
PHYSICAL REVIEW B 83, 245328 (2011)

Quantum and Boltzmann transport in a quasi-one-dimensional wire with rough edges
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We study electron transport in quasi-one-dimensional metallic wires. Our aim is to compare an impurity-free
wire with rough edges with a smooth wire with impurity disorder. We calculate the electron transmission through
the wires by the scattering-matrix method, and we find the Landauer conductance for a large ensemble of
disordered wires. We first study the impurity-free wire whose edges have roughness with a correlation length
comparable with the Fermi wavelength. Simulating wires with the number of the conducting channels (Nc) as
large as 34–347, we observe the roughness-mediated effects which are not observable for small Nc (∼3–9) used
in previous works. First, we observe the crossover from the quasi-ballistic transport to the diffusive one, where
the ratio of the quasi-ballistic resistivity to the diffusive resistivity is ∼Nc independent of the parameters of
roughness. Second, we find that transport in the diffusive regime is carried by a small effective number of open
channels, equal to ∼6. This number is universal—independent of Nc and of the parameters of roughness. Third,
we see that the inverse mean conductance rises linearly with the wire length (a sign of the diffusive regime) up
to the length twice larger than the electron localization length. We develop a theory based on the weak-scattering
limit and semiclassical Boltzmann equation, and we explain the first and second observations analytically. For
the impurity disorder we find a standard diffusive behavior. Finally, we derive from the Boltzmann equation the
semiclassical electron mean free path and we compare it with the quantum mean free path obtained from the
Landauer conductance. They coincide for the impurity disorder; however, for the edge roughness they strongly
differ, i.e., the diffusive transport in the wire with rough edges is not semiclassical. It becomes semiclassical only
for roughness with a large correlation length. The conductance then behaves like the conductance of the wire
with impurities, also showing the conductance fluctuations of the same size.
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I. INTRODUCTION

A wire made of a normal metal is called mesoscopic if
the wire length (L) is smaller than the electron coherence
length.1–3 It is called quasi-one-dimensional (Q1D) if L is
much larger than the width (W ) and thickness (H ) of the
wire.3 Fabrication of the Q1D wires from such metals like Au,
Ag, Cu, etc., usually involves techniques like electron beam
lithography, lift-off, and metal evaporation. These techniques
always provide wires with disorder due to the grain boundaries,
impurity atoms, and rough wire edges.4 Disorder scatters the
conduction electrons and limits the electron mean free path (l)
in the wires to ∼10−100 nm.5 Of fundamental interest are the
wires with W and H as small as ∼ 10−100 nm.

In this paper the electron transport in metallic Q1D wires is
studied theoretically. We compare an impurity-free wire with
rough edges with a smooth wire with impurity disorder (a wire
with grain boundaries will be studied elsewhere). We study
the Q1D wires made of a two-dimensional (2D) conductor
(H → 0) of width W and length L � W . Our results are
representative for wires made of a normal metal as well as of
a 2D electron gas at a semiconductor heterointerface.

First we review the basic properties of the Q1D wires.
Consider the electron gas confined in the 2D conductor
depicted in Fig. 1. At zero temperature, the wave function
ϕ(x,y) of the electron at the Fermi level (EF ) is described by
the Schrödinger equation,

Hϕ(x,y) = EF ϕ(x,y), (1)

with Hamiltonian

H = − h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (x,y) + UI (x,y) , (2)

where m is the electron effective mass, UI (x,y) is the potential
due to the impurities, and V (x,y) is the confining potential due
to the edges. Following the Fig. 1, the confining potential in a
wire with smooth edges can be written as

V (y) =
{

0, 0 < y < W

∞, elsewhere , (3)

while in a wire with rough edges it has to be modified as

V (x,y) =
{

0, d(x) < y < h(x)
∞, elsewhere , (4)

where d(x) and h(x) are the y coordinates of the edges. The
potential of the impurities, UI , is usually assumed to be a
white-noise potential.3 The simplest specific choice is

UI (x,y) =
∑

i

γ δ(x − xi)δ(y − yi), (5)

where one sums over the random impurity positions [xi,yi]
with a random sign of the impurity strength γ (see Fig. 1).
Similar models of disorder as in Fig. 1 are commonly used in
the quantum transport simulations.6–10

The disordered Q1D wire is connected to two ballistic
semi-infinite contacts of constant width W , as shown in
Fig. 2 In the contacts the electrons obey the Schrödinger
equation[

− h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (y)

]
ϕ(x,y) = EF ϕ(x,y), (6)

where V (y) is the confining potential given by Eq. (3) Solving
Eq. (6) one finds the independent solutions

ϕ±
n (x,y) = e±iknxχn(y), n = 1,2, . . . ∞, (7)
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FIG. 1. Wire made of the 2D conductor of width W and length
L. The figure on the left depicts the wire with impurities positioned
at random with random signs of the impurity potentials. The figure
on the right depicts the impurity-free wire with rough edges, where
d(x) and h(x) are the y coordinates of the edges at y = 0 and y = W ,
respectively, randomly fluctuating with x. The roughness amplitude
is � and the step �x also means the correlation length (see the text).

with the wave vectors kn given by

EF = εn + h̄2k2
n

2m
, εn ≡ h̄2π2

2mW 2
n2, (8)

where εn is the energy of motion in the y direction and

χn(y) =
{√

2
W

sin
(

πn
W

y
)
, 0 < y < W

0, elsewhere
(9)

is the wave function in the direction y. The vectors kn in
Eq. (7) are assumed to be positive, i.e., the waves eiknx and
e−iknx describe the free motion in the positive and negative
directions of the x axis, respectively. The energy εn + h̄2k2

n/2m

is called the nth energy channel. The channels with εn < EF

are conducting due to the real values of kn while the channels
with εn > EF are evanescent due to the imaginary kn. The
conducting state ϕ+

n (x,y) = eiknxχn(y) in contact 1 impinges
on the disordered wire from the left. It is partly transmitted
through disorder and enters contact 2 in the form

ϕ+
n (x,y) =

∞∑
m=1

tmn eikmxχm(y), x � L, (10)

where tmn(kn) is the probability amplitude of transmission from
n to m. At zero temperature, the conductance of the disordered
wire is given by the Landauer formula11

G = 2e2

h

Nc∑
n=1

Tn = 2e2

h

Nc∑
n=1

Nc∑
m=1

|tmn|2 km

kn

, (11)

where we sum over all (Nc) conducting channels. We note
that Tn is the transmission probability through disorder for the
electron impinging disorder in the nth conducting channel. The
amplitudes tmn have to be calculated for specific disorder by
solving Eq. (1) with asymptotic condition (10). In the ensemble
of macroscopically identical wires, disorder fluctuates from
wire to wire and so does the conductance. Hence it is
meaningful to evaluate Eq. (11) for the ensemble of wires and
to study the ensemble-averaged conductance 〈G〉, variance
〈G2〉 − 〈G〉2, resistance 〈1/G〉, etc. We now discuss a few
important results of such studies. For simplicity we use the
variables g ≡ G/(2e2/h) and ρ = 1/g.

First we discuss the smooth Q1D wires with disorder due to
the white-noise potential UI . For L = 0 formula (11) gives the

FIG. 2. The Q1D wire placed between two contacts. The bold
arrows denote the wave amplitudes A+, B− coming into the wire and
the amplitudes A−, B+ coming out the wire.

ballistic conductance g = Nc. As L increases, formula (11)
first shows the classical transmission law,2

〈g〉 = Nc

π
2 l(

L + π
2 l
) , 0 < L 	 ξ, (12)

where Nc � 1 and ξ 
 Ncl is the Q1D localization length. If
l 	 L 	 ξ , the wire is in the diffusive regime. For l 	 L and
Nc 
 kF W/π we obtain from Eq. (12) the standard expression

〈g〉 = σdifW/L, σdif ≡ πnel/kF , l 	 L 	 ξ, (13)

where σdif is the diffusive conductivity, kF is the 2D Fermi
wave vector, and ne = k2

F /2π is the 2D electron density. How-
ever, the mesoscopic diffusive conductance is also affected by
weak localization. Hence, one in fact obtains from Eq. (11) a
slightly modified version of Eq. (13), namely3,12

〈g〉 = σdifW/L − 1/3, l 	 L 	 ξ, (14)

where the term 1/3 is the weak localization correction typical
of the Q1D wire. The mean free path l in the above formulas
coincides with the mean free path derived from the semiclassi-
cal Boltzmann transport equation, i.e., quantum conductance
(11) captures the Boltzmann transport limit exactly. The mean
of the two-terminal resistance, 〈ρ〉 ≡ 〈1/g〉, shows in absence
of weak localization the diffusive behavior2

〈ρ〉 = ρc + ρdifL/W, 0 < L 	 ξ, (15)

where ρc = 1/Nc is the contact resistance and ρdif = 1/σdif is
the diffusive resistivity. Diffusive resistance (15) and diffusive
conductance (13) thus coexist in a standard way: 〈ρ〉 
 1/〈g〉
for ρdif

L
W

� ρc. If we include the weak localization by means
of Eq. (14), then

〈ρ〉 
 1/〈g〉 
 ρdif
L

W
+ 1

3
ρ2

dif
L2

W 2
, l 	 L 	 ξ. (16)

The conductance fluctuates in the diffusive regime as13,14√
var(g) ≡

√
〈g2〉 − 〈g〉2 =

√
2/15 
 0.365, l 	 L 	 ξ,

(17)

where the numerical factor 0.365 is typical of the Q1D wire.
Finally, as L exceeds ξ , the mesoscopic Q1D wire enters the
regime of strong localization, where 〈g〉 decreases with L

exponentially while 〈ρ〉 shows exponential increase.15,16

Formulas (12)–(17) hold for the wires with impurity
disorder. Do they hold also for the wires with rough edges?
In this paper we address this question from first principles:
We calculate the amplitudes tmn by the scattering-matrix
method6,7,17 for a large ensemble of macroscopically identical
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disordered wires, we evaluate the Landauer conductance (11),
and we perform ensemble averaging.

In fact, a few serious differences between the wires with
rough edges and wires with impurity disorder were identified
prior to our work. In the wire with impurity disorder the
channels are equivalent in the sense that 〈T1〉 = 〈T2〉 · · · =
〈TNc

〉.18,19 For instance, in the diffusive regime 〈Tn〉 = π
2 l/L

for all channels.2 In the impurity-free wires with rough edges,
〈Tn〉 decays fast with raising n, because the scattering by the
rough edges is weakest in the channel n = 1 and strongest in
the channel n = Nc.20–24 This is easy to understand classically:
In the channel n = 1 the electron avoids the edges by moving
in parallel with them, while in the channel n = Nc the motion
is almost perpendicular to the edges, resulting in frequent
collisions with them. As a result, 〈Tn〉 shows the coexistence of
the quasi-ballistic, diffusive, and strongly localized channels.25

Due to this coexistence, the work in this paper reported the
absence of the dependence 〈g〉 ∝ 1/L, suggesting that the wire
with rough edges does not exhibit the diffusive conductance
of Eq. (13). However, according to Refs. 21 and 26, the wire
with rough edges seems to exhibit the diffusive resistance
Eq. (15). In this paper these findings are examined again, but
for significantly larger Nc as in previous works.

First we study the impurity-free wire whose edges have a
roughness correlation length comparable with the Fermi wave-
length. For L → 0 we observe the quasi-ballistic dependence
1/〈g〉 = 〈ρ〉 = 1/Nc + ρqbL/W , where ρqb is the quasi-
ballistic resistivity. As L increases, we observe crossover to
the diffusive dependence 1/〈g〉 
 〈ρ〉 = 1/N eff

c + ρdifL/W ,
where ρdif 	 ρqb and 1/N eff

c is the effective contact resistance
due to the N eff

c open channels. We find the universal results
ρqb/ρdif 
 0.6Nc and N eff

c 
 6 for Nc � 1. As L exceeds
the localization length ξ , the resistance shows the onset
of localization while the conductance shows the diffusive
dependence 1/〈g〉 
 1/N eff

c + ρdifL/W up to L 
 2ξ and the
localization for L > 2ξ only. Finally, we find√

var(g) ≡
√

〈g2〉 − 〈g〉2 
 0.3, l 	 L � 2ξ. (18)

The fluctuations in Eq. (18) differ from those in Eq. (17) and
were already reported in the past.9,25,27,28 For the smooth wires
with impurities our calculations confirm formulas (12)–(17).

Moreover, we derive the wire conductivity from the
semiclassical Boltzmann equation,29–31 and we compare the
semiclassical mean free path with the mean free path obtained
from the quantum resistivity ρdif . For the impurity disorder
we find that the semiclassical and quantum mean free paths
coincide, which is a standard result. However, for the edge
roughness the semiclassical mean free path strongly differs
from the quantum one, showing that the diffusive transport
in the wire with rough edges is not semiclassical. We show
that it is semiclassical only if the roughness-correlation length
is much larger than the Fermi wavelength. For such edge
roughnesses the conductance behaves like the conductance
of the wire with impurities [formulas (12)–(17)], also showing
the fluctuations of Eq. (17).

The next section describes the scattering-matrix calculation
of the amplitudes tmn for the impurity disorder and edge
roughness. In Sec. III, the impurity disorder and edge rough-
ness are treated by means of the Boltzmann equation and

the semiclassical Q1D conductivity expressions are derived.
In Sec. IV we show our numerical results. Moreover, the
crossover from 1/〈g〉 = 〈ρ〉 = 1/Nc + ρqbL/W to 1/〈g〉 

〈ρ〉 = 1/N eff

c + ρdifL/W in the wire with rough edges is
derived by means of a microscopic analytical theory. The
theory neglects localization but nevertheless captures the
main features of our numerical results. In particular, we
obtain analytically the universal results ρqb/ρdif = π3

24 Nc and
N eff

c 
 2.5. A summary is given in Sec. V.

II. THE SCATTERING-MATRIX APPROACH

Consider the Q1D wire with contacts 1 and 2, shown in
Fig. 2. The wave function ϕ(x,y) in the contacts can be
expanded in the basis of the eigenstates of Eq. (7). We
introduce notations A±

n (x) ≡ a±
n e±iknx and B±

n (x) ≡ b±
n e±iknx ,

where a±
n and b±

n are the amplitudes of the waves moving in
the positive and negative directions of the x axis, respectively.
At the boundary x = 0,

ϕ(0,y) =
N∑

n=1

[A+
n (0) + A−

n (0)]χn(y), (19)

while at the boundary x = L,

ϕ(L,y) =
N∑

n=1

[B+
n (L) + B−

n (L)]χn(y), (20)

where N is the considered number of channels (ideally N =
∞). We define the vectors A±(0) and B±(L) with components
A±

n=1,...N (0) and B±
n=1,...N (L), respectively, and we simplify the

notations A±(0) and B±(L) as A± and B±. The amplitudes A±
and B± are related through the matrix equations,(

A−
B+

)
=
[
r t ′
t r ′

](
A+
B−

)
, S ≡

[
r t ′
t r ′

]
(21)

where S is the scattering matrix. Its dimensions are 2N × 2N

and its elements t , r , t ′, and r ′ are the matrices with dimensions
N × N . Physically, t and t ′ are the transmission amplitudes
of the waves A+ and B−, respectively, while r and r ′ are the
corresponding reflection amplitudes. The matrix elements of
the transmission matrix t are just the transmission amplitudes
tmn which determine the conductance of Eq. (11).

Consider two wires 1 and 2, described by the scattering
matrices S1 and S2. The matrices are defined as

S1 ≡
[
r1 t ′1
t1 r ′

1

]
, S2 ≡

[
r2 t ′2
t2 r ′

2

]
. (22)

Let

S12 ≡
[
r12 t ′12
t12 r ′

12

]
(23)

be the scattering matrix of the wire obtained by connecting
the wires 1 and 2 in series. The matrix S12 is related to the
matrices S1 and S2 through the matrix equations2

t12 = t2[I − r ′
1r2]−1t1,

r12 = r1 + t ′1r2[I − r ′
1r2]−1t1,

(24)
t ′12 = t ′1[I + r2[I − r ′

1r2]−1r ′
1]t ′2,

r ′
12 = r ′

2 + t2[I − r ′
1r2]−1r ′

1t
′
2,
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FIG. 3. Wire with the randomly positioned pointlike impurities.
The n impurities described by the scattering matrices si divide the
wire into the n + 1 free regions described by the matrices pi . Also
shown are the wave amplitudes A± and B±.

where I is the unit matrix. Equations (24) are usually written
in the symbolic form

S12 = S1 ⊗ S2. (25)

A. Scattering matrix of a smooth wire with impurity disorder

Consider the wire with the impurity potential given in
Eq. (5). Between any two neighboring impurities there is a
region with zero impurity potential, say the region xi−1 <

x < xi , where the electron moves along the x axis like a free
particle. The wire with n impurities contains n + 1 regions
with free-electron motion, separated by n pointlike regions
where the scattering takes place. As illustrated in Fig. 3, the
scattering matrix S of such a wire can be obtained by applying
the combination law

S = p1 ⊗ s1 ⊗ p2 ⊗ s2 ⊗ . . . sn ⊗ pn+1, (26)

where pi is the scattering matrix of free motion in the
region xi−1 < x < xi and si is the scattering matrix of the
ith impurity. The symbols ⊗ mean that the composition law of
Eq. (25) is applied in Eq. (26) step by step: One first combines
the matrices p1 and s1, the resulting matrix is combined with
p2, etc.

The scattering matrix pi can be expressed as

pi =
[

0 



 0

]
, (27)

where 0 is the N × N matrix with zero matrix elements and

 is the N × N matrix with matrix elements


mn = eiknci δmn, ci = xi − xi−1, (28)

Finally, for a δ-function-like impurity the scattering matrix

si ≡
[
r t ′
t r ′

]
(29)

is composed of the matrices6,7

t = t ′ = [K + i�]−1K, (30)

r = r ′ = −[K + i�]−1i�, (31)

where K and � are the N × N matrices with matrix elements

Kmn = knδmn, �mn = mγ

h̄2 χ∗
m(yi)χn(yi). (32)

Concerning the value of N , we use N � Nc chosen in such a
way,6 that in the diffusive regime our simulation reproduces
the Boltzmann equation results.

B. Scattering matrix of the impurity-free wire with rough edges

The electrons in the impurity-free wire with rough edges
are described by Schrödinger Eq. (1) with a Hamiltonian
without the impurity potential, but with the confining potential
V (x,y) [Eq. (4)], including the edge roughness. We specify
the edge roughness as follows. We define xj = j�x, where
j = 0,1,2, . . . , and �x is a constant step. For x between
xj and xj+1, the smoothly varying functions V (x,y), h(x),
and d(x) in Eq. (4) are replaced by constant values Vj (y) ≡
V (xj ,y), hj ≡ h(xj ), and dj ≡ d(xj ), respectively. We obtain
the equation

Vj (y) =
{

0, dj < y < hj

∞, elsewhere . (33)

We assume that dj and hj vary with varying j at random in the
intervals 〈−�,�〉 and 〈W − �,W + �〉, respectively. This is
depicted in Fig. 1, where h(x) and d(x) fluctuate with varying
x by changing abruptly after each step �x.

The wire width fluctuates with varying x as well. However,
for x between xj and xj+1, we have the constant width

Wj = hj − dj . (34)

Consequently, the electron wave function for x between xj and
xj+1 can be expressed in the form

ϕj (x,y) =
Nj∑
n=1

[
a+

n eik
j
nx + a−

n e−ik
j
nx
]
χj

n (y), (35)

where Nj is the considered number of channels (Nj = ∞ in
the ideal case), the wave vectors k

j
n are given by

EF = εj
n + h̄2

(
k

j
n

)2

2m
, εj

n ≡ h̄2π2

2mW 2
j

n2, (36)

χ
j
n (y) =

{√
2

Wj
sin
[

πn
Wj

(y − dj )
]
, dj < y < hj

0, elsewhere
(37)

are the wave functions for the y direction, and the index j

means that the above equations hold for x between xj and xj+1.
Equations (36) and (37) are just Eqs. (8) and (9), respectively,
modified for the wire with rough edges.

In practice we choose Nj by means of the relation17

Nj/N = Wj/W, (38)

i.e., the ratio of the channel numbers in the j th region and
contact regions is the same as the ratio of their widths. We
choose N � Nc and we check that the calculated conductance
does not depend on the choice of N . For N � Nc relation (38)
ensures Nj � N

j
c , where N

j
c is the number of the conducting

channels in the j th wire region. This makes the calculation
reliable also when N

j
c fluctuates with varying j , which happens

for � larger than the Fermi wavelength.
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FIG. 4. The impurity-free wire with n edge steps described by the
scattering matrices sj and with n + 1 free regions of constant width
Wj , described by the scattering matrices pj .

As shown in Fig. 4, the scattering matrix S of the wire with
rough edges is again given by the combination law of Eq. (26),
where pj is the scattering matrix of free motion in the region
xj−1 < x < xj and sj is the scattering matrix of the j th edge
step. The scattering matrix pj is given by Eq. (27) with the
matrix elements of Eq. (28) modified as


mn = eik
j
n�xδmn. (39)

Finally, we follow Ref. 17 to specify the scattering matrix sj .
Consider the wire shown in Fig. 5. A single edge step at

x = 0 divides the wire into region A (x < 0) and region B (x >

0). The widths of the regions A and B are WA = hA − dA and
WB = hB − dB , respectively. We consider the case WA > WB

and we assume that the wire cross-section. WA includes the
wire cross-section. WB (see the figure). In this situation, the
confining potential is simply

V (x,y) =

⎧⎪⎨
⎪⎩

0, x < 0, dA < y < hA

0, x > 0, dB < y < hB

∞, elsewhere

. (40)

FIG. 5. The wire with a single edge step at x = 0. The symbols
in the figure are discussed in the text.

So we can use Eq. (35) and write the wave function at
x = 0 as

ϕ(0 − ε,y) =
NA∑
n=1

[A+
n (0) + A−

n (0)]χA
n (y), ε → 0, (41)

ϕ(0 + ε,y) =
NB∑
n=1

[B+
n (0) + B−

n (0)]χB
n (y), ε → 0, (42)

where A±
n (x) ≡ a±

n e±ikA
n x , B±

n (x) ≡ b±
n e±ikB

n x , and NA and NB

are the channel numbers in regions A and B. The continuity
equation ϕ(0 − ε,y) = ϕ(0 + ε,y) takes the form

A+ + A− = C(B → A)(B+ + B−), (43)

where C(B → A) is the matrix with the matrix elements

C(B → A)mn =
∫ hA

dA

χA∗
m (y)χB

n (y)dy (44)

and dimensions NA × NB . Similarly, the continuity equation
∂ϕ

∂x
(0 − ε,y) = ∂ϕ

∂x
(0 + ε,y) can be written in the form

KA(A+ − A−) = C(B → A)KB(B+ − B−), (45)

where KA and KB are matrices with the matrix elements

(KA)mn = kA
n δmn, (KB)mn = kB

n δmn (46)

and dimensions NA × NA and NB × NB , respectively. Com-
bining Eqs. (43) and (45) one finds matrix Eqs. (21) with the
scattering matrix sj ≡ S composed of the matrices

t = −2MHBA,

r = −2C(B → A)MHBA − IA,
(47)

t ′ = C(B → A)[MN + IB],

r ′ = MN,

where

HBA = −(KB)−1CT (B → A)KA,

M = [IB − HBAC(B → A)]−1, (48)

N = IB + HBAC(B → A),

with IA and IB being the unit matrices and CT being the matrix
obtained by transposition of the matrix C. The dimensions of
the matrices t , r , t ′, and r ′ are NB × NA, NA × NA, NA × NB ,
and NB × NB , respectively.

Proceeding in a similar way one can derive sj for the
situation WA < WB , with the cross-section. WA included in the
cross section. WB . In this case sj is composed of the matrices

t = C(A → B)[MN + IA],

r = MN,
(49)

t ′ = −2MHAB,

r ′ = −2C(A → B)MHAB − IB,

where M , HAB , and N are the matrices of Eq. (48) with the
index A replaced by B and vice versa.
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C. Averaging over the samples made of the building blocks

The conductance of Eq. (11) needs to be evaluated for a
large ensemble of macroscopically identical wires because
it fluctuates from wire to wire. To evaluate the ensemble-
averaged results like 〈g〉, 〈g2〉 − 〈g〉2, 〈1/g〉, etc., we need
to perform averaging typically over 103 − 104 samples with
different microscopic configurations of disorder. Moreover, the
ensemble averages are studied as depending on the wire length.
Especially for long wires (L ∼ ξ ) with a large number of
conducting channels (Nc ∼ 30 − 300) already the scattering-
matrix calculation of a single disordered sample takes a lot of
computational time. To decrease the total computational time
substantially (say by a few orders of magnitude), we introduce
a few efficient tricks, partly motivated by Ref. 32.

We recall that two scattering matrices, S1 and S2, can be
combined by means of the operation of Eqs. (24), written
symbolically as S1 ⊗ S2. This operation is associative, i.e.,

(S1 ⊗ S2) ⊗ S3 = S1 ⊗ (S2 ⊗ S3). (50)

The property of Eq. (50) allows us to proceed as follows. We
can construct the disordered wire of length L by joining a large
number of short wires (building blocks), where each block has
the same length (Lb) and contains the same number (nb) of
scatterers (impurities or edge steps). The scattering matrix of
such wire can be expressed as

S = b1 ⊗ b2 ⊗ · · · = (p1 ⊗ s1 ⊗ . . . snb
)

⊗ (pnb+1 ⊗ snb+1 ⊗ . . . s2nb
) ⊗ . . . , (51)

where b1 = p1 ⊗ s1 ⊗ . . . snb
is the scattering matrix of the

first block, b2 = pnb+1 ⊗ snb+1 ⊗ . . . s2nb
is the scattering

matrix of the second block, etc. In the simulation, we can
create the Nb different blocks (typically Nb = 100) so that
we select at random the positions of the nb scatterers in a
given block. Then we evaluate the scattering matrices (bi) of
all Nb blocks. We can now readily study the wire lengths
L = Lb,2Lb,3Lb, . . . , by applying one of the two approaches
described below.

A single sample of length L = jLb can be constructed by
joining j blocks, where each block is chosen at random from
the Nb blocks. Clearly, one can in principle construct (Nb)j

different samples of length jLb, but in practice a much smaller
number of samples (∼103 − 104) is sufficient. The S matrix
of each sample can be evaluated by means of Eq. (51) and
ensemble averaging can be performed. Already this approach
works much faster than the approach which combines in each
sample the S matrices of all individual scatterers. A further
significant improvement is achieved as follows.

As before, we evaluate the scattering matrices bi for all
Nb blocks, but we apply a more sophisticated algorithm:
(i) We choose at random a single bi matrix describing a specific
sample of length L = Lb. (ii) Choosing at random another bi

and combining it with the previous one by means of Eq. (51)
we obtain the S matrix of a specific sample of length L = 2Lb.
(iii) Choosing at random another bi and combining it with the
S matrix obtained in the preceding step, we obtain the S-matrix
of a specific sample of length L = 3Lb. In this way we obtain a
set of the Landauer conductances {G(jLb)}j=1,2,..., for a set of
the specific samples with lengths L = Lb,2Lb, . . . . Repeating
the algorithm again we obtain a new set {G(jLb)}j=1,2,....

Repeating the algorithm say 103 times we obtain 103 various
sets of {G(jLb)}j=1,2,..., and we perform ensemble averaging
separately for each j . This approach saves a lot of time because
the S matrix of the sample of length L = jLb is created by
combining a single bi matrix with the S matrix of a sample of
length L = (j − 1)Lb.

In reality the positions of all scatterers differ from sample
to sample. If we take this into account in our simulation,
the ensemble-averaged results are the same (within statistical
noise) as those obtained by means of our trick, but the ensemble
averaging takes far much more computational time. Owing
to our trick we can analyze much larger systems, which is
essential for a successful observation of our major results.

III. SEMICLASSICAL CONDUCTIVITY
OF THE Q1D WIRE

In this section, the semiclassical Q1D conductivity expres-
sions are derived both for the impurity disorder and edge
roughness. Precisely, we assume that the electron motion is
semiclassical along the direction parallel with the wire and
quantized in the perpendicular direction. Our approach is
technically similar to the previous studies of the Q1D wires31,33

and quantum 2D (Q2D) slabs.29,30,34,35

The semiclassical conductivity of the Q1D wire is given as

σ = 2

FW

∑
n

∑
k

(
− e

L

) h̄k

m
fn(k), (52)

where F is the electric field applied along the wire, fn(k) is the
electron distribution function in the nth conducting channel,
and the factor of 2 includes two spin orientations. Similar to
the usual textbook approach, we express fn(k) as

fn(k) = f (Enk) + eF

h̄

∂f (Enk)

∂k
τn(Enk), (53)

where f (Enk) = 1/(exp[(Enk − EF )/kBT ] + 1) is the equi-
librium occupation number of the electron state with energy
Enk = εn + h̄2k2/2m and τn(Enk) is the relaxation time.
Setting Eq. (53) into Eq. (52) we obtain at zero temperature

σ = 2e2

πmW

Nc∑
n=1

knτn(EF ), (54)

where kn is the Fermi wave vector in the channel n [Eqs. (8)].
Function (53) obeys the linearized Boltzmann equation,

−eF

h̄

∂f (Enk)

∂k
=
∑
n′

∑
k′

Wn,n′ (k,k′)[fn′(k′) − fn(k)], (55)

where

Wn,n′ (k,k′) = 2π

h̄
|〈n′,k′|U |n,k〉|2avδ(Enk − En′k′) (56)

is the Fermi-golden-rule probability of scattering from |n,k〉 to
|n′,k′〉, with U being the scattering-perturbation potential and
|n,k〉 = L−1/2 exp(ikx)χn(y) being the unperturbed electron
state. The index av means that Wn,n′ (k,k′) is averaged over
different configurations of disorder.

From Eq. (55) we find (see Appendix A) the relaxation time

τn(EF ) = m

2π2h̄

∑
n′

(K−1)nn′kn′ , (57)
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where K is the matrix with matrix elements

Knn′ = 1

L

∑
k

∑
k′

[
δnn′

∑
μ

|〈n,k|U |μ,k′〉|2av

× k2δ(Enk − EF )δ(Eμk′ − EF ) − |〈n,k|U |n′,k′〉|2av

× kk′δ(Enk − EF )δ(En′k′ − EF )

]
. (58)

The Boltzmann Q1D conductivity thus reads

σ = 2e2

h

1

π2W

Nc∑
n=1

Nc∑
n′=1

knkn′(K−1)nn′ . (59)

A. Semiclassical conductivity of the Q1D wire
with impurities

If we set for U the impurity potential of Eq. (5), the matrix
elements of Eq. (58) can be expressed (see Appendix B) in the
form

Knn′ = nI γ̄
2

π2W

⎛
⎝1

2
+

Nc∑
μ=1

kn

kμ

⎞
⎠ δnn′ , (60)

where

γ̄ = mγ/h̄2. (61)

Using Eq. (60) we obtain from Eq. (59) the Q1D conductivity

σ = 2e2

h

1

γ̄ 2nI

Nc∑
n=1

k2
n

1
2 +∑Nc

n′=1
kn

kn′

. (62)

For Nc � 1 the sum in Eq. (62) converges to k2
F /2, and

Eq. (62) converges to the 2D limit

σ = 2e2

h

kF

2

kF

γ̄ 2nI

, (63)

derivable from the 2D Boltzmann equation.

B. Semiclassical conductivity of the Q1D wire with
rough edges

To evaluate the conductivity of Eq. (59) for the wire with
rough edges, we need to determine the perturbation potential
U produced by the edge roughness potential in Fig. 1 to set the
resulting U into the right-hand side of Eq. (58), and to evaluate
Knn′ . All this is performed in Appendix C. The result is

Knn′ = π2δ2

W 6

[
δnn′

Nc∑
μ

n2μ2 kn

kμ

[F(|kμ − kn|) +F(|kμ + kn|)]

− n2n′2 [F(|kn − kn′ |) −F(|kn + kn′ |)]
]
, (64)

where δ is the root mean square of the fluctuations of the edge
coordinates d(x) and h(x) (see below) and F(q) is the Fourier
transform of the roughness correlation function F (x).

To specify δ, F (x), and F(q) we recall (see Fig. 1) that
d(x) and h(x) fluctuate with varying x in the intervals 〈−�,�〉
and 〈W − �,W + �〉, respectively, by changing their values

abruptly after constant steps �x. Obviously, the values of d(x)
are distributed in the interval 〈−�,�〉 with the box-shaped
distribution. Using such a distribution we find, that

〈d(x)2〉 − 〈d(x)〉2 = 〈d(x)2〉 = �2/3 ≡ δ2, (65)

where the symbol δ labels the root mean square of d(x). The
correlation function F (x) is defined as

〈d(x1 + x)d(x1)〉 = δ2F (x). (66)

We use the box distribution and we take into account that the
step �x plays the role of the correlation length. We obtain

F (x) =
{

1 − |x|/�x, |x| � �x

0, |x| > �x
. (67)

The Fourier transform of the last equation is

F(q) = �x
2(1 − cos(�xq))

(�xq)2
. (68)

The same results as for d(x) hold also for h(x)−W , because
the roughness of both edges is the same.

IV. NUMERICAL AND ANALYTICAL RESULTS

In Sec. IV A, the quantum transport in the wires with
impurity disorder and wires with rough edges is simulated
in the quasi-ballistic, diffusive, and localized regimes. In
Sec. IV B the crossover from the quasi-ballistic to diffusive
regime is explained by means of an intuitive model based on the
concept of the open channels. A microscopic analytical theory
of the crossover is given in Sec. IV C. In Sec. IV D, the diffusive
mean free path obtained from the Landauer conductance and
mean free path from the Boltzmann theory are compared for
both types of disorder. In Sec. IV E the wire with rough edges
is studied for large roughness-correlation lengths.

In principle, all our transport results can be expressed
and presented in dependence on the dimensionless variables,
�/λF , �x/λF , W/λF , etc., with the Fermi wave length λF

being the length unit. Nevertheless, in a few cases we also use
the normal (not dimensionless) variables, and we present the
results for the material parameters m = 9.109 × 10−31 kg and
EF = 5.6 eV (λF = 0.52 nm), typical of the Au wires.

A. Quantum transport in wires with impurities
and rough edges

We mostly simulate the wires with the number of the
conducting channels being Nc = 34. This number emulates
the limit Nc � 1 without spending too much computational
time. Whenever needed, we also use much larger Nc, the largest
one being Nc = 347. We calculate the Landauer conductance
for 104 wires and we evaluate the means.

We start with discussion of the mean resistance 〈ρ〉. In
Fig. 6 the mean resistance of the wire with impurity disorder
is compared with the mean resistance of the wire with rough
edges for various parameters of disorder. The data obtained
for various parameters tend to collapse to a single curve when
plotted depending on the ratio L/l. Hence it is sufficient to
discuss only the data for one specific choice of parameters.

Figure 7 shows the selected numerical data (solid lines)
from Fig. 6. In accord with the textbooks,1–3 the mean
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FIG. 6. The mean resistance 〈ρ〉 as a function of the wire length
L. Note that 〈ρ〉 is reduced by the contact resistance ρc = 1/Nc and
L is scaled by the mean free path l. The left panel shows the mean
resistance of the wire with impurity disorder; the right one shows
the mean resistance of the wire with rough edges. The wire width
W is fixed to the value W/λF = 17.4, which means that Nc = 34.
The parameters of disorder are listed in the figure together with the
resulting values of l. Determination of l is demonstrated in the next
figure. Note that for the Au wire (EF = 5.6 eV and m = 9.109 ×
10−31 kg) we have λF = 0.52 nm and W = 17.3λF = 9 nm, with
the smallest � being only 0.01 nm. Such small � is obviously not
realistic, but it is used to emulate the weak roughness limit.

resistance of the wire with impurities follows for L � 0
the standard diffusive dependence 〈ρ〉 = ρc + ρdifL/W . How-
ever, the mean resistance of the wire with rough edges shows
a more complex behavior. For L → 0 it follows the linear
dependence 〈ρ〉 = ρc + ρqbL/W , where ρqb is the quasi-
ballistic resistivity. Only for large-enough L does, it shows
crossover to the diffusive dependence 〈ρ〉 = ρeff

c + ρdifL/W ,
where the resistivity ρdif is much smaller that ρqb and the
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FIG. 7. The solid lines show the selected numerical data from the
preceding figure. The dashed line in the left panel shows the linear fit
〈ρ〉 = ρc + ρdifL/W , while the dashed line in the right panel is the
linear fit 〈ρ〉 = ρeff

c + ρdifL/W , with ρeff
c being the effective contact

resistance. In both cases the resistivity ρdif is a fitting parameter and l

is extracted from the Drude formula ρdif = 2/(kF l). To determine ρeff
c ,

the dashed line in the right panel is extrapolated to L = 0. We find
ρeff

c 
 1/7.5 while ρc = 1/34, the inset shows the solid line from
the right panel for L/l 	 1, where the transport is quasi-ballistic.
The dotted lines show the linear fit 〈ρ〉 = ρc + ρqbL/W , where the
quasi-ballistic resistivity ρqb is a fitting parameter. The quasi-ballistic
mean free path lqb is given as lqb = 2/(kF ρqb).
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FIG. 8. Typical conductance 〈ln g〉, mean resistance 〈ρ〉, and
mean conductance 〈g〉 versus L/ξ . The results for the wire with
impurity disorder (left panels) are compared with the results for the
wire with rough edges (right panels). The calculations were performed
for various sets of the parameters, listed in the Fig. 6. The results for
various parameter sets collapse to a single curve shown as a solid
line (see the remarks in the text). The dashed lines in the top panels
show the fit 〈ln g〉 = −L/ξ , from which we determine the localization
length ξ . The resulting values of ξ are shown.

effective contact resistance ρeff
c strongly exceeds the funda-

mental contact resistance ρc. In other words, the wire with
rough edges shows two different linear regimes (the quasi-
ballistic one and the diffusive one) separated by crossover,
while the wire with impurities shows a single linear regime for
the quasi-ballistic as well as diffusive transport.

Figure 7 also shows that the mean resistance of the wire with
impurities increases for L/l � 10 slightly faster than linearly,
which is due to the weak localization. However, the mean
resistance of the wire with rough edges increases linearly even
for 10 � L/l � 30. The origin of this difference will become
clear soon.

Figure 8 shows the numerical results (solid lines) for the
the typical conductance 〈ln g〉, mean resistance 〈ρ〉, and mean
conductance 〈g〉 depending on the ratio L/ξ . The calculations
were performed for various sets of the parameters, shown
in Fig. 6. The results for various sets tend to collapse to a
single curve (solid line) when plotted as depending on L/ξ .
We see for both types of disorder that the numerical data for
〈ln g〉 approach at large L the dependence 〈ln g〉 = −L/ξ .
This is a sign of the localization.14,36 Fitting of the numerical
data provides the values of ξ shown in the figure. In the
wire with impurities we find the result ξ/ l 
 0.9Nc, which
agrees with the theoretical37 prediction ξ/ l = Nc and with
numerical studies.6 In the wire with rough edges we find
ξ/ l 
 1.4Nc. This does not contradict the work,21,26 which
reports ξ/ l1D 
 Nc, but l1D is π/2 times larger than our l.
Finally, due to the localization, 〈ρ〉 and 〈g〉 also depend on
L/ξ exponentially at large L/ξ .
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FIG. 9. The solid lines show our numerical data for the mean
resistance 〈ρ〉, inverse mean conductance 1/〈g〉, and conductance
fluctuations

√
var(g). The dashed lines in the top panels are the

linear fits 〈ρ〉 = ρc + ρdifL/W (left panel) and 〈ρ〉 = ρeff
c + ρdifL/W

(right panel). The dashed lines in the middle panels are the linear
fits 1/〈g〉 = ρc + ρdifL/W (left panel) and 1/〈g〉 = ρeff

c + ρdifL/W

(right panel). Onset of strong localization is marked by arrows at
the points, where the numerical data start to deviate from the linear
fit remarkably. The relative deviation from the linear fit is shown in
a separate figure [Fig. (10)]. The dotted line in the bottom panels
shows the theoretical value (0.365) of the conductance fluctuations,
predicted in the limit l/ξ 	 L/ξ 	 1 for the white-noise disorder.

Figure 9 show the mean resistance 〈ρ〉 and inverse mean
conductance 1/〈g〉, now in the linear scale. Concerning the
mean resistance, the wire with rough edges and wire with
impurities behave similarly: 〈ρ〉 rises with L/ξ linearly on the
scale l/ξ 	 L/ξ � 1, as is typical for the diffusive regime.
However, both types of wires show a quite different 1/〈g〉. In
the wire with impurities, 1/〈g〉 rises with L/ξ linearly in the
interval l/ξ 	 L/ξ � 1, while in the wire with rough edges
1/〈g〉 shows the linear rise with L/ξ in the interval as large
as l/ξ 	 L/ξ � 2. The 〈g〉 ∝ 1/L dependence is a sign of
the diffusive conductance regime, which now persists up to
L/ξ 
 2 and which was not observed in Ref. 20 due to the too
narrow length window (as explained by the authors).

Further, the slope of the dashed lines is larger for the edge
roughness than for the impurities. This can be understood if
we write the Eq. 〈ρ〉 
 1/〈g〉 
 (2/π )(ξ/Ncl)(L/ξ ) and we
realize that the ratio ξ/Ncl is larger for the edge roughness.

Figure 9 also shows the conductance fluctuations. The
fluctuations in the wire with impurities approach the universal
value 0.365, derived13,14 in the limit l/ξ 	 L/ξ 	 1 for the
white-noise disorder. It is remarkable that the fluctuations in
the wire with rough edges show a length-independent universal
value (of size ∼0.3) just in the interval l/ξ 	 L/ξ � 2,
in which we see the linear rise of 1/〈g〉. Coexistence of

-0.1
0.0
0.1
0.2
0.3
0.4

(<
ρ>

 -
 f

it)
/ f

it

impurities edge roughness

0.0 0.5 1 1.5 2
L /ξ

-0.1
0.0
0.1
0.2
0.3
0.4

(<
g>

-1
 -

 f
it)

/ f
it

0.0 0.5 1 1.5 2
L /ξ

FIG. 10. Numerical data for 〈ρ〉 and 1/〈g〉 from the preceding
figure, presented as a relative deviation from the linear fit. The dashed
line shows the weak-localization-mediated relative deviation 1

3 ρdif
L

W
,

shifted by replacement L → (L − 8l) to obey the limit L � l.

the universal conductance fluctuations with the conductance
∼ξ/L is typical of the diffusive conductance regime.2

In Fig. 9, onset of strong localization is visible on first
glance at the points (marked by arrows), where the numerical
data for 〈ρ〉 and 1/〈g〉 start to deviate from the linear
dependence remarkably. For the edge roughness the inverse
conductance shows onset of localization at L 
 2ξ : Note that
the corresponding conductance fluctuations are not universal
just for L > 2ξ (they decay with L).

Figure 10 shows the relative deviation from the linear fit,
obtained from the numerical data in Fig. 9. Also shown is
the relative deviation 1

3ρdif
L
W

, obtained from formula (16). As
expected, the inverse conductance of the wire with impurities
exhibits for l 	 L < ξ the deviation close to 1

3ρdif
L
W

. This
is evidently not the case for the wire with rough edges.
First, if L � 0.2ξ , both 〈ρ〉 and 1/〈g〉 show a large negative
deviation due to the crossover from the quasi-ballistic to
diffusive regime. Second, if 0.2ξ � L � 2ξ , then 1/〈g〉 shows
a deviation as small as � 0.08 and almost no deviation for
0.4ξ � L � 1.1ξ . In other words, 1/〈g〉 exhibits up to L 
 2ξ

the linear diffusive behavior with a minor nonlinear deviation.
Finally, 〈ρ〉 shows a steeply increasing deviation at L 
 ξ due
to the localization.

We have so far discussed the numerical data for the wire
parameters listed in Fig. 6. Apart from small differences due
to the statistical noise, these data collapse almost precisely
to the same curve, when plotted as depending on L/ξ .
In fact, such single-parameter scaling (with a dependence
solely on L/ξ ) holds exactly for weak disorder.19,38,39 If
disorder is not weak, the data can deviate from the single-
parameter scaling and the question is whether our findings hold
generally.

For instance, already in Fig. 6 we do not see for various
parameters exactly the same curves. However, the difference
between various curves is so small that the findings extracted
from one of these curves (see Fig. 7) are obtainable with a
minor quantitative change from other curves. So we expect
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FIG. 11. Mean resistance 〈ρ〉, inverse mean conductance
1/〈g〉, and conductance fluctuations

√
var(g) for various wire

parameters.

that the same findings hold for any (reasonable) choice of the
wire parameters. A strong support for this expectation is that
the parameters used in Fig. 6 are very different: The mean free
paths l range from l/λF = 41 up to l/λF = 3.6 × 106.

Figure 11 shows again the numerical data for 〈ρ〉, 1/〈g〉,
and

√
var(g), but for various sets of the wire parameters.

Obviously, the data for various sets do not collapse exactly to
the same curve. This may be due to the fact that disorder is not
weak; however, the resulting curves are also sensitive to how
accurately we determine ξ . We could improve proximity of the
curves in Fig. 11 by simulating a larger ensemble of samples
and a larger wire length (in order to obtain a more accurate
ξ ). However, the presented proximity is quite sufficient in the
sense that each of the curves allows us to obtain the results
very similar to those in Figs. 9 and 10. Proximity of the curves
is satisfactory also with regards to the fact that the values of ξ

obtained for various parameters in Fig. 11 vary in the range of
five orders of magnitude. In this respect we can also say that
Fig. 11 confirms universality of the conductance fluctuations
in the wire with rough edges: they are of size

√
var(g) 
 0.3,

as reported by others.9,25,27,28

B. Crossover from the quasi-ballistic to diffusive transport in
wires with rough edges: Intuitive analytical derivation

Let us examine the crossover from 〈ρ〉 = ρc + ρqbL/W to
〈ρ〉 = ρeff

c + ρdifL/W , observed in Fig. 7. Such crossover was
not observed in Refs. 21 and 26 where a similar situation was
studied numerically. Therefore, we first analyze the conditions
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FIG. 12. Effective number of open channels, N eff
c , versus the

roughness correlation length �x for various Nc and various roughness
amplitudes �. The parameters of the edge roughness are scaled as
�x/λF and �/W . The results for �/W = 1/18 are shown by open
circles; the dashed and solid lines show the results for �/W = 1/180
and �/W = 1/900, respectively.

of observability. We define the effective number of the open
channels, N eff

c = 1/ρeff
c , and we evaluate N eff

c numerically (by
means of the same procedure as in Fig. 7) for various wire
parameters.

Figure 12 shows N eff
c as depending on the roughness-

correlation length �x for various Nc and various �. We see
that N eff

c reaches for �x/λF → 0 a minimum value which is
roughly 6 and which depends, within our numerical accuracy,
on neither Nc nor �/W . In other words, N eff

c approaches
for �x → 0 the universal value ∼6. The calculations in
Refs. 21 and 26 were performed for �x 
 0.5λF , but only
for Nc = 5. This value is obviously too small for noticing the
existence of N eff

c ∼ 6. Hence the Refs. 21 and 26 reported
the diffusive dependence 〈1/g〉 
 1/Nc + ρdifL/W rather
than the dependence 〈1/g〉 
 1/N eff

c + ρdifL/W . Finally, for
�x/λF ≫ 1 we see that N eff

c approaches Nc. That limit is
studied in the Sec. IV E.

Further, we look at the numerical data for 〈Tn〉, shown in
Fig. 13. The theory based on the white-noise disorder predicts
that the conducting channels are equivalent18,19 in the sense
that 〈T1〉 = 〈T2〉 · · · = 〈TNc

〉. In Fig. 13, this equivalency is
reasonably confirmed for the wire with impurity disorder but
not for the wire with rough edges. In the wire with rough edges,
〈Tn〉 decays fast with raising n which is easy to understand
classically: In the channel n = 1 the electron avoids the edges
by moving in parallel with them, while in the channel n = Nc

the motion is almost perpendicular to the edges, resulting in
frequent collisions with them. As a result, the 〈Tn〉 dependence
in the right panels of Fig. 13 shows for L 
 ξ the coexistence of
the quasi-ballistic, diffusive, and strongly localized channels,
already reported in previous works.8,20,25

Concerning the coexistence, two comments are needed.
Evidently, the coexistence is not in contradiction to the fact
that all Tn decay in semilogarthmic scale linearly with a single
parameter L/ξ , when L � ξ (see also Ref. 8). Further, it is
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FIG. 13. The top panels show the transmission probability 〈Tn〉
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34. For n ordered increasingly, the resulting curves are ordered
decreasingly: The top curve shows 〈Tn=1〉, the bottom one shows
〈Tn=Nc

〉. The bottom panels show 〈Tn〉 versus n for various L/ξ .

clear that if the diffusive regime means Tn ∝ 1/L in all Nc

channels at the same value of L, then there is no diffusive
regime but only crossover from the quasi-ballistic regime to the
localization regime.20 In the preceding text we were speaking
about the diffusive regime in the sense21,26 that 〈ρ〉 ∝ L and
1/〈g〉 ∝ L.

For the uncorrelated impurity disorder, the transmission
〈Tn〉 in the absence of the wave interference takes the form2

〈Tn〉 = Ln/(Ln + L), (69)

where Ln is the characteristic length. For the edge roughness
we can adopt Eq. (69) as an ansatz. We will prove later that
the ansatz is indeed correct for the uncorrelated roughness.
In what follows we combine ansatz (69) with the concept
of open channels, and we explain all major features of the
crossover from the quasi-ballistic regime to the diffusive
one, albeit formula (69) cannot capture the fact that besides
the quasi-ballistic and diffusive channels there are also the
localized ones.

We assess Ln from the numerical data in Fig. 13 From
Fig. 13 it is obvious that Ln in the channels with n � 1 is
much smaller than Ln in the channels with n → 1. We emulate
these findings by a simple model. We introduce the number
N eff

c 	 Nc and we assume that the channels n = 1,2, . . . ,N eff
c

have the characteristic length La , while the rest of the channels
have the characteristic length Lb 	 La .

By means of the above model, we can estimate the mean
resistance 〈ρ〉 and mean conductance 〈g〉 for the wire lengths
0 � L � ξ . From Fig. 9 we see that

〈ρ〉 
 1/〈g〉, 0 � L � ξ. (70)

We therefore rely on the equation

〈ρ〉 
 1

〈g〉 = 1∑N eff
c

n=1〈Tn〉 +∑Nc

n=N eff
c +1〈Tn〉

. (71)

In the quasi-ballistic limit (L 	 Lb) the first term in the
denominator of Eq. (71) is simply N eff

c and the second term
can be evaluated by means of Eq. (69). For Ln = Lb we find

〈ρ〉 
 1

Nc

+ Nc − N eff
c

N2
c Lb

L 
 1

Nc

+ 1

NcLb

L, (72)

where the right-hand side holds for N eff
c 	 Nc. In the diffusive

regime (l 	 L < ξ ) we evaluate the denominator of Eq. (71)
by means of Eq. (69) and we neglect the second term in the
denominator, assuming that N eff

c La � NcLb. We get

〈ρ〉 
 La + L

N eff
c La


 1

N eff
c

+ 1

N eff
c La

L, (73)

where the righthand side is the limit L � La . This means that
we assume 〈Tn〉 
 Ln/L for all N eff

c channels, i.e., we ignore
that the channel n = 1 is almost quasi-ballistic even at L 
 ξ

(see Fig. 13). Nevertheless, we succeed in obtaining all major
features of the crossover from the quasi-ballistic regime to the
diffusive one (see mainly the next subsection).

If we compare the formulas (72) and (73) with the formulas
〈ρ〉 = ρc + ρqbL/W and 〈ρ〉 = ρeff

c + ρdifL/W , we obtain

ρqb = W

NcLb

, ρdif = W

N eff
c La

. (74)

We have assumed above that N eff
c La � NcLb. This means that

ρqb � ρdif . Indeed, we will see that ρqb/ρdif 
 Nc

Formula (73) holds only for L � ξ , as Eq. (70) holds for
L � ξ . However, the formula

1

〈g〉 
 1

N eff
c

+ 1

N eff
c La

L (75)

holds for l 	 L � 2ξ , as we know from our numerical data.
(The fact that the conductance behaves diffusively up to
L 
 2ξ has previously been recognized from the conductance
distribution.22 We do not show here the conductance distribu-
tions as they are similar to those in Refs. 22 and 24.)

Formulas (72) and (73) show that the crossover from
〈ρ〉 = ρc + ρqbL/W to 〈ρ〉 = ρeff

c + ρdifL/W is due to the
channel nonequivalency. In what follows, formulas (72) and
(73) will be derived from the first principles, without using the
parameters La and Lb.

C. Crossover from the quasi-ballistic to diffusive transport:
Microscopic analytical derivation

We express the transmission probability 〈Tn〉 as

〈Tn〉 = 1 −
Nc∑

m=1

〈Rmn〉. (76)

where Rmn is the probability that an electron impinging on the
disordered region in the mth channel is reflected back into the
nth channel. In Ref. 20 the wire with rough edges was analyzed
in the quasi-ballistic limit and the reflection probability 〈Rmn〉
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FIG. 14. Top panel: Quasi-ballistic mean free path lqb in the
Au wire as a function of the wire width W for various rough-
ness amplitudes �. The roughness correlation length is fixed at
�x = 0.125 nm, the Au material parameters are m = 9.109 × 10−31

kg and EF = 5.6 eV. The circles show our numerical data and the
squares (connected by a solid line) are the data points obtained from
expression (79). Bottom panel: The same calculations as in the top
panel, but W is fixed at 9 nm and the Fermi energy is varied. To
explore the small � limit reliably, we have to use the values of �,
which are too small to be realistic.

was derived by means of first-order perturbation theory. The
result is

〈Rmn〉 = 2 × δ2κ2
mκ2

n

W 2kmkn

F(|kn + km|)L, (77)

where κn = (π/W )n and the factor of 2 accounts for two edges.
[In fact, the result given in Ref. 20 involves a missprint. The
result in Eq. (77) can also be extracted from the backscattering
length reported in Refs. 40 and 41.]

The mean conductance in the quasi-ballistic limit reads

〈g〉 =
Nc∑

n=1

[
1 −

Nc∑
m=1

〈Rmn〉
]

= Nc

[
1 − L

π
2 lqb

]
, (78)

where lqb is the quasi-ballistic mean free path:

lqb = 2

π
Nc

[
Nc∑

m=1

Nc∑
n=1

2�2κ2
mκ2

n

3W 2kmkn

F(|kn + km|)
]−1

, (79)

where δ2 = �2/3. Note that the quasi-ballistic limit of
Eq. (79) contains only the backscattering contribution ∝
F(|kn + km|), while in the diffusive regime [Eq. (64)] also

the forward-scattering contribution ∝ F(|kn − km|) is also
present. The mean resistance in the quasi-ballistic limit is

〈ρ〉 = 1

〈g〉 = 1

Nc

+ 1

Nc
π
2 lqb

L. (80)

In Fig. 14 expression (79) is compared with lqb determined
numerically by means of the approach discussed in Fig. 7 (the
right panel and inset to the right panel). Formula (79) agrees
with our numerical data if the roughness amplitude � is small.
This is what one expects, because perturbation expression
(79) is exact in the limit � → 0 and our scattering-matrix
calculation is (in principle) exact for any �. As � increases,
the result of Eq. (79) fails to agree with our numerical data
because the scattering is not weak.42

Simple formulas can be derived for lqb and l if the roughness
is uncorrelated (�x/λF 	 1). We start with l. If �x/λF 	 1,
correlation function (68) is simply F(q) = �x. Consequently,
the backscattering and forward-scattering terms in Eq. (64)
become the same and matrix (64) reduces to the diagonal form

Knn′ = δnn′
2π2�2�x

3W 6

Nc∑
μ=1

n2μ2 kn

kμ

, (81)

where the factor of 2 is just due to the equal contribution of
the backward and forward scattering. We set Eq. (81) into
the Boltzmann conductivity of Eq. (59) and we extract from
Eq. (59) the diffusive mean free path. It reads

l = 3W 5

π4�2kF �x

Nc∑
n=1

kn

n2

⎡
⎣ Nc∑

μ=1

μ2

kμ

⎤
⎦

−1

. (82)

For Nc � 1 the summations in Eq. (82) can be
approximated as

Nc∑
n=1

kn

n2

 π2

6
kF ,

Nc∑
μ=1

μ2

kμ


 W 3

4π2
k2
F , (83)

and the semiclassical diffusive mean free path becomes

l = 2W 2

�2k2
F �x

. (84)

Now we evaluate for �x/λF 	 1 the quasi-ballistic mean free
path. We rewrite Eq. (79) in the form

lqb = 2

π
Nc

[
Nc∑

m=1

Nc∑
n=1

1

lRmn

]−1

, (85)

where

1

lRmn

= 2�2κ2
mκ2

n

3W 2kmkn

F(|kn + km|). (86)

Setting into Eq. (86) the formula F(q) = �x, we obtain

lRmn = 3W 2kmkn

2�2κ2
mκ2

n�x
= 3W 6kmkn

2π4�2m2n2�x
. (87)

Combining Eq. (85) with Eq. (87) and using Eq. (83) we obtain

lqb = 2

π

24W

π�2k3
F �x

. (88)

We recall that lqb is limited exclusively by backscattering.
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FIG. 15. Quasi-ballistic mean free path lqb and diffusive mean
free path l in the Au wire with rough edges, calculated as a function
of the wire width W and Fermi energy EF . The thick lines show
formulas (88) and (84), derived for the uncorrelated roughness.
The thin lines show the formulas valid for an arbitrary correlation
length �x, namely the quasi-ballistic result of Eq. (79) and the
semiclassical l extracted from the Boltzmann conductivity of Eq. (59).
The roughness amplitude � and roughness-correlation length �x are
fixed as � = 0.5 nm and �x = 0.125 nm (the limit �x/λF 	 1
is fulfilled for all considered data). The Fermi energy used in the
top panels is EF = 5.6 eV, the wire width in the bottom panels is
W = 9 nm. The oscillations with sharp minima appear whenever the
Fermi energy approaches the bottom of the energy subband n = Nc.

Formulas (84) and (88) hold for �x/λF 	 1. In
Fig. 15 we compare them with the original formulas valid for
any �x. We can see that the major difference is the absence of
the oscillating behavior in formulas (84) and (88).

Finally, the ratio l/ lqb can be expressed as

l

lqb
= π3

24
Nc ∼ Nc. (89)

The result of Eq. (89) is universal—independent of the wire
parameters and parameters of disorder. Figure 16 shows that
the universal relation l/ lqb ∝ Nc is confirmed by our exact
quantum-transport calculation. Obviously, since formula (84)
is the semiclassical Boltzmann equation result and formula
(88) is the weak-scattering limit, formula (89) cannot repro-
duce the exact quantum results quantitatively.

The diffusive mean free path of Eq. (84) contains both the
backward and forward scattering. It is therefore interesting
that the same result can be obtained when the quasi-ballistic
(backward-scattering-limited) resistance of Eq. (80) is extrap-
olated into the diffusive regime by means of ansatz (69). We
start from

〈ρ〉 
 1/〈g〉 =
[

Nc∑
n=1

〈Tn〉
]−1

(90)

and we use ansatz (69). In the quasi-ballistic limit (L 	 Ln)
we obtain from Eq. (69) the formula 〈Tn〉 = 1 − L/Ln. We
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FIG. 16. Ratio l/ lqb, where l is the diffusive mean free path and lqb

is the quasi-ballistic mean free path, evaluated as a function of Nc for
various roughness amplitudes �. The roughness-correlation length
�x is fixed to the value �x/λF = 0.24, which reasonably emulates
the uncorrelated roughness. The open symbols show the results of
our quantum transport simulation, where l and lqb are calculated as
in Fig. 7.

set this formula into Eq. (90) and we compare Eq. (90) with
quasi-ballistic expressions (80) and (85). We find that

Ln =
[

Nc∑
m=1

1

lRmn

]−1

. (91)

In the diffusive limit (Ln 	 L) we obtain from Eq. (69)
the formula 〈Tn〉 = Ln/L and from Eq. (90) the diffusive
expression

〈ρ〉 =
[

Nc∑
n=1

Ln

]−1

L. (92)

We compare this expression with ρ = ρdif
L
W

, where ρdif =
2/(kF l). We find the mean free path

l = 2

πNc

Nc∑
n=1

Ln = 2

πNc

Nc∑
n=1

[
Nc∑

m=1

1

lRmn

]−1

. (93)

If we set into Eq. (93) the uncorrelated limit of Eq. (87), we
obtain again the Boltzmann mean free path (84). This is the
proof that ansatz (69) works correctly for the uncorrelated
roughness. Now it is useful to make two remarks.

First, our characteristic length Ln should not be confused
with the often-used41,43 attenuation length Ln. Our Ln is
defined by ansatz (69) and we have just seen that expression
(93) gives for such Ln the mean free path coinciding with
the mean free path obtained from the Boltzmann equation.
This is the momentum relaxation-time-limited mean free path.
However, if one sets into Eq. (93) the attenuation length
[Eq. (5.2) in Ref. 43], one obtains from Eq. (93) the scattering-
time-limited mean free path, i.e., the mean distance between
two subsequent collisions. For the uncorrelated roughness the
latter is exactly twice as shorter as the former one.

Second, we note that ansatz (69) does not work for arbitrary
roughness. Indeed, we can set into formula (93) the more
general expression (86) and we can compare Eq. (93) with the
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Boltzmann mean free path valid for an arbitrary correlation
length �x. In such a case formula (93) fails to reproduce the
Boltzmann equation result.

Assuming the uncorrelated roughness, we are ready to
derive analytically the effective number of the open channels,
N eff

c . Expression (90) can be formally written as

〈ρ〉 = 1

N eff
c

+ 2

kF l

L

W
, (94)

where the symbol N eff
c is defined as

N eff
c =

⎡
⎣( Nc∑

n=1

〈Tn〉
)−1

− 2

πNcl
L

⎤
⎦

−1

(95)

in order to obtain Eq. (90) again. We now express the
transmission 〈Tn〉 by means of formula (69) and the mean
free path l by means of formula (93). We obtain

N eff
c =

⎡
⎣( Nc∑

n=1

Ln

Ln + L

)−1

−
(

Nc∑
n=1

Ln

)−1

L

⎤
⎦

−1

. (96)

In the diffusive limit (L � Ln) we obtain after some algebraic
manipulations the equation

N eff
c =

(∑Nc

n=1 Ln

)2∑Nc

n=1 L2
n

. (97)

Expression (97) no longer depends on L and evidently
represents the effective number of the open channels, if the
resistance of Eq. (94) is considered in the diffusive limit. We
set into Eq. (97) formulas (91) and (87). We obtain

N eff
c =

[∑Nc

n=1
kn

n2

]2[∑Nc

m=1
m2

km

]−2

[∑Nc

n=1
k2
n

n4

][∑Nc

m=1
m2

km

]−2 . (98)

For Nc � 1 the first sum in the denominator of Eq. (98)
becomes

Nc∑
n=1

k2
n

n4

 π4

90
k2
F , (99)

and other sums in Eq. (98) are already known [see Eqs. (83)].
We arrive at the result

N eff
c ≈ 5

2
, (100)

which implies that N eff
c is a universal number depending

on neither the roughness amplitude � nor on the number
of the conducting channels, Nc. All this agrees with our
quantum-transport calculation in Fig. 12, except that the result
of Eq. (100) underestimates the numerical value N eff

c 
 6
about twice. However, we recall that the result of Eq. (100)
relies on formulas (91) and (87), which are not exact.

D. Diffusive mean free path: Quantum-transport results versus
the semiclassical Boltzmann results

In this subsection, the mean free path obtained from the
semiclassical Boltzmann equation is compared with the mean
free path obtained from the quantum resistivity ρdif . For the
impurity disorder we see a standard result:6,7 The semiclassical
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FIG. 17. Top panel: Diffusive mean free path l in the Au wire with
impurity disorder as a function of the wire width W , calculated for
three different sets of impurity parameters (listed in the bottom panel).
The semiclassical mean free path obtained from the Boltzmann Q1D
conductivity Eq. (62) is shown as a solid line: All three sets of
parameters are intentionally chosen to give the same semiclassical
result. The data shown by symbols are the quantum-transport results
obtained from the quantum resistivity ρdif (by using the procedure
described in Fig. 7). Bottom panel: The same calculations as in the
top panel, but W is fixed at 9 nm and the Fermi energy is varied.

and quantum mean free paths coincide for weak impurities. On
the contrary, for the edge roughness we find that the quantum
mean free path differs from the semiclassical one even if the
roughness amplitude � is vanishingly small.

In Fig. 17 the quantum and semiclassical mean free paths
are compared for the impurity disorder. The semiclassical data
are shown in a solid line: Three different sets of parameters
are intentionally chosen to provide the same semiclassical
result. The full lines exhibit oscillations with sharp minima,
appearing whenever the Fermi energy approaches the bottom
of the energy subband n = Nc. Evidently, the oscillating curve
intersects the quantum results (the data shown by symbols),
albeit they are slightly affected by statistical noise. Both the
semiclassical and quantum results follow the trend predicted
by the semiclassical 2D limit [Eq. (63)], namely that l is
proportional to E

1/2
F and independent of W . In summary, in

the Q1D wire with impurity disorder the semiclassical and
quantum mean free paths coincide. This is a standard result,6,7

known from the theory based on the white-noise disorder3

(see, however, Ref. 44).
As shown in Fig. 18, in the wire with rough edges the

situation is different. We again compare the semiclassical
mean free path (solid lines) with the quantum mean free path
(open circles). As before, the solid lines exhibit oscillations
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FIG. 18. The right panel shows the diffusive mean free path l

in the Au wire with rough edges as a function of the wire width
W , calculated for various roughness amplitudes �. The left panel
shows the same calculation, but W is fixed at 9 nm and the Fermi
energy is varied. The roughness-correlation length is kept at the value
�x = 0.125 nm, which means that �x/λF � 1 for most of the
presented data. The solid lines show the semiclassical mean free
path obtained from the Boltzmann Q1D conductivity [Eqs. (59) and
(64)]. The open circles show the quantum mean free path extracted
from the quantum resistivity ρdif (by using the procedure described in
Fig. 7). The open squares show the mean free path obtained by means
of the classical scattering-matrix calculation (see the text), in which
the localization is absent. To explore the small � limit reliably, we
have to use values of � which are too small to be realistic.

with sharp minima, appearing whenever the Fermi energy ap-
proaches the bottom of the energy subband n = Nc. Evidently,
the solid line and open circles show a quite different behavior
if the roughness amplitude � is large (notice the results for
� = 0.5 nm). It is tempting to ascribe this difference to the
weak-perturbation approximation involved in the Boltzmann
equation, and, similarly, it is tempting to expect that the full
line will intersect the open circles for sufficiently small �.
However, this is not the case: Even for the smallest considered
� the open circles are systematically a factor of ∼2 below
the solid line. In summary, in the wire with rough edges the
quantum mean-free path differs from the semiclassical one (by
the factor of ∼2) even if � is vanishingly small.

To understand the origin of this difference, we now exclude
from our quantum-transport calculation the wave interference.
We recall (see Sec. II C) that in the quantum-transport
calculation the total S matrix of the disordered wire is obtained
by combining at random the scattering matrices (bi) of the
building blocks, where the 2N × 2N matrix bi is composed
of the complex amplitudes tmn,t

′
mn,rmn, and r ′

mn. To exclude
the wave interference, we proceed as follows.7 First, we
consider only the conducting channels and we completely
neglect the evanescent ones: This reduces the size of the
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FIG. 19. Mean resistance 〈ρ〉 of the wire with rough edges in
dependence on the ratio L/ξ . The thin solid line is the result of the
quantum scattering-matrix calculation (the same data as in the top
right panel of Fig. 9), now labeled as 〈ρ〉QM . The thick solid line
is the result of the classical scattering-matrix calculation, labeled as
〈ρ〉clas. The dashed lines show the linear fits 〈ρ〉 = ρeff

c + ρdifL/W ,
from which we determine the effective contact resistance ρeff

c and the
diffusive mean free path l = 2/(kF ρdif ). The resulting ρeff

c are shown
in the figure. The inset shows the classical result again, but for larger
L/ξ in order to stress the linear raise and absence of the localization.

matrix bi to 2Nc × 2Nc. Second, instead of the complex matrix
bi we use the real one, in which the complex amplitudes
tmn,t

′
mn,rmn, and r ′

mn are replaced by the real probabilities
Tmn = |tmn|2,T ′

mn = |t ′mn|2,Rmn = |rmn|2, and R′
mn = |r ′

mn|2,
respectively. Of course, the wave interference is excluded
completely if the length of the building block, Lb, coincides
with the length of the edge step, �x. Fortunately, in practical
calculations the wave interference is negligible already for
Lb ∼ l. If we combine the resulting real matrices bi by means
of the same combination law as before [Eq. (24)], we obtain
the classical transmission probability Tmn and eventually the
classical Landauer conductance

gclas =
Nc∑

m=1

Nc∑
n=1

Tmn

km

kn

. (101)

Finally, we perform ensemble averaging over many samples.
In Fig. 19 the classical scattering-matrix calculation is

compared with the quantum one. The mean resistance due
to the quantum calculation is labeled as 〈ρ〉QM to distinguish
it from the classical 〈ρ〉clas. It can be seen that both 〈ρ〉QM and
〈ρ〉clas exhibit the crossover to the linear diffusive dependence
〈ρ〉 = ρeff

c + ρdifL/W , but the classical result shows a smaller
value of ρdif and a larger value of ρeff

c . The value ρeff
c =

1/N eff
c 
 1/3.5 is already close to our theoretical result N eff

c 

2.5 [Eq. (100)], where the wave interference is excluded as
well. The smaller value of ρdif is due to the absence of the
localization.

Let us return to Fig. 18. The squares show the mean
free path extracted from 〈ρ〉clas. These data overestimate the
quantum results (circles) systematically by a factor of ∼2.
Compare now the classical scattering-matrix results (squares)
with the semiclassical Boltzmann results (solid lines). The
solid lines intersect the squares only if � is vanishingly small.
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TABLE I. The mean-free path l in the Au wire obtained from
the quantum-transport simulation is compared with the semiclassical
Boltzmann mean-free path lBoltz [Eqs. (59) and (64)] for various
values of the wire width W , roughness amplitude �, and roughness-
correlation length �x. Each set of the parameters considered in
the table represents strong disorder, for which lBoltz strongly differs
from l.

W (nm) �x (nm) � (nm) l (nm) lBoltz (nm)

9 0.5 1.5 21.4 5.17
20 10 3.33 70.7 21.3
20 5 3 65.6 17.2
30 2.5 4 124 14.8
30 5 4.5 105 16.6
70 5 10.5 315 20.5
90 5 13.5 409 30.0
90 40 13.5 411 115

This is due to the fact that the Boltzmann results rely on the
weak perturbation theory while the classical scattering-matrix
calculation still involves the exact quantum scattering by a
single edge step.

The roughness-limited conductivity derived from the Boltz-
mann equation (usually further simplified by using the Fuchs–
Sondheimer model45,46) is often compared with the transport
measurements of the metallic nanowires.47–49 However, such
comparison cannot verify the Boltzmann result unambigu-
ously due to the presence of other processes (like the scattering
by impurities and grain boundaries) and also due to the fact
that the roughness parameters � and �x are not known
apriori. Our quantum calculation shows unambiguously that
the semiclassical Boltzmann approach describes the wires with
rough edges reasonably, only if � is too small to be realistic
(in the Au nanowires). In practice, the metallic nanowires
are usually fabricated by advanced lift-off techniques,50–52

which hardly allow suppressing the edge roughness to the
value � ∼ 1 nm.

In Table I, the quantum and semiclassical mean free paths
are compared for a more realistic � and W as in Fig. 18. We see
that the quantum result exceed the semiclassical Boltzmann
result by one order of magnitude. One might argue that
the quantum result holds only in the coherent regime while
decoherence is present at any nonzero temperature. We expect
that decoherence will tend to destroy the wave interference
and to restore the resistance 〈ρ〉clas resulting from the classical
scattering-matrix approach. The resulting classical mean free
path would be twice as large as the quantum one [see Fig. 18],
i.e., it would exceed the Boltzmann mean free path in Table I
by another factor of 2.

E. Wires with strongly correlated edge roughness: �x/λF ≫ 1

The wires with rough edges have so far been discussed
for the roughness-correlation lengths �x � λF . The only
exception was the Fig. 12, where the effective number of
the open channels, N eff

c , was calculated from �x 	 λF up
to �x ≫ λF . We have seen, that the value of N eff

c approaches
for �x ≫ λF the value of Nc, which suggests that the
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FIG. 20. The same calculation and the same symbols as in
Fig. 9, except that the edge roughness is considered in the limit
�x/λF ≫ 1. Specifically, the data obtained for the wire with
impurities (left column) are the same as those in the left column
of Fig. 9, while for the edge roughness (right column) we show the
data obtained for �x/λF = 19 300 and �/λF = 0.096 (the data for
�/λF = 0.019 and �/λF = 0.96, not shown, look similar except for
statistical noise). We recall that the localization length ξ is determined
from the dependence 〈ln g〉 = −L/ξ . For the edge roughness we
now obtain ξ/ l 
 0.92Nc, which is close to the impurity case:
ξ/ l 
 0.88Nc.

diffusive dependence 〈ρ〉 = 1/N eff
c + ρdifL/W approaches

the standard form 〈ρ〉 = 1/Nc + ρdifL/W , seen in the wire
with impurities. In this subsection we focus on the limit
�x ≫ λF .

Figure 20 shows the same calculations as Fig. 9, except
that the wire with rough edges is now simulated in the limit
�x ≫ λF . Unlike Fig. 9, the results for the wire with rough
edges are now close to the results for the wire with impurity
disorder.

First, the localization length in the wire with rough edges
fulfills the relation ξ/ l 
 0.92Nc, which is close to the relation
ξ/ l 
 0.88Nc found for the impurity disorder. This is why
the resistance 〈ρ〉 and inverse conductance 1/〈g〉 in Fig. 20
show for both types of disorder the same linear slope with
L/ξ . Moreover, the same linear slope means a single linear
regime for the quasi-ballistic as well as diffusive transport,
i.e., the crossover between the quasi-ballistic and diffusive
regimes, observed for �x � λF , tends to disappear. (In Fig. 9 a
remarkably larger slope is seen for the edge roughness because
ξ/ l 
 1.4Nc.)

Second, the inverse conductance in Fig. 20 shows for both
types of disorder the linear diffusive regime for L/ξ < 1
and onset of localization for L/ξ 
 1. (In Fig. 9 the inverse
conductance of the wire with rough edges shows the onset of
localization for L/ξ 
 2.)
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FIG. 21. The same calculation and the same symbols as in Fig. 13,
except that the edge roughness is considered in the limit �x/λF ≫ 1
(we show the data for �x/λF = 19 300).

Third, the wire with rough edges now exhibits essentially
the same universal conductance fluctuations as the wire with
impurities. The size of these fluctuations is in accord with
the value

√
var(g) = 0.365, predicted for the white-noise-like

disorder. To see such conductance fluctuations for the edge
roughness is surprising: So far only the value

√
var(g) 
 0.3

has been reported.9,25,27,28

To provide insight, it is useful to look at the transmission
probabilities 〈Tn〉. Figure 21 shows the same calculation as
Fig. 13, but with the edge roughness considered in the limit
�x/λF ≫ 1. It can be seen that Fig. 21 differs from Fig. 13
in the following respect: Except for a few channels with the
lowest values of n, the wire with rough edges and the wire
with impurities show for the rest of the channels a very similar
〈Tn〉, which is clearly not the case in Fig. 13. This similarity
is responsible for the similarity of the transport results in
Fig. 20. The observed similarity could be further improved
by simulating the wires with Nc larger than 34, but this is
beyond the scope of this work.

Finally, Fig. 22 shows for �x ≫ λF what happens in
the wire with rough edges with the diffusive mean free path.
Specifically, the semiclassical Boltzmann result (solid lines) is
compared with the quantum (open circles) and classical (open
squares) scattering-matrix calculations. In the limit �x ≫ λF

all three calculations tend to give the same mean free path. This
means that the interference effects observed for �x � λF are
no longer important, or, in other words, the diffusive transport
in the wire with rough edges is semiclassical. This is again
similar to the wire with impurities.

For �x ≫ λF it is easy to show analytically that the
semiclassical Boltzmann mean free path rises with �x linearly.
The correlation functionF(q) contains the function cos(�xq).
This function oscillates with q at random and the oscillations
become very fast for �x ≫ λF . Consequently, the correlation
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FIG. 22. Diffusive mean free path l in the wire with rough edges
as a function of the roughness-correlation length �x for various
roughness amplitudes �, with l, �x, and � scaled by λF . The
wire width W is fixed to the value W/λF = 17.4, which means
that Nc = 34. The solid lines show the semiclassical mean free path
obtained from the Boltzmann conductivity [Eqs. (59) and (64)].
The dashed lines for �x/λF � 1 show the uncorrelated limit of
Eq. (84), the dashed lines for �x/λF � 1 show the correlated limit
of Eqs. (102). The circles show the quantum mean free path extracted
from the quantum resistivity ρdif (by using the procedure described in
Fig. 7). The squares show the mean free path obtained by means of the
classical scattering-matrix calculation in which the localization effect
is absent (see Sec. IV D). Note that for the Au wire (EF = 5.6 eV and
m = 9.109 × 10−31kg) we have λF = 0.52 nm, i.e., the wire width
is W = 17.4λF = 9 nm and the smallest � is only 0.01 nm. Such
small � is obviously not realistic, which demonstrates an important
finding: The semiclassical Boltzmann result (solid line) reproduces
the classical scattering-matrix calculation (squares) for any �x only
if � is too small to be realistic.

function F(q) oscillates fast around the value F(q) = 2
q2�x

. If
we ignore these fast oscillations, the diffusive mean free path
can be written as

l = 3�xW 5

kF π4�2

Nc∑
n

Nc∑
n′

knkn′(K−1)nn′ (102)

where

Knn′ = δnn′

[
Nc∑

μ �=n

n2μ2 kn

kμ

[
1

(kμ − kn)2
+ 1

(kμ + kn)2

]
+ n4

2k2
n

]

− (1 − δnn′ )n2n′2
[

1

(kn′ − kn)2
− 1

(kn′ + kn)2

]
.

(103)

It can be seen that l ∝ �x. The l ∝ �x dependence resembles
the wire with impurities, where l rises linearly with the average
distance between the impurities. Formula (102) is plotted in
Fig. 22 as a dashed line. It indeed agrees with the numerical
data for �x ≫ λF . On the other hand, the formula (84),
derived in the opposite limit, reasonably agrees with the
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numerical data for �x 	 λF , but the dependence l ∝ 1/�x

has no similarity with the impurity case.
Finally, as also pointed out in the figure caption, Fig. 22

shows that the semiclassical Boltzmann result (solid line) re-
produces the classical scattering-matrix calculation (squares)
for any �x only if � is too small to be realistic. This is
another indication that the Boltzmann equation theory of the
edge-roughness-limited transport should be used with caution,
at least in the Au nanowires.

V. SUMMARY AND CONCLUDING REMARKS

We have studied quantum transport in Q1D wires made
of a conductor of width W and length L � W . The main
purpose of our paper was to compare an impurity-free wire
with rough edges with a smooth wire with impurity disorder.
We have calculated the electron transmission through the wires
by the scattering-matrix method, and we have obtained the
Landauer conductance and resistance for a large ensemble of
macroscopically identical disordered wires.

We first studied the impurity-free wire whose edges have a
roughness correlation length comparable with the Fermi wave-
length. The mean resistance 〈ρ〉 and inverse mean conductance
1/〈g〉 have been evaluated as depending on L. For L → 0
we have found the quasi-ballistic dependence 1/〈g〉 = 〈ρ〉 =
1/Nc + ρqbL/W , where 1/Nc is the fundamental contact
resistance and ρqb is the quasi-ballistic resistivity. For larger
L we have found the crossover to the diffusive dependence
1/〈g〉 
 〈ρ〉 = 1/N eff

c + ρdifL/W , where ρdif is the resistivity
and 1/N eff

c is the effective contact resistance corresponding to
the N eff

c open channels. We have found the universal results
ρqb/ρdif 
 0.6Nc and N eff

c 
 6 for Nc � 1.
Approaching the localization regime, we have demon-

strated the following numerical finding: As L exceeds the
localization length ξ , the resistance shows onset of localiza-
tion while the conductance shows the diffusive dependence
1/〈g〉 
 1/N eff

c + ρdifL/W up to L 
 2ξ and the localization
for L > 2ξ only. On the other hand, for the impurity disorder
we have found a standard diffusive behavior, namely 1/〈g〉 

〈ρ〉 
 1/Nc + ρdifL/W for L < ξ . We have also seen that
the impurity disorder and edge roughness show the universal
conductance fluctuations of different sizes, as already reported
in previous works.9,25,27,28

We have then attempted to interpret our quantum-transport
results in terms of an approximate but microscopic an-
alytical theory. In particular, the crossover from 1/〈g〉 =
〈ρ〉 = 1/Nc + ρqbL/W to 1/〈g〉 
 〈ρ〉 = 1/N eff

c + ρdifL/W

in the wire with rough edges has been derived analytically
assuming the uncorrelated edge roughness and neglecting
the localization effects. In spite of this approximation, our
analytical results capture the main features of our numerical
results. Specifically, we have derived the universal results
ρqb/ρdif = π3

24 Nc and N eff
c 
 2.5.

We have also derived the wire conductivity from the
semiclassical Boltzmann equation, and we have compared the
semiclassical mean free path with the mean free path obtained
from the quantum resistivity ρdif . For the impurity disorder we
have found that the semiclassical and quantum mean free paths
coincide, which is a standard result. However, for the edge
roughness the semiclassical mean free path strongly differs

from the quantum one, showing that the diffusive transport in
the wire with rough edges is not semiclassical. We have found
that it becomes semiclassical only if the roughness-correlation
length is much larger than the Fermi wavelength. In such a
case the resistance and conductance tend to scale with L/ξ as
in the wire with impurity disorder, also showing the universal
conductance fluctuations of similar size.

We end with a remark about our edge roughness model.
It is the same model as in previous simulations.8–10,21–23 We
believe that most of the results obtained within the model
are model independent. For example, we have tested the
correlation function F(q) of Gaussian shape, and we have
seen that the resulting transmissions remain quite similar to
those in Figure (13). The only exception is the correlated limit
of Eq. (102), which predicts the dependence l ∝ �x. This
dependence is the artifact of our F(q) choice. For example, for
the Gaussian correlation function, the dependence l ∝ �x is
replaced by a much faster increase with �x. On the other hand,
the uncorrelated limit of Eq. (84) can be equally well derived
for the Gaussian correlation function or for the exponential
one, i.e., the result of Eq. (84) is very general.
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APPENDIX A: DERIVATION OF THE RELAXATION TIME

At zero temperature the distribution Eq. (53) reads

fn(k) = f (Enk) − eFh̄

m
kτn(Enk)δ(Enk − EF ), (A1)

and Boltzmann Eq. (55) can be written as

eFh̄

m
kδ(Enk − EF ) =

∑
n′

∑
k′

Wn,n′ (k,k′)[fn′(k′) − fn(k)].

(A2)

We set Eqs. (A1) and (56) into Eq. (A2). We obtain

kδ(Enk − EF ) =
∑
n′

∑
k′

2π

h̄
|〈n′,k′|U |n,k〉|2av

×δ(Enk − En′k′)[k′τn′(En′k′)δ(En′k′ − EF )

− kτn(Enk)δ(Enk − EF )]. (A3)

We proceed similarly to the Q2D theory.29 First, we multiply
both sides of Eq. (A3) by k and sum over k. Second, on the
left-hand side we replace

∑
k by (L/2π )

∫
dk and integrate.

Third, on the right-hand side we replace τn(Enk)δ(Enk −
EF ) by τn(EF )δ(Enk − EF ) and δ(Enk − En′k′)δ(Enk − EF )
by δ(En′k′ − EF )δ(Enk − EF ), which is justified due to the
presence of δ(Enk − EF ). We obtain the equation

mL

πh̄2 kn =
∑
n′

∑
k

∑
k′

2π

h̄
|〈n,k|U |n′,k′〉|2avδ(Enk − EF )

× δ(En′k′ − EF )[k2τn(EF ) − kk′τn′ (EF )] (A4)
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and from Eq. (A4) eventually

m

πh̄2 kn = 2π

h̄

∑
n′

Knn′τn′ (EF ), (A5)

where Knn′ is defined by Eq. (58). From Eq. (A5) we obtain
the relaxation time Eq. (57).

APPENDIX B: GOLDEN RULE FOR SCATTERING
BY IMPURITY DISORDER

If the scattering potential U is given by the impurity
potential Eq. (5), then

|〈n′,k′|U |n,k〉|2av = |〈n′,k′|
NI∑
i=1

γ δ(x − xi)δ(y − yi)|n,k〉|2av.

(B1)

Since the impurities are positioned at random, Eq. (B1) can be
readily simplified as

|〈n′,k′|U |n,k〉|2av =
NI∑
i=1

|〈n′,k′|γ δ(x − xi)δ(y − yi)|n,k〉|2av

(B2)

and the right-hand side of Eq. (B2) can be easy evaluated:

|〈n′,k′|U |n,k〉|2av = γ 2

L2
NI

[
1

NI

NI∑
i=1

χ2
n′(yi)χ

2
n (yi)

]
av

= γ 2nI

LW

[
1 − δnn′

2

]
, (B3)

where nI = NI/(WL) is the sheet impurity density. To
obtain the right-hand side of Eq. (B3), we have replaced the
term 1

NI

∑NI

i=1 χ2
n′(yi)χ2

n (yi) by integral 1
W

∫ W

0 χ2
n′(y)χ2

n (y)dy.
Setting Eq. (B3) into Eq. (58) we get expression (60).

APPENDIX C: GOLDEN RULE FOR SCATTERING
BY EDGE ROUGHNESS

Assume first that the electrons are confined in the wire by
the potential barriers of finite hight. Specifically, if the wire
edges are smooth, the electron Hamiltonian reads

H0 = − h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2

)
+ V−�(−y) + V+�(y − W ),

(C1)

where V− and V+ is the height of the potential barrier at y = 0
and y = W , respectively, and � is the Heaviside step function.
If the wire edges are rough, the Hamiltonian reads H = H0 +
U , where

U = V−[�(−d(x) − y) − �(−y)]

+V+[�(y − h(x)) − �(y − W )] (C2)

is the perturbation potential due to the edge roughness, with
d(x) and h(x) − W being the fluctuations of the edges (see
Fig. 1). Now we also assume that |d(x)| 	 W and |h(x) −
W | 	 W and we approximate Eq. (C2) as

U = −V−d(x)δ(−y) − V+[h(x) − W ]δ(y − W ). (C3)

Then

|〈n′,k′|U |n,k〉|2av

=
∑
β=±

V 2
β

L2

∣∣∣∣∣
∫ L

0
dx

∫ W

0
dyei(k−k′)xχn′ (y)χn(y)dβ (x)δβ(y)

∣∣∣∣∣
2

av

,

(C4)

where d+(x) ≡ h(x) − W , d−(x) ≡ d(x), δ+(y) ≡ δ(y − W ),
and δ−(y) ≡ δ(y). If we integrate in Eq. (C4) over the variable
y and then use the limit

lim
V−→∞

V−χ2
n (0) = lim

V+→∞
V+χ2

n (W ) = h̄2π2n2

mW 3
≡ An, (C5)

both terms in the sum on the right-hand side of Eq. (C4) can
be rewritten into the form

AnAn′

L2

∫ L

0
dx1

∫ L

0
dx2e

i(k−k′)(x1−x2)〈dβ(x1)dβ(x2)〉, (C6)

where the angle brackets 〈· · ·〉 symbolize the ensemble
averaging (instead of the symbol av) and 〈dβ(x1)dβ(x2)〉 is
the roughness-correlation function. The correlation function
depends on only the distance |x1 − x2|, so we rewrite it as

〈dβ(x1)dβ(x2)〉 = δ2
βFβ(|x1 − x2|), (C7)

where Fβ(|x1 − x2|) is the normalized correlation function and
δ+ and δ− are the root mean squares of the randomly fluctuating
functions d+(x) and d−(x), respectively. We introduce the
variable x3 = x1 − x2 and simplify Eq. (C6) as

AnAn′

L2
δ2
β

∫ L

0
dx2

∫ L−x2

−x2

dx3e
i(k−k′)x3Fβ(|x3|)


 An′An

L
δ2
β

∫ ∞

−∞
dx3e

i(k−k′)x3Fβ(|x3|). (C8)

To obtain the second line in Eq. (C8), we have replaced
the limits L − x2 and −x2 in the first line by ∞ and −∞,
respectively. Except for very small x2, such replacement is
justified because Fβ(|x3|) decays with increasing x3 to zero on
the distance (correlation length) much smaller than L.

Eq. (C4) can now be expressed as

|〈n′,k′|U |n,k〉|2av =
∑
β=±

AnAn′

L
δ2
βFβ(|k − k′|), (C9)

where

Fβ(q) =
∫ ∞

−∞
eiqx3Fβ(x3)dx3 (C10)

is the Fourier transform of Fβ(x3). Assuming the same
randomness at both edges we can put

δ± = δ, F±(x3) = F (x3), F±(q) = F(q), (C11)

i.e., we skip the indices ±. We set Eqs. (C11) into Eq. (C9)
and we replace the symbol

∑
β=± in Eq. (C9) by factor

of 2.
Finally, we set Eq. (C9) into Eq. (58). Performing a

summation over k and k′ we obtain the matrix elements Knn′

in the form of Eq. (64).
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