = 0, q > 0

or

μL,n = μR,n = 1
2k2 = 1

2k′2 + V. (64)

Current continuity combined with the requirement that the
single-electron wave functions are continuous leads to

BL,n = AL,nrL(kn,kn′ ) + DL,ntR(kn′ ,kn),

CL,n = AL,ntL(kn,kn′ ) + DL,nrR(kn′,kn),
(65)

BR,n = AR,nrR(kn′ ,kn) + DR,ntL(kn,kn′),

CR,n = AR,ntR(kn′,kn) + DR,nrL(kn,kn′ ),

where the reflection r and transmission amplitudes t for left
and right scattering states are for the case of a potential
step given in Eqs. (28) and (31). This permits the left and
right eigenstates expressed in terms of the scattering wave
functions to be written as in Eq. (40). As noted previously,
written in this form, the reduced one-electron density matrix
is equivalent to a solution built separately from left and right
scattering states with normalized incoming flux l−1 for each
state. Hence, all one-electron properties including electron
current are identical between the set of solutions defined by
the constraint conditions (60) and the standard solutions for
scattering states incident on a potential step with amplitudes
given by AL,n = AR,n = 1/

√
l and DL,n = DR,n = 0.
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IV. CONDUCTANCE QUANTIZATION

In the preceding section, it has been shown that variation
of the MES functional [Eq. (38)] leads to a density matrix
for many noninteracting electrons that lead to a one-electron
density matrix equivalent to defining a system of electrons
described by scattering wave functions and fixing the incoming
flux to prescribed boundary conditions. It has previously
been shown that this leads to a prediction of conductance
quantization in the linear-response limit.26 For completeness,
the steps leading to a calculation of the conductance quantum
within the model are outlined.

As voltage is applied, electrons incident from the left with
energies such that μn/e < V will see a potential step up,
where e is the electronic charge (in the following all physical
quantities are explicit). The number of these states is given
approximately as

nV ≈
√

2emV /h̄�k, (66)

where m is the electron mass, h̄ is Planck’s constant h divided
by 2π , and �k = 2π

l
is the momentum spacing. For scattering

states incoming from the left, the electron transmission is
approximated as TL,n ∼ 0 for incoming energies less than the
potential step-up height, and TL,n = k′

n

kn
t2
L,n ∼ 1 for energies

greater than the potential step. In contrast, electrons incident
from the right see a step-down potential and we approximate
the transmission as TR,n = kn

kn′ t
2
R,n ∼ 1 for all right incident

electrons. The electron current within this approximation is

I ∼ − eh̄

ml

[ nF∑
n=nV

kn −
nF∑
n=1

kn

]

∼ eh̄

ml

nV∑
n=1

kn

∼ eh̄

ml

nV∑
n=1

n�k, (67)

with the convention that electron current is opposite the
direction of electron flow. For 1 � nV � nF ,

I → eh̄

ml
�k

∫ nV

0
n dn = e2

h
V. (68)

The current and voltage yield a conductance g0 = I/V =
e2/h in agreement with the linear-response result for con-
ductance quantization.

V. RELATION TO MAXIMUM ENTROPY
DENSITY MATRIX

The form of the scattering functionals for the one-electron
and many-electron cases [Eqs. (2) and (38)] is now motivated
in relation to the maximum entropy principle.17,37 Following
von Neumann and Shannon,37,38 the information entropy of a
probability distribution is quantified by

S = −Tr ρ̂ ln ρ̂. (69)

It is assumed that the energy and particle number can be
expressed as

〈E〉 = Tr Ĥ ρ̂, 〈η〉 = Tr ρ̂, (70)

respectively.39 The scattering region is in contact with two-
electron reservoirs or electrodes, and in addition to the energy
expectation and normalization, the functionals (2) and (38)
introduce terms fixing the incoming momentum distributions
to equilibrium (V = 0) values characteristic of the electrodes
or leads. The Wigner function is a convenient means for
approximately describing the incoming momentum flow and
can be expressed in the form

f (qL/R,pi) = Tr F̂ (qL/R,pi) ρ̂, (71)

where the F̂ (qL/R,pi) are the operators expressing the Weyl
transform of the density matrix. Hence, it is assumed that
the relevant information to describe scattering is the energy
on the region, normalization, and the incoming equilibrium
momentum distributions for the electrons, the reservoir bound-
ary conditions.24 Entropy is maximized subject to constraints
corresponding to the expectation values

max

[
S − μ Trρ̂ − β Tr Ĥ ρ̂ −

∑
pi>0

λL(pi)Tr F̂ (qL,pi) ρ̂

−
∑
pi<0

λR(pi)Tr F̂ (qR,pi) ρ̂

]
, (72)

where the Lagrangian multipliers μ, β, and λL/R(pi) are
introduced. Maximizing entropy with respect to variations δρ

results in a density matrix of the form

ρ̂ = exp

[
− μ − βĤ −

∑
pi>0

λL(pi)F̂ (qL,pi)

−
∑
pi<0

λR(pi)F̂ (qR,pi)

]
. (73)

The quantum transport ensemble thus satisfies

Smax = μ Tr ρ̂ + β Tr Ĥ ρ̂ +
∑
pi>0

λL(pi)Tr F̂ (qL,pi) ρ̂

+
∑
pi<0

λR(pi)Tr F̂ (qR,pi) ρ̂, (74)

and, together with the requirement that the Lagrangian
multipliers are chosen to fix the expectation values [Eqs. (70)
and (71)], provides the motivation for seeking stationary
solutions for functionals of the form of Eqs. (2) and (38),
following minor redefinition of the Lagrangian multipliers.
The benefit of this approach to quantum transport is that
it enables direct application of scattering boundary condi-
tions to a correlated density matrix.4,6,26 For this case, the
many-electron Hamiltonian contains two-electron interactions∑

n ĥn + ∑
n′<n v̂n′ n → Ĥ . Again, stationary solutions for the

functional

L[|
N 〉〈
N |] = L[ρ̂N ]

= μ(Tr1ρ̂1 − η) + β[Tr1ĥρ̂1 + Tr2v̂ρ̂2]

+
∑
pi>0

λL(pi)[Tr1F̂ (qL,pi)ρ̂1 − f0(qL,pi)]

+
∑
pi<0

λR(pi)[Tr1F̂ (qR,pi)ρ̂1 − f0(qR,pi)]

(75)

245413-9
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are sought, where ρ̂1 and ρ̂2 are appropriately normalized
one- and two-electron reduced density matrices, respectively,
obtained from a tracing over N − 1 and N − 2 coordinates in
a correlated N -body density matrix |
N 〉〈
N | defined on the
scattering region. As a chemical potential is applied to drive the
electron reservoirs away from equilibrium with respect to one
another, the resulting density matrix describes the scattering
in the region coupled to the two reservoirs.

VI. CONCLUSION

The theory examined in this paper provides a demonstration
of the use of boundary conditions as constraints to describe
electron scattering and represents the single-particle limit to
MECS.4 It should be noted that any set of boundary conditions
expressible through the Wigner distribution function can be
used to constrain the density matrix boundary conditions
describing reservoirs in equilibrium at any temperature, or
quasiequilibrium electron distributions in leads connecting
electron reservoirs to the scattering region can equally well be
described. In the example of the latter case, leads in equilibrium
with an electron reservoir are important to generate atomic-
scale models for electron transport.

This work motivates use of the constrained variations
to generate correlated transport solutions for molecular
electronics7–9 and related quantum transport problems, in that

it demonstrates how a many-electron wave function can be
generated satisfying scattering boundary conditions imposed
on the one-electron reduced density matrix. In this way, ap-
propriate boundary conditions describing incoming electrons
as needed to break time-reversal symmetry24 are achieved.
This study focused on noninteracting electrons in one spatial
dimension, whereas previous applications of this approach
have been given for three-dimensional systems of correlated
electrons. Use of a single-particle model allows for an explicit
demonstration that the maximum entropy principle combined
with a variational determination of the density matrix subject
to scattering boundary conditions is consistent with standard
formulations of electron transport. The calculations presented
demonstrate how the degrees of freedom associated with
imposing scattering boundary conditions can be fixed and
removed from a variational determination of the electronic
wave functions on a scattering region. The advantage of
the method is that it can be readily generalized to the case
of correlated electrons4 using computational many-electron
methods.40–42
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