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Heat conductivity of the DNA double helix
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Thermal conductivity of isolated single molecule DNA fragments is of importance for nanotechnology, but has
not yet been measured experimentally. Theoretical estimates based on simplified (1D) models predict anomalously
high thermal conductivity. To investigate thermal properties of single molecule DNA we have developed a 3D
coarse-grained (CG) model that retains the realism of the full all-atom description, but is significantly more
efficient. Within the proposed model each nucleotide is represented by six particles or grains; the grains interact
via effective potentials inferred from classical molecular dynamics (MD) trajectories based on a well-established
all-atom potential function. Comparisons of 10 ns long MD trajectories between the CG and the corresponding
all-atom model show similar root-mean-square deviations from the canonical B-form DNA, and similar structural
fluctuations. At the same time, the CG model is 10 to 100 times faster depending on the length of the DNA
fragment in the simulation. Analysis of dispersion curves derived from the CG model yields longitudinal sound
velocity and torsional stiffness in close agreement with existing experiments. The computational efficiency of
the CG model makes it possible to calculate thermal conductivity of a single DNA molecule not yet available
experimentally. For homogeneous (polyG-polyC) DNA, the estimated conductivity coefficient is 0.3 W/mK
which is half the value of thermal conductivity for water. This result is in stark contrast with estimates of thermal
conductivity for simplified, effectively 1D chains (“beads on a spring”) that predict anomalous (infinite) thermal
conductivity. Thus, the full 3D character of DNA double-helix retained in the proposed model appears to be
essential for describing thermal properties of DNA at a single molecule level.
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I. INTRODUCTION

Heat conductivity of nanostructures is of great importance
both from fundamental and applied points of view. For
example, superior thermal conductivity has been observed in
graphene1,2 and carbon nanotubes,3 which has raised an ex-
citing prospect of using these materials in thermal devices.4–8

Generally, one cannot expect that bulk thermal properties of
a material will remain unchanged at the nanoscale: in some
nanomaterials, such as silicon, thermal conductivity is about
two orders of magnitude smaller than that of bulk crystals,9

with the reduction in conductivity attributed to strong inelastic
surface scattering. Furthermore, some familiar physical laws
such as Fourier’s law of heat transfer, which work in bulk
materials are no longer valid on the nanoscale.10–13

Deoxyribonucleic acid (DNA) is one of the most promising
nanowire materials due to the relative ease of modifica-
tions combined with the self-assembly capability which
make it possible to construct a great variety of DNA-based
nanostructures.14,15 While electrical conductivity of single
DNA molecules has been extensively studied, the corre-
sponding thermal properties remain largely unexplored. To
the best of our knowledge, the only published work so far
that attempted to measure thermal conductivity of single
molecule DNA—DNA-gold composite16—gave an estimate
of 150 W/mK for the coefficient of thermal conductivity,
which was conspicuously close to that of pure gold. The
study concluded that molecular vibrations play a key role in
thermal conduction process in DNA molecule, but thermal
conductivity of single molecule DNA remained unknown.

At the same time, theoretical approaches to the problem
have met with their own difficulties. Numerical modeling
of heat transfer along carbon nanotubes and nanoribbons

showed that thermal conductivity increases steadily with
the length of the specimen.10–13 If one makes an analogy
with 1D anharmonic chains that always have infinite ther-
mal conductivity,17,18 one might interpret these results as
suggesting anomalously high thermal conductivity for quasi-
one-dimensional nanosystems. Since at some level the DNA
double helix may also be considered as a quasi-1D system,
one wonders if the corresponding thermal conductivity is also
anomalously high, increasing with the length of the DNA
molecule? It is possible that over-simplified “beads-on-spring”
models of DNA are inappropriate in this context, and thermal
properties of the real double helix do not exhibit the low-
dimensional anomaly in heat conductivity.

The goal of this work is to investigate heat conductivity of
single molecule DNA by direct modeling of heat transfer along
the double helix via classical molecular dynamics of the DNA.
To accomplish this goal we will have to choose a level of detail
that is computationally feasible but at the same time retains
key properties of the fully atomistic picture of the molecule.

Classical molecular dynamics (MD) simulations based on
fully atomistic (all-atom) representations19–21(see Fig. 1) are
among the most widely used tools currently employed to study
dynamics of the DNA double helix.22 In these simulations
the dynamics of the atoms is governed by semiempirical
potentials, or force fields; CHARMM2720,21 or AMBER23

are the most common force fields that accurately reproduce
a variety of structural and dynamical properties of small
fragments of canonical and noncanonical nucleic acids in
water, at least on time-scales of up to 1 μs.22,24–32 Importantly,
classical force fields such as AMBER33 can reproduce high-
level quantum mechanical calculations for hydrogen bonding
and base stacking interactions.34,35 However, accuracy of these
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FIG. 1. (Color online) View of a DNA fragment (CGTT-
TAAAGC) for (a) standard all-atom representation of the double
helix and (b) the proposed coarse-grained model (12CG) based on 12
united atom particles (grains) per base pair.

all-atom models in which every atom of the DNA fragment
and all of the surrounding solvent molecules are represented
explicitly comes at a price of substantial computational
expense that limits the range of applicability of the models.

The so-called implicit solvent approach36–40 reduces the
computational expense by replacing the discrete water envi-
ronment with a continuum with dielectric and “hydrophobic”
properties of water. The solvent degrees of freedom are “inte-
grated out” and the corresponding free energy term is added
to the Hamiltonian of the system. However, even in this case
all-atom simulations may be computationally expensive. For
example, a single 5 ns long simulation of a 147 base pair DNA
fragment reported in Ref. 41 took 115 h on 128 processors. This
example suggests that all-atom models may not be suitable for
the program set out in this work, in which heat transfer along
long fragments of DNA will have to be examined. We therefore
resort to yet another level of approximation, coarse-graining
(CG), where sets of original atoms are grouped into single
“united atoms” particles or grains.

The remainder of this work is organized as follows. We be-
gin with an outline of the coarse-graining procedure leading to
the proposed model, followed by a description of the potential
function. Details are provided in the Appendix. We validate the
model by comparing its dynamics with that of the correspond-
ing all-atom model. Small amplitude vibrations and dispersion
curves are analyzed next, leading to additional verification of
the model by comparison of several predicted characteristics
(speed of sound, torsional rigidity) with the experiment. Then,
we describe in detail the formalism used to model the heat
transfer along a single DNA molecule. In Conclusions we
provide a summary of the results and a brief discussion.

II. THE COARSE-GRAINED MODEL OF DOUBLE
HELICAL DNA

Naturally, there is no unique prescription for subdividing
a macromolecule into grains. The grouping of individual

atoms into grains aims to achieve a balance between faithful
representation of the underlying dynamics and the associ-
ated computational expense which is directly related to the
number of grains retained in the CG description. A
fairly large number of coarse-grained DNA models
has been developed.42–61 Many of these models are
phenomenological—each nucleotide is represented by one to
three grains interacting via relatively simple pair potentials
designed to reproduce either certain sets of experimental
properties or the results of numerical simulations based on the
corresponding all-atom models. However, the oversimplified
description of the nitrogen bases carries the risk of losing
some key details of the base-base interactions, particularly
their stacking part, that affects intramolecular rearrangements.
The latter plays a very important role in heat transfer along the
DNA molecule.62 To make sure the nitrogen bases are treated
as accurately as possible within the CG description, we follow
a strategy in which each base is modeled by three grains; the
interaction between the bases is modeled at the all-atom level
via a computationally effective strategy described below.

Within the coarse-grained model each nucleotide is rep-
resented by six coarse-grained particles, or grains: one for
the phosphate group, two for the sugar ring, and three for
the nitrogen base. The mass of each coarse grain equals the
net mass of the original atoms that make up that grain; for the
three base grains the original mass is distributed between them
as described in the Appendix. The fine-level to coarse-grain
reduction employed by our model is shown in Fig. 2. Following
Bruant et al.,42 where all-atom molecular simulations were
used to identify a set of relatively rigid groups of atoms in the
DNA, all of the original atoms of the phosphate and C5′ groups
[atoms P, O1P, O2P, O3′, O5′, C5′, H5′1, H5′2, see Fig. 2] are
combined into a single [P] grain which is placed at the position
of the original P atom.

FIG. 2. (Color online) Combining original atoms into coarse
grains on the DNA backbone. Dashed lines indicate atoms that are
included in the corresponding grain, solid circles mark the atoms on
which the grain is centered.
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The sugar groups are described by two grains which are
placed on the original C3′ and C1′ atoms; they will be denoted
as [C3] and [C1]. The grain [C3] includes C3′, H3′, C4′, and
H4′ original atoms, the grain [C1] includes original C1′, H1′,
C2′, H2′1, H2′2, and O4′ atoms. Thus, within our coarse-grain
model the backbone of the double helix is represented by a
chain of three particles (grains) [P], [C3], and [C1] (see Fig. 2).

Nitrogen bases (A, T, G, and C) are rather rigid, planar
structures; spatial position and orientation of each base can
be uniquely determined from positions of any three atoms
that belong to that base. Therefore, bases A, T, G, C will
be described in terms of three grains. For the A base, we
identify the three grains with the original C8, N6, C2 atoms;
for the T base, the three atoms are C7, O4, O2; for the G they
are C8, O6, N2 atoms; and for the C base, they are C6, N4,
and O2 original atoms. Thus, within the suggested model, one
base-pair (bp) of the DNA double helix consists of 12 grains—
we call the model “12CG” [see Fig. 1(b)]. For N base-pair
double helix, our system will consist of 12N particles. Note
that within our terminology the simplest possible “beads-on-
spring” model would be called “1CG” (one grain per base pair),
and the all-atom representation would be “40CG,” although in
this case the exact number would depend slightly on the base
sequence.

Interactions between neighboring base pairs are obviously
very important for heat transfer along the DNA molecule.
So within the framework of our coarse-grained model the
stacking of neighboring base pairs should be taken into
account as accurately as possible. We take advantage of the
planar structure of the bases to bring the accuracy of the
stacking interactions close to the all-atom level, but with
little additional computational expense: from the known grain
coordinates of each coarse-grain base, one can trivially restore
coordinates of all of the original atoms in the base with virtually
no additional computational expense. We then use these
coordinates to calculate the stacking energy using accurate
all-atom potentials, see the Appendix for details.

III. THE POTENTIAL FUNCTION

To describe interactions between the grains, we employ a
potential function that contains all of the “standard” terms
used in classical molecular dynamics simulations.63,64 These
terms include internal energy contributions such as bond
stretching and angle bending, short-range van der Waals (vdW)
interactions, and long-range electrostatic interactions in the
presence of water and ions. The latter are modeled implicitly,
at the continuum dielectric, linear response level. The detailed
term by term description of the potential is given in the
Appendix.

The total energy of the system consists of nine terms:

H = Ek + Ev + Eb + Ea + Et + Ehb + Est + Eel + EvdW .

(1)

The first term Ek stands for kinetic energy of the system,
the terms Ev , Ea , Et describe, respectively, the bond, angle,
and torsion deformation energy of the backbone. The term Eb

stands for base deformation energy and was introduced to hold
four points—C1′ and three points on a nitrogen base—near one

plane. The last two terms Eel,EvdW describe electrostatic and
van der Waals interactions between grains on the backbone.
Interaction between nitrogen bases, including interactions
along the same chain (stacking) as well as interactions across
the complementary chains (including hydrogen bonds between
complementary bases), are described by two terms Est and
Ehb. These two potentials depend on coordinates of all of the
original atoms of the base. These coordinates are uniquely
calculated from positions of the three grains that form each
base; the reader is referred to the Appendix for details.
A FORTRAN implementation of the model is freely avail-
able at [http://people.cs.vt.edu/onufriev/∼software∼onufriev/
software] .

IV. VALIDATION OF THE MODEL

We begin validating the proposed coarse-grained model by
comparing the resulting DNA dynamics with that produced
by the corresponding well-established all-atom model. Later
in this work we will also discuss direct comparisons with
existing experiments (estimated sound velocities).

In what follows we use following notation for convenience:
xn,j ,j = 1, . . . ,12 are coordinates of 12 grains on the nth
base-pair of the double helix (see Fig. 3). Therefore, the
configuration of the nth base-pair is given by a 36-dimensional
coordinate vector un = {xn,j }12

j=1. The constant temperature
dynamics of the double helix is obtained by integrating
numerically the following system of Langevin’s equations:

Mnün = −∂H/∂un − �Mnu̇n + �n, (2)

where n = 1,2, . . . ,N , � = 1/tr is the Langevin collision
frequency with tr = 1 ps being the corresponding particle
relaxation time, Mn is a diagonal matrix of grain masses
of the nth base-pair, and �n = {ξn,k}36

k=1 is a 36-dimensional
vector of Gaussian distributed stochastic forces describing the
interaction of nth base-pair grains with the thermostat with
correlation functions

〈ξn,i(t1)ξm,j (t2)〉 = 2M�kBT δnmδij δ(t2 − t1),

where the mass M = Mk , if i = 3(k − 1) + l, k = 1, . . . ,12,
l = 1,2,3.

To bring the temperature of the molecule to the desired
value T = 300 K, we integrate the system over time t = 20tr
starting from the following initial conditions:{

un(0) = u0
n,u̇n(0) = 0

}N

n=1 (3)

that correspond to the equilibrium state of the double helix
{u0

n}Nn=1. Once the system is thermalized, the temperature is
maintained at T = 300 K and the trajectory continues for 10 ns.

The first step in the validation procedure is to estimate root-
mean-square deviation (RMSd) of the end point (t = 10 ns) of
the trajectory from a reference DNA structure, and compare
the RMSd values between the CG and the reference all-atom
trajectory (AMBER). Given two structures, the RMSd can be
computed as

d =
{

1

12N
min

S∈SO(3),l∈R3

12N∑
i=1

[
ri − (Sr′

i + l)
]2

}1/2

,

245406-3



SAVIN, MAZO, KIKOT, MANEVITCH, AND ONUFRIEV PHYSICAL REVIEW B 83, 245406 (2011)

P

P

C3

C3 C1

C1

C1

C1

C3

C3

P

P

x
n,1

x
n,2

x
n,3

x
n,4

x
n,5

x
n,6

x
n+1,1

x
n+1,2

x
n+1,3

x
n+1,4

x
n+1,5x

n+1,6

x
n,7

x
n,8

x
n,9x

n,10

x
n,11 x

n,12

x
n+1,7

x
n+1,8

x
n+1,9

x
n+1,10

x
n+1,11

x
n+1,12

3′

5′

3′

5′

FIG. 3. (Color online) Fragment of the DNA double helix in the
coarse-grained representation. Base-pairs n and n + 1 are shown.

where ri ,i = 1, . . . ,12N is the reference (e.g., initial), and r′
i

is the final set of coordinates of the structure. The expression
is minimized over a translation (vector l) and a rotation
around a fixed point (operator S). The details of the algorithm
are described in Ref. 65. Analysis of RMS deviations from
reference structures as a function of simulation time is
commonly used as an initial check of the stability of the system
and the quality of the underlying models.66,67

As is common in the field, the following sequence of 12 base
pairs d(CGCGAATTGCGC)2 (Dickerson’s dodecamer) was
used for this test; experimental x-ray structure of this B-DNA
fragment is available. A constant temperature (T = 300 K)
simulation was performed for 10 ns. As one can see from Fig. 4
the various RMSd metrics fluctuate around their equilibrium
values, which suggests that the system remains stable in
dynamics, on the time scale of the simulation. A comparison
with the corresponding all-atom simulation is shown in
Fig. 4(b). This all-atom simulation uses the same 12 base-pair
fragment, and is based on the latest nucleic acid force-field
(parmbsc023) from AMBER. The solvent was represented via
the generalized Born implicit solvent approximation; all other
parameters, such as Langevin collision frequency, ambient salt
concentration, etc., were the same as in the CG simulation
shown in Fig. 4(b). Comparing Figs. 4(a) and 4(b) we can
see that the all-atom RMSd is slightly larger than that of
the 12CG models. We can conclude that the 12CG model
is somewhat more rigid as compared with the all-atom one.
Finally, we note that the equilibrium RMS deviation from the
experimental (x-ray) B-form DNA is about 2.5Å, Fig. 4(c),
which is similar to what was observed earlier in all-atom
implicit solvent simulations.66

Another common set of structural parameters used in vali-
dation of DNA models is helical parameters. These parameters
determine the interaction between neighboring base pairs,
hence they are significant for heat transfer processes. Let
us choose, for simplicity, two of them which are the most
relevant ones for describing the overall structure of the double
helix. The first of these parameters is the angle φ, called twist,
through which each successive base pair is rotated around the
helical axis relative to its (nearest neighbor) predecessor. The
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FIG. 4. (Color online) Comparison of time dependence of RMS
deviation relative to various reference structures in coarse-grained
and all-atom molecular dynamics simulations of a 12 base-pair DNA
fragment at T = 300 K. (a) 12CG model simulation. RMSd is relative
to the first frame. (b) All-atom model simulation. RMSd is relative
to the first frame, (c) 12CG model simulation. RMSd is relative
to B-DNA X-ray structure.68 For all-atom structures the RMSd is
computed only for the subset of atoms that define grain centers in the
corresponding CG model.

second one, rise, is the distance between such two neighboring
base pairs. Given the structure of a single nucleotide and the
values of the twist and rise, one can re-construct the whole
molecule assuming that it is a “one-dimensional” uniform
crystal. An exact algorithm of calculating these parameters
is described in Ref. 69. We used the X3DNA69 package
and in-house software for computing these parameters in our
all-atom and CG models. With regards to twist and rise, the
validation of our 12CG model was performed in the same
manner as previously described in the context of an all-atom
model.67 The results are presented in Fig. 5, where the averages
of the 10 ns simulation trajectories and the standard deviations
(indicated by error bars) for each base pair step are shown. One
can see that the twist and rise values for the 12CG model are
rather close to those of the all-atom model. A small difference
is comparable with that seen between DNA simulations in
explicit vs. implicit solvent.67

V. THE DISPERSION CURVES AND SMALL-AMPLITUDE
OSCILLATIONS

The proposed 12CG model enables one to compute
dynamical evolution of a DNA molecule with any base
sequence. However, for homogeneous molecules, that is if
all base pairs are identical, the molecule can be considered
as quasi-one-dimensional crystal with the elementary cell
being one nucleotide pair of the double helix. This is a very
useful simplification that will be employed here; it is also a
very reasonable one as long as the focus is on the overall
physics of the structure, not on sequence dependent effects.
The main advantage of the homogeneity assumption is that
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FIG. 5. (Color online) Comparison of two common helical
parameters (a) �z (rise) and (b) �φ (twist) between the CG model
(curves 1, 3) and the corresponding all-atom model (curves 2, 4)
(n is the number of base-pair steps). Shown are averages over the
corresponding 10 ns molecular dynamics trajectories at T = 300 K.

linear oscillations can be analyzed by standard techniques of
solid state physics. To be specific, consider a poly-G double
helical chain, assumed to extend along the z axis. In the ground
state of the double helix, each successive nucleotide pair is
obtained from its predecessor by translation along the z axis
by step �z and by rotation around the same axis through helical
step �φ. These are the rise and twist parameters introduced in
the previous section:

xn,j,1 = xn−1,j,1 cos(�φ) − xn−1,j,2 sin(�φ),

xn,j,2 = xn−1,j,1 sin(�φ) − xn−1,j,2 cos(�φ), (4)

xn,j,3 = xn−1,j,3 + �z.

Thus, the energy of the ground state is a function of 38
variables: {x1,j }12

j=1, �φ, �z, where x1,j = (x1,j,1,x1,j,2,x1,j,3)
is the vector position of j th grain of the first nucleotide pair.

Finding the ground state amounts to the following mini-
mization problem:

E0 = Ev + · · · + EvdW → min : {x1,j}12
j=1,�φ,�z, (5)

where the sum extends over one nucleotide pair n = 1, and the
relation (4) holds for calculation of the energies Ev ,...,EvdW .

A numerical solution of the problem (5) has shown that the
ground state of poly-G DNA corresponds to the twist value of
�φ0 = 38.30◦, and the rise value (z step) of �z0 = 3.339Å.
It should be noticed that if all of the long-range interaction
were omitted, i.e., without the two last terms Eq and EvdW in
the Hamiltonian (1), the helical step values would change only
slightly, by about 1% : �φ0 = 38.03◦, �z0 = 3.309Å. Thus,
long-range electrostatic interactions between the charged
group result in the relative elongation of the chain by only
about 1% . Parameters of the double helix computed within

our model differ only slightly from the “canonical” parameters
of the B conformation of a (heterogeneous) DNA double helix
in the crystal form,70 for which the average twist angle is
�φ = 34◦–36◦, and average rise per base pair is �z = 3.4Å.

To find the ground state of the homogeneous double
helix under tension, it is necessary to minimize (5) under
the fixed value of longitudinal step �z. As a result, one
can obtain the dependence of the homogeneous state en-
ergy on the longitudinal step. This function E0(�z) has
a minimum when �z = �z0, which corresponds to the B
conformation of the double helix. Longitudinal stiffness of
the helix Kz = d2E0/d�z2|�z0 . Specifically, within our model
we estimate Kz = 16 N/m. Since the energy E0 which is
being derived is normalized to one nucleotide pair one can
calculate the stretching modulus S = Kz�z0 = 16 N/m ×3.4
Å = 5440 pN. This estimate is somewhat higher than the
corresponding estimates of 1530, . . . ,3760 pN obtained from
fluctuations of distances between base pairs observed in
MD simulations.42 The relatively larger value of Kz from
our CG model is consistent with the model’s overall higher
stiffness relative to the all-atom description, see a discussion
above. Some of the difference between the two estimates
may also be due to methodological differences in estimating
longitudinal stiffness. Values of the stretching modulus derived
from experiments are of the order 1000 pN,71–73 i.e., about 5
times smaller than our estimate based on the CG model. One
should keep in mind, however, that we have obtained only
an upper estimate for the stretching modulus: temperature
was assumed to be zero, the calculations were based on a
homogeneous poly-G–poly-C sequence that was reported to be
more rigid than inhomogeneous and poly-A–poly-T sequences
used in experiments,74,75 and the entropy component was not
considered in our calculations.

To obtain E0(�φ), that is the dependence of the helix energy
on the helical step �φ, we set �z ≡ �z0 in Eq. (5) and perform
the minimization with respect to the remaining 36 param-
eters. Then, torsional stiffness of the double helix is Kφ =
�z0d

2E0/d�φ2|�φ0 . Our estimate, Kφ = 5.8 × 10−28 J·m,
is in good agreement with the experimental value of Kφ =
4.1 ± 0.3 × 10−28 J·m, obtained for DNA macromolecule in
the B conformation.76

For analysis of small-amplitude oscillations of the double
helix it is convenient to use local cylindrical coordinates vn,j =
(vn,j,1,vn,j,2,vn,j,3), given by the following expressions:

xn,j,1 = x0
n,j,1 − vn,j,1 sin φn,j + vn,j,2 cos φn,j ,

xn,j,2 = x0
n,j,2 + vn,j,1 cos φn,j + vn,j,2 sin φn,j , (6)

xn,j,3 = x0
n,j,3 + vn,j,3,

with x0
n,j , (n = 0, ± 1, ± 2, . . .; j = 12, . . . ,12,) being coor-

dinates of the grains in the ground state of the double helix,
and φn,j being angular coordinate of the grain (n,j ). Within
these new coordinates the molecule’s Hamiltonian (1) has the
following form:

H =
∑

n

[
1

2
(Mv̇n,v̇n) + P (vn−1,vn,vn+1)

]
, (7)

where vn = (un,1,un,2, . . . ,un,12) is a 36-dimensional vector,
M is 36-dimensional diagonal mass matrix. Note that the last
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two terms Eq and EvdW , responsible for long-range interaction,
have been omitted. This simplification is critical from the
methodological point of view, but has very little impact on
the accuracy of the estimates of DNA thermal conductivity.
The point will be discussed below.

Hamiltonian (7) corresponds to the following system of
equations of motion:

−Mv̈n = P1(vn,vn+1,vn+2)

+P2(vn−1,vn,vn+1) + P3(vn−2,vn−1,vn), (8)

where Pi(v1,v2,v3) = ∂P/∂vi , i = 1,2,3. Within the linear
approximation, the system (8) has the form

−Mv̈n = B1vn + B2vn+1 + B∗
2 vn−1 + B3vn+2 + B∗

3 vn−2,

(9)

where matrix elements are given by

B1 = P11 + P22 + P33,B2 = P12 + P23,B3 = P13,

and partial derivative matrix is given by

Pij = ∂2P

∂vi∂vj

(0,0,0),i,j = 1,2,3.

Solution of the system of linear equations (9) can be found
in the standard form

vn = Ae exp[i(qn − ωt)], (10)

where A is linear mode amplitude, e is the unit vector (|e| = 1),
q ∈ [0,π ] is the dimensionless wave number. Substituting the
expression (10) into the system (9) , we arrive at the following
36-dimensional eigenvalue problem:

ω2Me = [B1 + B2 exp(iq) + B∗
2 exp(−iq)

+B3 exp(2iq) + B∗
3 exp(−2iq)]e. (11)

Thus, to obtain dispersion relations which characterize eigen-
modes of the DNA double helix, one has to find all eigenvalues
of the problem (11) for each of the values of the wave
number 0 � q � π . The calculated dispersion curve includes
36 branches {ωj (q)}36

j=1 and is shown in Fig. 6.
It can be seen from Fig. 6 that frequency spectrum consists

of low-frequency 0 � ω � 175 cm−1 and high-frequency
ω ∈ [267,749] cm−1 domains. The high-frequency domain
describes internal oscillations of the bases. As shown in
Fig. 6(a), corresponding dispersion curves have very small
slope, meaning that the high-frequency oscillations have a
small dispersion. The low-frequency oscillations have larger
dispersion—see Fig. 6(b). There are two acoustic dispersion
curves which include zero point (q = 0, ω = 0). The first curve
ω1(q) describes torsional acoustic oscillations, the second one
ω2(q) describes longitudinal acoustic oscillations of the double
helix. Thus we can obtain the two sound velocities

vt = �z lim
q→0

ω1(q)

q
, vl = �z lim

q→0

ω2(q)

q
,

with �z being the z step of a double helix. The value of the
torsional sound velocity is vt = 850 m/s, and the value of the
longitudinal sound velocity is vl = 1790 m/s. One of these
dispersion curves includes the special point (q = �φ,ω = 0)
(�φ is the angular helix step). This curve describes bending
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FIG. 6. (Color online) 36 branches of the dispersion curve of ho-
mogeneous poly-G DNA: (a) high-frequency and (b) low-frequency
branches.

oscillations of the double helix which we do not analyze
in detail because we have so far neglected the long-range
interactions that are known to have a strong effect on bending
rigidity of the DNA.

The estimated longitudinal sound velocity is in agreement
with the experimental value of the sound velocity in DNA
fibers77: vl = 1900 m/s. Another experimental estimate78 of
the same quantity is higher, vl = 2840 m/s, and was obtained
from inelastic x-ray scattering. The same work reports tor-
sional sound velocity vt = 600 m/s; the 20% discrepancy with
our estimate of vt = 850 m/s appears acceptable given similar
margin of error seen between different experimental estimates
for the longitudinal velocity.

VI. FREQUENCY SPECTRUM OF THE THERMAL
OSCILLATIONS

Let us again consider a homogenous poly-G DNA chain
consisting of N = 200 base pairs and calculate its frequency
spectrum density. We begin by simulating dynamics of the
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FIG. 7. (Color online) Frequency spectrum density of the DNA
double helix thermal fluctuations at T = 300 K.

helix without taking into account long-range interactions.
Later, we will turn them on to analyze the effect of making
this approximation.

To obtain thermalized state of the double helix, the system
of Langevin’s equations (2) should be numerically integrated.
For thermalization of the double helix let us consider initial
conditions corresponding to the ground state (3), and integrate
the system (2) over time t = 20tr . After the equilibration
period, the coupling with the thermostat is switched off, and
the frequency density p(ω) of the kinetic energy distribution
is obtained. To increase precision, distribution density was
calculated as an average over all grains of the helix.

The computed frequency spectrum density at T = 300 K
is shown in Fig. 7. The spectrum is clearly divided into a low-
frequency 0 � ω � 175 cm−1 and a high-frequency 267 <

ω < 749 cm−1 domain, consistent with the dispersion curves
of Fig. 6.

Simulating the double helix dynamics with account for all
interactions, including long-range ones, (results not shown)
yields almost the same frequency spectrum. Only the density
of oscillations in the interval 0 � ω < 10 cm−1 increases
somewhat.

VII. HEAT CONDUCTIVITY OF THE DOUBLE HELIX

For numerical modeling of the heat transfer along the
DNA double helix, we consider a chain of a fixed length
with the ends placed in two separate thermostats each with
its own temperature. To calculate the coefficient of thermal
conductivity, we have to calculate numerically the heat flux
through any cross section of the double helix. Therefore, first
we need to obtain a formula for the longitudinal local heat flux.

Let us consider the homogeneous double helix poly-G
DNA. (The method below is also applicable to any sequences
of bases).

If long-range interactions (electrostatic and van der Waals)
are not taken into account we can present the Hamiltonian of
the helix (1) in the form

H =
∑

n

1

2
(Mu̇n,u̇n) + P (un−1,un,un+1), (12)

where the first term describes the kinetic energy of atoms
in a given cell and the second term describes the energy of

interaction between the atoms within the cell and with the
atoms of neighboring cells. The corresponding equations of
motion can be written in the form

Mün = −P1(un,un+1,un+2) − P2(un−1,un,un+1)

−P3(un−2,un−1,un), (13)

where the function Pj is defined as

Pj = ∂

∂uj

P (u1, u2, u3),j = 1,2,3.

To determine the energy flux through the double helix cross
section, we rewrite formula (12) in a compact form, H =∑

n hn, where hn is the energy density,

hn = 1
2 (Mu̇n,u̇n) + P (un−1,un,un+1). (14)

Local longitudinal heat flux jn is defined through local
energy density hn by the discrete version of the continuity
equation,

d

dt
hn = jn − jn+1. (15)

Using the energy density (14) and the equations of motion
(13) , we can derive the following relations:

d

dt
hn = (Mün,u̇n) + (P1,n,u̇n−1) + (P2,n,u̇n)

+ (P3,n,u̇n+1) = −(P1,n+1,u̇n) − (P3,n−1,u̇n)

+ (P1,n,u̇n−1) + (P3,n,u̇n+1),

where

Pj,n = Pj (un−1,un,un+1),j = 1,2,3.

From this and Eq. (15) it follows that the energy flux through
the nth cross section has the following simple form:

jn = (P1,n,u̇n−1) − (P3,n−1,u̇n). (16)

Let us note that taking into account long-range interactions
would complicate this formula considerably, making the cal-
culations virtually intractable. This is why the approximation
we have made is critical.

For a direct numerical modeling of the heat transfer along
the double helix, we consider a finite structure of the length
N�z with fixed ends. We assume that the first N+ = 20
segments are placed in the thermostat at temperature T+ =
310 K and the last N− = 20 segments are placed in the other
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thermostat at T− = 290 K. The helix dynamics is described by
the following equations of motion:

Mün = −Fn − �Mu̇n + �+
n ,n = 1, . . . ,N+,

Mün = −Fn,n = N+ + 1, . . . ,N − N−, (17)

Mün = −Fn − �Mu̇n + �−
n ,n = N − N− + 1, . . . ,N,

where Fn = ∂H/∂un, � = 1/tr is the damping coefficient
(relaxation time tr = 1 ps, and �±

n = (ξ±
1 , . . . ,ξ±

36) is a 36-
dimensional vector of normally distributed random forces
normalized by the condition

〈ξ±
n,i(t1)ξ±

m,j (t2)〉 = 2M�kBT±δnmδij δ(t2 − t1),

where the mass M = Mk , if i = 3(k − 1) + l, k = 1, . . . ,12,
l = 1,2,3.

We take the initial conditions (3) corresponding to the
equilibrium state of the helix. With these initial conditions,
we integrate the equations of motion (17) numerically, by em-
ploying the velocity Verlet method with step �t = 0.0005 ps.
After integration time t0 [this value depends on the helix length
between the thermostats, �L = (N − N+ − N−)�z], we ob-
serve the formation of a temperature gradient and a constant
heat energy flux in the central part of the helix. It is important to
notice that the time t0 can be reduced by modifying the initial
distribution of the energy, e.g., by taking the initial condition
for the system (17) as homogeneously thermalized state with
the mean temperature T = (T+ + T−)/2 = 300 K.

After the stationary heat flux is established, the temperature
distribution can be found using the formula

Tn = lim
t→∞

1

36kBt

∫ t

0
[Mu̇n(τ ),u̇n(τ )]dτ

and the averaged value of the energy flux along the helix

Jn = lim
t→∞

�z

t

∫ t

0
jn(τ )dτ.

Distributions of the local energy flux and temperature along
the helix are shown in Figs. 8(a) and 8(b). In the steady-state
regime, the heat flux through each of the cross sections at
the central part of the helix should remain the same, i.e.,
Jn ≡ J , N+ < n � N − N−. This property can be employed
as a criterion for the accuracy of numerical modeling and
can also be used to determine the characteristic time for
achieving the steady-state regime and calculation of Jn and Tn.
Figure 8(a) suggests that the flux is constant along the central
part of the helix indicating that we have reached the required
regime.

At the central part of the helix, we observe a linear gradient
of the temperature distribution, so that we can define the
coefficient of thermal conductivity as

κ(N − N+ − N−) = (N − N− − N+ − 1)J

(TN++1 − TN−N− )S
, (18)

where S = πR2 is the area of the cross section of the double
helix (R = 8 Å is the radius of the helix, assumed to be the
distance from the helical axis to the center of each phosphorus
atom). In this way, the calculation of thermal conductivity is
reduced to the calculation of the limiting value,

κ = lim
N→∞

κ(N ).
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FIG. 8. (Color online) Distributions of (a) local heat flux Jn and
(b) local temperature Tn in the double helix with length N�z. The
input parameters are N = 60, temperatures T+ = 310 K and T− =
290 K, and the number of cells in the thermostats, N± = 20.

In order to determine the coefficient of thermal conductivity,
we need to know only the dependence of the temperature from
base-pair number in the central part of the helix. However,
a change of the temperature distribution at the edges of the
helix can also provide some useful information. If the helix
is placed into a Langevin thermostat at temperature T , each
segment of the helix should have the temperature Tn = T due
to the energy balance of the input energy from random forces
and the energy lost to dissipation. Then, an averaged energy
flow from the n-th segment of the helix can be presented as

�〈(Mu̇n,u̇n)〉 = 36kBTn/tr .

If only the edges of the helix are placed into the thermostat, an
additional energy exchange with the central part of the helix
will occur, so the energy from the right edge will flow to the
left one. As a result, the temperature of the left edge is reduced
(Tn � T+, n = 1,2, . . . ,N+), whereas the temperature at the
right edge increases (Tn � T−, n = N − N− + 1, . . . ,N) see
Fig. 8(b). This information allows us to find the energy flux
in the central part of the double helix using only the energy
imbalance at the edges,

J tr

�z36kB

=
N+∑
n=1

(T+ − Tn) =
N∑

n=N−N−+1

(Tn − T−). (19)

If the lengths of the edges placed in the thermostat coincide,
i.e., N+ = N− = N±, we can rewrite this formula in the
following simplified form:

J = �z18kB

tr

N±∑
n=1

(T+ − T− − Tn + TN+1−n). (20)
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Equation (19) gives an alternative way to calculate thermal
energy flux J ; the equation can be employed to verify results
obtained via Eq. (16) . Let us note that although (16) is obtained
under the assumption of no long-range interactions, formula
(20) remains valid also if these interactions are taken into
account.

Numerical modeling of the heat transfer shows that both
formulas lead to the same value of the heat-conductivity
coefficient if long-range interactions are absent. When N = 80
(the number of internal links Ni = N − N+ − N− = 20), the
heat-conductivity coefficient κ = 0.26 W/mK. When N = 80
(Ni = 40) conductivity κ = 0.29 W/mK, when N = 120
(Ni = 80) – κ = 0.27 W/mK, and when N = 200 (Ni = 160)
– κ = 0.28 W/mK. The same values are obtained also if the
long-range interactions are taken into account [and the heat
flow is calculated by formula (20) only]. These considerations
help us reach the conclusion that the contribution of the
long-range interactions to the heat transfer along the double
helix is very minor.

It is worth noting that the use of formula (20) for calculating
the value of heat transfer requires more time-consuming
calculations. Therefore, it is preferable to use formula (16).
Also, Eq. (16) allows one to estimate relative contributions of
various interactions into the process of heat transfer. We find
that interaction between neighboring base pairs contributes
32% to the net energy flow, with the rest of the heat transfer
occurring along the two sugar-phosphate chains.

As one can see from the results, the value of heat conductiv-
ity κ in the DNA macromolecule does not depend on the length
of the molecule. This behavior is characteristic of regular
thermal conductivity for which Fourier’s law is valid. The
conclusion that thermal conductivity of the DNA at nanolevel
is regular, obeying Fourier’s law, is in contrast to earlier models
of heat conduction along carbon nanotubes and nanoribbons
that predicted anomalous thermal conductivity—divergence of
the coefficient of thermal conductivity with sample length.10–13

Compared to nanotubes, the DNA double helix is much softer,
which leads to strongly nonlinear behavior at T = 300 K
(in contrast, a nanotube is a rigid quasi-one-dimensional
structure, with only weak nonlinear dynamics). Contribution
of nonlinearity to the DNA dynamics will be explored in more
detail in the following section.

VIII. DEPENDENCE OF THE THERMAL CONDUCTIVITY
ON TEMPERATURE

At T = 300 K the DNA double helix exhibits high-
amplitude vibrations (the amplitudes can be estimated from
Figs. 4 and 5). The contribution of nonlinearity to the DNA
dynamics can be estimated from the temperature dependence
of dimensionless heat capacity

c(T ) = 1

36NkBT

d

dT
E(T ), (21)

where E(T ) = 〈H 〉 is average double helix energy at temper-
ature T . For a harmonic system, dimensionless heat capacity
c(T ) ≡ 1; for a system with strong anharmonism c(T ) < 1,
and for weakly anharmonic systems c(T ) > 1. As seen from
Fig. 9, heat capacity of the double helix equals to 1 for
low temperatures (T < 10 K) and increases monotonously
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FIG. 9. (Color online) (a) Temperature dependence of dimen-
sionless specific heat c(T ) and cq (T ) (curves 1 and 2, respectively);
(b) heat conductivity κ(T ) and κq (T ) (curves 3 and 4, respectively) of
the DNA double helix. The dependencies c(T ) and κ(T ) are obtained
in the framework of classical molecular dynamics model, while cq (T )
and κq (T ) are computed within the quantum framework.

when the temperature grows. The heat capacity c = 1.05 at
T = 300 K, implying weak anharmonism.

The role of nonlinearity decreases monotonously as the
temperature decreases. In the limiting case T → 0 the double
helix becomes harmonic. Therefore, classical thermal con-
ductivity has to increase monotonously as the temperature
decreases, and diverge when T → 0. The results of our
numerical modeling confirm this conclusion—see Fig. 9, curve
3. At T ↘ 0 the heat conductivity κ ↗ ∞.

We should mention that the temperature dependence of
the DNA thermal conductivity found above is obtained
using the framework of the classical molecular-dynamics
model, which does not take into account quantum effects
of “frozen” high-frequency oscillations (to take those into
account requires substantial modifications to the model79,80).
In crystals at low temperatures, thermal conductivity decays
monotonically when T → 0. This is explained by the fact that
at low temperatures the temperature dependence of thermal
conductivity is defined mainly by the temperature dependence
of heat capacity.

In classical mechanics, heat capacity of phonons does not
depend on temperature, whereas in quantum mechanics such a
dependence is defined by the formula c(ω,T ) = kBFE(ω,T ),
where the Einstein function is

FE(ω,T ) =
(

h̄ω

kBT

)2 exp(h̄ω/kBT )

[exp(h̄ω/kBT ) − 1]2
,
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and ω is the phonon frequency (0 � FE � 1, the function
FE ↘ 0 for T ↘ 0 and FE ↗ 1 for T ↗ ∞).

As seen from the DNA dispersion curves {ωi(q)}36
i=1, the

main contribution in the heat conductivity is determined by
the 20 low-frequencies phonons (16 high-frequency phonons
have very small group velocities, and therefore cannot be
efficient energy carriers). The temperature dependence of
dimensionless heat capacity of low frequencies phonons can
be found using the formula

cq(T ) = 1

20π

20∑
i=1

∫ π

0
FE(ωi(q),T )dq. (22)

One can see from Fig. 9 that the heat capacity cq does not
noticeably depend on temperature if T > 150 K, and tends
monotonously to zero as the temperatures decreases below
T < 150 K.

Thus, thermal vibrations of the double helix can be
described classically for T > 150 K only. For lower tem-
peratures, quantum effects caused by “freezing out” of high-
frequency vibrations must be taken into account. Due to these
effects the DNA heat capacity (22) tends monotonously to
zero as the temperature decreases. The double helix thermal
conductivity κq(T ) ≈ cq(T )κ(T ), [where the temperature de-
pendence κ(T ) is calculated classically] because the phonon
energy is proportional to heat capacity. As seen form Fig. 9(b)
at T > 30 K the thermal conductivity κq grows monotonously
as the temperature decreases, reaching its maximum at T ≈
30 K, and then decreases monotonously as T → 0.

These calculations show that heat transfer in DNA oc-
curs mainly due to propagation of low-frequency phonons
(frequencies ω < 175 cm−1), i.e., by “soft” low-frequency
waves. Such oscillations are strongly coupled to deformation
of orientation angles. This fact clearly distinguishes the DNA
double helix from the essentially rigid carbon nanotubes
and nanoribbons. The simplest model of a one-dimensional
system with orientational interaction is a one-dimensional
chain of interacting rotators. This chain has a finite ther-
mal conductivity.81,82 On the other hand, nanotubes and
nanoribbons are commonly described in the one-dimensional
approximation as anharmonic Fermi Pasta Ulam (FPU) chains
that lead to infinite heat conductivity.17,18

Thus, the double helix of a homogeneous poly-G DNA has a
finite thermal conductivity κ = 0.3 W/mK. The double helix
with a nonhomogeneous (arbitrary) base sequence may be
expected to have a lower value of heat conductivity coefficient
since the presence of inhomogeneities leads to additional
phonon scattering. Therefore, thermal conductivity of a
generic DNA double helix, κ � 0.3 W/mK, may be expected
to be less than half of that of water heat conductivity which is
0.6 W/mK. This means that, at a single-molecule level, the
DNA macromolecule is a thermal insulator relative to its
surrounding solution. It should be noted that experimentally
measured thermal conductivity of the DNA-gold composite
structure (DNA is a matrix for gold nanoparticles)16 gives the
coefficient of thermal conductivity 150 W/mK, which is 500
times higher than the predicted thermal conductivity of pure
DNA. Thus, we conclude that the measured thermal conduc-
tivity of the DNA-gold composite is completely determined
by the metal component, not the DNA.

IX. CONCLUSIONS

A coarse-grain (12CG) model of DNA double helix is pro-
posed in which each nucleotide is represented by six “grains.”
The corresponding effective pair potentials are inferred from
correlation functions obtained from classical all-atom molec-
ular dynamics (MD) trajectories and potentials (AMBER).
The computed structural characteristics and fluctuations of the
double helix at T = 300 K are in reasonable agreement with
available experimental data and earlier computations based on
all-atom models. An analysis of dispersion curves derived from
the coarse-grained model yields longitudinal and torsional
sound velocities in close agreement with experiment.

The numerical modeling of heat conductivity along a single
DNA molecule shows that the double DNA helix has a finite
(normal) thermal conductivity. This means that Fourier’s law
is valid at nanolevel for the DNA, i.e., the coefficient of
thermal conductivity does not depend on the length of the
DNA fragment. Single molecule DNA thermal conductivity
does not exceed 0.3 W/mK, which is two times smaller than
the thermal conductivity of water. Thus, the DNA double
helix is a poor heat conductor. At the same time, it is known
from modeling of heat transfer along carbon nanotubes and
nanoribbons that the coefficient of thermal conductivity in
these systems diverges as the specimen length grows.10–13

The anomalous behavior of thermal conductivity in long
nano-objects is caused by their rigid structure and their their
weakly nonlinear quasi-one-dimensional dynamics, mostly
due to rigid covalent interactions. In contrast, the DNA double
helix is a soft 3D structure with strongly nonlinear dynamics.
Based on the results of our coarse-grained simulations we
conjecture that heat conduction along the double helix is due
predominantly to weak nonvalent orientational interactions.
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APPENDIX A: MASSES OF THE COARSE GRAINS

The mass of each of the backbone grains [P], [C3], and
[C1] is calculated as a sum of the masses of the original atoms
included in the grain, Fig. 2. So m[P ] = 109 mp, m[C3] = 26
mp,m[C1] = 43 mp (where mp = 1.6603 · 10−27 Kg is the
proton mass). The distribution of the total mass of base X

(X = A, T, G, C) between its three defining grains, m1,m2,m3,

TABLE I. Masses of the three coarse grains (m1,m2, m3) for each
of the base X = A, T, G, C. In units of proton mass mp .

X m1 m2 m3

A 52.230 28.139 53.632
T 51.822 16.204 56.974
G 61.731 34.357 53.912
C 39.254 35.492 35.254
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can be found from the condition of preserving the total mass
and preserving the position of the center of mass of the base.
Values of the grain masses are shown in Table I.

APPENDIX B: THE POTENTIAL FUNCTION

For convenience let us rewrite the Hamiltonian of the
system:

H = Ek + Ev + Eb + Ea + Et + Ehb + Est + Eel + EvdW .

(B1)

The first term is the kinetic energy of the system:

Ek =
12N∑
n=1

1

2
Mi ṙ2

i , (B2)

where the summation is over all 12N coarse-grain particles
(grains) in the system.

The second term, Ev , in the Hamiltonian (B1) stands for
deformation energy of “valence” (pair) bonds. Pair potentials
have the standard form

Uαβ(x1,x2) = 1
2Kαβ(|x2 − x1| − Rαβ)2, (B3)

where αβ denotes types of bonded particles (for example, P and
C3), parameter Rαβ is the equilibrium length, parameter Kαβ

is the bond stiffness. Values of these parameters were obtained
by analysis of all-atomic MD trajectories. These potentials are
calculated for the following pairs: P and C3, C3 and C1, C3
and P, P and C1, C1 and P, P and P (from neighboring sites).
Note that the interaction strength depends on the ordering in
each pair, e.g., (P,C3) is different from (C3,P), Table II. The
ordering in the pair corresponds to direction from 3′ end to 5′
end (see Fig. 10). The parameter values are given in Table II.

The third term Eb in the Hamiltonian (B1) describes base
deformation energy. This term was introduced to keep all four

3 ′

5 ′

P

P

C3

C3

C1

C1

N

N

FIG. 10. (Color online) Grains involved in valent interactions.
Lines denote valent (harmonic) bonds, arcs mark valent angles, bold
lines are axes of rotation in the torsional potentials. The circles marked
as N stand for original atoms N9 on A,G bases and N1 on T,C bases
(no coarse grains are centered on these atoms, their coordinates are
calculated from the positions of the three grains that define the base
plane).

TABLE II. Values of the stiffness coefficients Kαβ and bond
lengths Rαβ for pair interaction potentials Uαβ (x1,x2).

αβ PC3 C3C1 C3P PC1 C1P PP

Kαβ (eV/Å2) 9.11 8.33 0.694 0.66 0.781 0.20
Rαβ (Å) 2.6092 2.3657 4.0735 3.6745 4.8938 6.4612

points near one plane and serves to mimic valent interaction in
nitrogen bases. Let us denote the position of the C1 particle by
x1 and the positions of the three particles on a base by x2, x3, x4.
The deformation energy includes harmonic constraints on pair
distances and a constraint on the bending angle of the rectangle
{x1,x2, x3, x4} around its diagonal. Thus, the deformation
energy of base γ (γ = A, T, G, C) is given by the following
formula:

Uγ (x1,x2,x3,x4) = 1
2Kγ [(|x1 − x2| − Rγ 12)2

+ (|x1 − x4| − Rγ 14)2 + (|x2 − x3| − Rγ 23)2

+ (|x2 − x4| − Rγ 24)2 + (|x3 − x4| − Rγ 34)2]

+ εγ (1 + cos θ ), (B4)

where θ is the angle between the two planes x1x2x4 and
x2x3x4 (equilibrium corresponds to all four points lying on one
plane and θ = π ). The values of potential parameters can be
found in Table III. Parameters Rγ 14, . . . ,Rγ 34 were defined as
equilibrium distances between corresponding points on bases,
the values of parameters Kγ and εγ were determined from
analysis of the frequency spectrum of base oscillations in all
atomic DNA molecular dynamics.19

The fourth term, Ea , in the Hamiltonian (B1) describes the
energy of angle deformation and has the following form:

Ua(θ ) = εa(cos θ − cos θa)2.

This energy is calculated for the following angles: C3-P-C3,
C3-C1-N, N-C1-P. Here N denotes a specific nitrogen atom
atom on the base: atom N9 for bases A and G, and atom N1
for bases T and C. Equilibrium angle and deformation energy
are summarized in Table IV.

The fifth term, Et , in the Hamiltonian (B1) describes
torsional deformation energy. It has the form

Ut = εt [1 − cos(φ − φ0)].

The first type of potential is for the torsion C3-C1-N9-C8
(C3-C1-N1-C6)—i.e., rotations of base A, G (T, C) around the
bond C1–N9 (C1–N1). The second type of potential is for the

TABLE III. Values of parameters for potential UX describing
deformation of the base X = A, T, G, C.

γ A T G C

Rγ 12 (Å) 2.6326 5.0291 2.5932 2.4826
Rγ 14 (Å) 4.3195 2.7007 5.2651 2.6896
Rγ 23 (Å) 4.2794 2.8651 4.2912 3.5882
Rγ 24 (Å) 4.3111 5.5150 5.6654 3.5014
Rγ 34 (Å) 3.5187 4.5399 4.5807 4.5523
Kγ (eV/Å2) 30 30 30 20
εγ (eV) 100 100 150 70
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TABLE IV. Values of deformation energy εX and equilibrium
angle θX for angle potentials.

Type C3-P-C3 C3-C1-N N-C1-P

εa (eV) 0.5 3. 0.3
θa 130.15◦ 141.63◦ 87.17◦

torsion C3-P-C3-C1, the third one for the torsion C1-C3-P-C3.
Parameters of these potentials are summarized in Table V.

The sixth term Ehb in the Hamiltonian (1) describes
the energy of interaction between complementary bases. Since
each nitrogen base is a rigid planar structure, one can restore
positions of all of its original atoms from positions of the
three coarse-grain atoms, as outlined in the previous section.
Let us denote the set of coordinates of three coarse-grain
atoms by Xn with n being a number of the base pair. One can
calculate coordinates of all of the original atoms on the base:
r1(Xn),r2(Xn), . . . . Hence we can use the proven all-atom
AMBER (van der Waals and electrostatics) potentials19 for
hydrogen bonds and stacking interactions. Thus

Ehb =
∑

n

VXY (Xn,Yn)

=
∑

n

UAMBER[r1(Xn),r2(Xn), . . . ,r1(Yn),r2(Yn), . . .].

where VXY (Xn,Yn) is the interaction potential between base X

(X = A,T,G,C) and complementary base Y (Y = A,T,G,C).
The main part of the hydrogen bond energy is in-

teractions between atoms near the hydrogen bond—see
Fig. 11(a) and 11(b). Hence, the number of interacting
atoms can be reduced. Denote this “reduced” potential
by V ∗

XY (Xn,Yn). Then

Ehb =
∑

n

V ∗
XY (Xn,Yn).

The interaction energy between neighboring bases is given
by

Est =
∑

n

VXY (Xn,Xn+1) + V ∗
XY (Xn,Yn+1)

+VXY (Yn,Yn+1) + V ∗
XY (Yn,Xn+1).

Atoms whose interactions are taken into account in the
calculation of the interaction energy between neighbor bases
are shown in Fig. 1(c).

The eighth term Eel of the Hamiltonian (1) describes the
charge-charge interactions within the double helix. Within
our model, only the phosphate groups interact via long-range
electrostatic forces. We assume that each [P] grain carries
charge equal to the electron charge qP = −1e, while all
other particles are neutral. The total electrostatic energy of

TABLE V. Deformation energy εt and equilibrium values φ0 for
the torsional potentials.

Potential C3-C1-N-C C3-P-C3-C1 C1-C3-P-C3

εt (eV) 0.5 0.5 0.5
φ0 0 −26.21◦ 48.58◦

FIG. 11. (Color online) View of (a) AT base pair, (b) GC base
pair (highlighted are atoms which contribute most to base-base
interaction energy) and (c) two neighboring base-pairs (AT and GC).
Arrows indicate parts of nitrogen bases whose interaction is taken into
account: for bases on the complementary strands only those atoms
that face another contribute to the interaction, while for neighboring
bases on the same strand all of the atoms contribute.

the DNA in aqueous environment (including ions) is written
as Eel = Evac + �Gsolv, where Evac represents the Coulomb
interaction energy in vacuum, and �Gsolv is defined as the
free energy of transferring the molecule from vacuum into
solvent, i.e., solvation free energy. The above decomposition
is an approximation made by most classical (nonpolarizable)
potentials. Within our model we further assume that �Gsolv

contains only the electrostatic part; this is a reasonable
assumption as long as the shape of the DNA double helix does
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FIG. 12. (Color online) Electrostatics potential Vq (r), Eq. (B6).
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not change drastically during dynamics (e.g., the strands do not
separate). Thus, changes in the “hydrophobic” part of �Gsolv

can be neglected. While computation of the Coulomb part of
the interaction is trivial, estimation of �Gsolv is not, due to the
nontrivial shape of the biomolecule. Within the framework of
the continuum dielectric, linear response theory the principle
way of estimating �Gsolv is by solving the Poisson-Boltzmann
(PB) equation with boundary conditions determined by the
molecular surface that separates the high dielectric solvent
from the low dielectric interior of the molecule. However, the
corresponding procedures are expensive, and currently of lim-
ited practical use in dynamical simulations. We therefore resort
to the so-called generalized Born (GB) model,67,83,84 which is
the most widely used alternative to the PB treatment when
speed of computation is a concern, particularly in molecular
dynamics,36 including simulations of nucleic acids.41,66,85–93

The GB model approximates �Gsolv by the following
formula proposed by Still et al.83:

�Gsolv ≈ −1

2

(
1 − 1

εout

) ∑
ij

qiqj

f (rij ,Ri,Rj )
, (B5)

where εout is the dielectric constant of water, rij is the
distance between atoms i and j , qi is the partial charge of
atom i, Ri is the so-called effective Born radius of atom

i, and f = [r2
ij + RiRj exp(−r2

ij /4RiRj )]
1
2 . The empirical

function is designed to interpolate between the limits of
large rij � √

RiRj where the Coulomb law applies, and the
opposite limit where the two atomic spheres fuse into one,
restoring the famous Born formula for solvation energy of a
single ion. The effective Born radius of an atom represents
its degree of burial within the low dielectric interior of the
molecule: the further away is the atom from the solvent,
the larger is its effective radius. In our model, we assume
constant effective Born radii which we calculate once from
the first principles.94 The screening effects of monovalent salt
are introduced approximately, at the Debye-Huckel level by
substitution

1 − εout
−1 → 1 − εout

−1 exp(−0.73κf ).

The 0.73 prefactor was found empirically to give
the best agreement with the numerical PB treatment.95

Here κ is the Debye-Huckel screening parameter κ[Å−1]
≈ 0.316

√
[salt][mol/L].

Further simplifications come from the fact that we have
only one nonzero charge species in our model, the [P] grain.
Then, the total electrostatics energy is given by

Eel = C0 +
NP∑

i,j=1

Vq(rij ),

where the summation is performed over all different [P]-grains
pairs where

Vq(r) = C1

[
1

r
− 1

f (r)

(
1 − ε−1

oute
−0.73κf (r)

)]
. (B6)

Here r denotes the distance between coarse-grain [P] particles,
and Ri = Rj = RP = 2.104 Å is the effective Born radius of
phosphate particle. The coefficients C1 = 14.400611Å eV,
εout = 78, κ = 0.1 correspond to physiological conditions.
The parameter

C0 = −1

2
C1

(
1 − 1

εout

) N∑
i=0

1

RP

describes the self-energy (solvation energy) of phosphate
groups.

The resulting total electrostatic potential due to a single
[P] particle as a function of distance is shown in Fig. 12.
One can see that for small distances r < 80Å potential
decreases as r−3 with increasing distance r . For long dis-
tances, the fall-off is exponential. Thus, we can introduce
a cut-off distance RQ = 100Å for the electrostatics inter-
actions. For r > RQ interaction between particles is set to
zero: Vq = 0.

The last term, EvdW , in the Hamiltonian (B1) describes
the van der Waals interaction between (n,n ± 1) [P] and [C3]
grains that belong to separate strands, Fig. 3. The potential
depends on the distance r between two grains and is given by

Uij (r) = εij

[(
σij

r − dij

)6

− 1

]2

− εij ,i,j = P,C3,

where εij = √
εiεj , dij = di + dj , σij = σi + σj , the energy

parameters are εP = 0.01 eV, εC3 = 0.005 eV, the diameters
are dP = 2.4Å, dC3 = 2Å, parameter σP = 1.6Å, σC3 =
1.9Å.

Note that interactions between backbone grains of one
strand neighboring nucleotides [n’th and (n ± 1)’th] are
already taken into account in valent and angle interactions
[terms Ev and Ea in the Hamiltonian (B1)], and interactions
between one strand distant nucleotides [n’th and (n ± k)’th,
k > 1] are neglected.

In practical applications of the 12CG model one should
keep in mind that the model was designed to describe only the
double helical form of DNA, so it may not be appropriate
to situation when melting or base openings are expected.
This limitation is the price one pays for computational
efficiency: within our model van der Waals interactions
are calculated only for backbone grains that belong to
separate DNA strands, and only nearest neighbor base pairs
interact.
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57L. Höfler and R. E. Gyurcsat’nyi, Electroanalysis 20, 301 (2008).
58A. K. Mazur, J. Phys. Chem. B 112, 4975 (2008).
59A. K. Mazur, J. Phys. Chem. B 2113, 2077 (2009).
60N. A. Kovaleva, L. I. Manevitch, A. I. Musienko, and A. V. Savin,

Polymer Science Series A 51, 833 (2009).
61A. Morriss-Andrews, J. Rottler, and S. S. Plotkin, J. Chem. Phys.

132, 035105 (2010).
62P. Yakovchuk, E. Protozanova, and M. D. Frank-Kamenetskii,

Nucleic Acids Res. 34, 564 (2006).
63T. Schlick, Molecular Modeling and Simulation (Springer, Berlin,

2002).
64A. R. Leach, Molecular Modelling: Principles and Applications

(Addison Wesley Longman, Essex, UK, 1996).
65B. K. P. Horn, J. Opt. Soc. Am. A 4, 629 (1987).
66J. Chocholousova and M. Feig, J. Phys. Chem. B 110, 17240 (2006).
67V. Tsui and D. Case, J. Am. Chem. Soc. 122, 2489 (2000).
68H. R. Drew, R. M. Wing, T. Takano, C. Broka, S. Tanaka, K. Itakura,

and R. E. Dickerson, Proc. Natl. Acad. Sci. USA 78, 2179 (1981).
69 X.-J. Lu and W. K. Olson, Nucleic Acids. Res. 31, 5108 (2003).
70R. Dickerson, Nucleic Acids in International Tables for Crystallog-

raphy (Kluwer Academic Publishers, Dordrecht, 2001), Vol. F of
“Crystallography of Biological Macromolecules,” pp. 588–622.

71P. Cluzel, A. Lebrun, A. Heller, R. Lavery, J.-L. Viovy, D. Chatenay,
and F. Caron, Science 271, 792 (1996).

72S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).
73C. Bustamante, S. B. Smith, J. Liphardt, and D. Smith, Curr. Opin.

Struct. Biol. 10, 279 (2000).
74H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H. E. Gaub,

Biophys. J. 78, 1997 (2000).
75A. Lebrun and R. Lavery, Nucleic Acids Res. 24, 2260 (1996).
76Z. Bryant, M. D. Stone, J. Gore, and S. B. Smith, Nature (London)

424, 338 (2003).

245406-14

http://dx.doi.org/10.1063/1.3183587
http://dx.doi.org/10.1103/PhysRevB.76.085424
http://dx.doi.org/10.1021/nl901231s
http://dx.doi.org/10.1063/1.1616981
http://dx.doi.org/10.1063/1.1616981
http://dx.doi.org/10.1103/PhysRevLett.101.075903
http://dx.doi.org/10.1016/S0921-4526(02)00898-0
http://dx.doi.org/10.1063/1.1949166
http://dx.doi.org/10.1103/PhysRevB.80.195423
http://dx.doi.org/10.1103/PhysRevB.80.195423
http://dx.doi.org/10.1002/cbic.200900286
http://dx.doi.org/10.1088/0957-4484/21/18/185604
http://dx.doi.org/10.1021/nl900272m
http://dx.doi.org/10.1103/PhysRevLett.78.1896
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1021/ja00124a002
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P
http://dx.doi.org/10.1021/ja0753546
http://dx.doi.org/10.1021/ja0753546
http://dx.doi.org/10.1529/biophysj.106.097782
http://dx.doi.org/10.1093/nar/gkn082
http://dx.doi.org/10.1093/nar/gkn082
http://dx.doi.org/10.1529/biophysj.104.045252
http://dx.doi.org/10.1021/ar0100273
http://dx.doi.org/10.1021/ar0100273
http://www.hubmed.org/display.cgi?uids=12069622
http://dx.doi.org/10.1021/ar010023y
http://dx.doi.org/10.1006/jmbi.1996.0330
http://dx.doi.org/10.1021/jp971180a
http://dx.doi.org/10.1002/(SICI)1097-0282(1998)48:4<199::AID-BIP2>3.0.CO;2-5
http://dx.doi.org/10.1021/j100040a043
http://dx.doi.org/10.1002/jcc.20290
http://www.hubmed.org/display.cgi?uids=16200636
http://dx.doi.org/10.1002/chem.200500255
http://www.hubmed.org/display.cgi?uids=15977281
http://dx.doi.org/10.1002/chem.200501239
http://www.hubmed.org/display.cgi?uids=16425171
http://dx.doi.org/10.1016/j.sbi.2005.02.001
http://dx.doi.org/10.1021/cr960149m
http://dx.doi.org/10.1016/0959-440X(95)80079-4
http://dx.doi.org/10.1021/jp9714227
http://dx.doi.org/10.1021/jp9714227
http://dx.doi.org/10.1529/biophysj.106.082099
http://dx.doi.org/10.1016/S0006-3495(99)77074-8
http://dx.doi.org/10.1016/S0006-3495(99)77074-8
http://dx.doi.org/10.1021/jp000550j
http://dx.doi.org/10.1063/1.1329137
http://dx.doi.org/10.1063/1.1329137
http://dx.doi.org/10.1039/b207226m
http://dx.doi.org/10.1039/b207226m
http://www.hubmed.org/display.cgi?uids=14671790
http://dx.doi.org/10.1103/PhysRevE.68.021911
http://dx.doi.org/10.1103/PhysRevE.68.021911
http://dx.doi.org/10.1088/0953-8984/16/15/R03
http://dx.doi.org/10.1088/0953-8984/16/15/R03
http://dx.doi.org/10.1021/ma050238d
http://dx.doi.org/10.1103/PhysRevE.71.051902
http://dx.doi.org/10.1063/1.1869417
http://dx.doi.org/10.1529/biophysj.105.078030
http://dx.doi.org/10.1140/epje/i2007-10200-x
http://dx.doi.org/10.1140/epje/i2007-10200-x
http://dx.doi.org/10.1063/1.2431804
http://dx.doi.org/10.1063/1.2431804
http://dx.doi.org/10.1103/PhysRevE.75.021919
http://dx.doi.org/10.1103/PhysRevE.75.021919
http://dx.doi.org/10.1103/PhysRevE.76.021923
http://dx.doi.org/10.1021/jp803192u
http://dx.doi.org/10.1002/elan.200704058
http://dx.doi.org/10.1021/jp711815x
http://dx.doi.org/10.1021/jp8098945
http://dx.doi.org/10.1134/S0965545X09070104
http://dx.doi.org/10.1063/1.3269994
http://dx.doi.org/10.1063/1.3269994
http://dx.doi.org/10.1093/nar/gkj454
http://dx.doi.org/10.1364/JOSAA.4.000629
http://dx.doi.org/10.1021/jp0627675
http://dx.doi.org/10.1021/ja9939385
http://dx.doi.org/10.1073/pnas.78.4.2179
http://dx.doi.org/10.1093/nar/gkg680
http://dx.doi.org/10.1126/science.271.5250.792
http://dx.doi.org/10.1126/science.271.5250.795
http://dx.doi.org/10.1016/S0959-440X(00)00085-3
http://dx.doi.org/10.1016/S0959-440X(00)00085-3
http://dx.doi.org/10.1016/S0006-3495(00)76747-6
http://dx.doi.org/10.1093/nar/24.12.2260
http://dx.doi.org/10.1038/nature01810
http://dx.doi.org/10.1038/nature01810


HEAT CONDUCTIVITY OF THE DNA DOUBLE HELIX PHYSICAL REVIEW B 83, 245406 (2011)

77M. B. Hakim, S. M. Lindsay, and J. Powell, Biopolymers 23, 1185
(1984).

78M. Krisch, A. Mermet, H. Grimm, V. T. Forsyth, and A. Rupprecht,
Phys. Rev. E 73, 061909 (2006).

79S. Buyukdagli, A. V. Savin, and B. Hu, Phys. Rev. E 78, 066702
(2008).

80H. Dammak, Y. Chalopin, M. Laroche, M. Hayoun, and J.-J. Greffet,
Phys. Rev. Lett. 103, 190601 (2009).

81O. V. Gendelman and A. V. Savin, Phys. Rev. Lett. 84, 2381 (2000).
82C. Giardina, R. Livi, A. Politi, and M. Vassalli, Phys. Rev. Lett. 84,

2144 (2000).
83W. C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson,

J. Am. Chem. Soc. 112, 6127 (1990).
84D. Bashford and D. A. Case, Annu. Rev. Phys. Chem. 51, 129

(2000).
85C. Keslo and C. Simmerling, in Computational Studies of RNA

and DNA, edited by J. Sponer and F. Lankas (Springer, Dordrecht,
The Netherlands, 2006), Vol. 2 of “Challenges and Advances in
Computational Chemistry and Physics,” pp. 147–167.

86M. Zacharias, in Computational Studies of RNA and DNA, edited
by J. Sponer and F. Lankas (Springer, Dordrecht, The Netherlands,

2006), Vol. 2 of “Challenges and Advances in Computational
Chemistry and Physics,” pp. 95–119.

87L. Wang, B. E. Hingerty, A. R. Srinivasan, W. K.
Olson, and S. Broyde, Biophys. J. 83, 382 (2002),
[http://www.hubmed.org/display.cgi?uids=12080128].

88V. Tsui and D. Case, Biopolymers 56, 275 (2001).
89E. Sorin, Y. Rhee, B. Nakatani, and V. Pande, Biophys. J. 85, 790

(2003), [http://www.hubmed.org/display.cgi?uids=12885628].
90A. Balaeff, M. E. Churchill, and K. Schulten, Proteins 30, 113

(1998), [http://www.hubmed.org/display.cgi?uids=9489920].
91B. Jayaram, K. McConnell, S. B. Dixit, A. Das, and

D. L. Beveridge, J. Comput. Chem. 23, 1 (2002),
[http://www.hubmed.org/display.cgi?uids=11913374].

92L. F. De Castro and M. Zacharias, J. Mol. Recognit. 15, 209 (2002),
[http://www.hubmed.org/display.cgi?uids=12382239].

93H. Allawi, M. Kaiser, A. Onufriev, W. Ma, A. Brogaard, D. Case,
B. Neri, and V. Lyamichev, J. Mol. Biol. 328, 537 (2003).

94A. Onufriev, D. A. Case, and D. Bashford, J. Comput. Chem. 23,
1297 (2002).

95J. Srinivasan, M. Trevathan, P. Beroza, and D. Case, Theor. Chem.
Acc. 101, 426 (1999).

245406-15

http://dx.doi.org/10.1002/bip.360230704
http://dx.doi.org/10.1002/bip.360230704
http://dx.doi.org/10.1103/PhysRevE.73.061909
http://dx.doi.org/10.1103/PhysRevE.78.066702
http://dx.doi.org/10.1103/PhysRevE.78.066702
http://dx.doi.org/10.1103/PhysRevLett.103.190601
http://dx.doi.org/10.1103/PhysRevLett.84.2381
http://dx.doi.org/10.1103/PhysRevLett.84.2144
http://dx.doi.org/10.1103/PhysRevLett.84.2144
http://dx.doi.org/10.1021/ja00172a038
http://dx.doi.org/10.1146/annurev.physchem.51.1.129
http://dx.doi.org/10.1146/annurev.physchem.51.1.129
http://dx.doi.org/10.1016/S0006-3495(02)75177-1
http://www.hubmed.org/display.cgi?uids=12080128
http://dx.doi.org/10.1002/1097-0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-E
http://dx.doi.org/10.1016/S0006-3495(03)74520-2
http://dx.doi.org/10.1016/S0006-3495(03)74520-2
http://www.hubmed.org/display.cgi?uids=12885628
http://dx.doi.org/10.1002/(SICI)1097-0134(19980201)30:2<113::AID-PROT2>3.0.CO;2-O
http://dx.doi.org/10.1002/(SICI)1097-0134(19980201)30:2<113::AID-PROT2>3.0.CO;2-O
http://www.hubmed.org/display.cgi?uids=9489920
http://dx.doi.org/10.1002/jcc.10009
http://www.hubmed.org/display.cgi?uids=11913374
http://dx.doi.org/10.1002/jmr.581
http://www.hubmed.org/display.cgi?uids=12382239
http://dx.doi.org/10.1016/S0022-2836(03)00351-6
http://dx.doi.org/10.1002/jcc.10126
http://dx.doi.org/10.1002/jcc.10126
http://dx.doi.org/10.1007/s002140050460
http://dx.doi.org/10.1007/s002140050460

