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Electron-phonon scattering in topological insulators
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We formulate and apply a theory of electron-phonon interactions for the surface state of a strong topological
insulator. Phonons are modeled using an isotropic elastic continuum theory with stress-free boundary conditions
and interact with the Dirac surface fermions via the deformation potential. We discuss the temperature dependence
of the quasiparticle lifetime in photoemission and of the surface resistivity.
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I. INTRODUCTION

One of the presently most active areas in physics is con-
cerned with strong topological insulator (TI) materials.1,2 In
these systems strong spin-orbit couplings cause band inversion
and a nontrivial topology of the map from momentum to
Hilbert space.3,4 In a TI, as long as time-reversal invariance
remains unbroken, an odd number of massless surface Dirac
fermion modes is guaranteed despite the presence of a bulk
gap �b. The existence of metallic two-dimensional (2D) Dirac
surface states has been convincingly established using angle-
resolved photoemission spectroscopy (ARPES) in bismuth
selenides.1,5 Typical reference materials are Bi2Te3 or Bi2Se3,
where �b � 0.3 eV allows one to observe these phenomena
even at room temperature, but other material classes have
also been predicted to possess a TI phase.1 Attempts to
observe electronic transport signatures of the surface state
were only partially successful6–8 since surface effects are
easily masked by defect-induced residual bulk charge carriers.
Anticipating progress in achieving better purity, it is important
to understand what intrinsically limits the surface conductivity
and the integrity of surface quasiparticles. Noting that the
large and anisotropic static dielectric constant [ε ≈ 50–200
(Ref. 9)] implies a drastic reduction of direct Coulomb
forces or charged impurity potentials, we here analyze con-
sequences of the electron-phonon coupling on the TI surface
state.

We focus on long-wavelength acoustic phonons which
dominate the physics at low energy scales. Previous work
on the thermoelectric properties of Bi2Te3 has demon-
strated that despite the quintuple-layer crystal structure, bulk
acoustic phonons are reasonably well described as isotropic
elastic continuum,10,11 where the two Lamé parameters of
the theory determine the longitudinal and transverse sound
velocities, cl � 2800 m/s and ct � 1600 m/s, respectively.
Low-temperature electronic transport is then limited by the de-
formation potential coupling to acoustic phonons, since piezo-
electric couplings are suppressed by inversion symmetry.11

TI experiments have so far only addressed the coupling to
optical phonons,9,12 cf. also studies for Bi surfaces.13 However,
massless 2D Dirac fermions are realized in graphene mono-
layers as well, where both theory14,15 and experiment16 have
reported consistent results for the temperature (T ) dependence
of the resistivity (ρ): for T � TBG (with the Bloch-Grüneisen
temperature TBG ≡ 2h̄kF cs/kB , Fermi momentum kF , and
sound velocity cs), a ρ ∼ T 4 scaling is found, while ρ ∼ T

for T � TBG. Note that for a 2D electron gas with parabolic

dispersion and dominant deformation potential coupling, one
expects ρ ∼ T 7 for T � TBG.17 Below, we shall discuss
in detail the ρ(T ) dependence of the TI surface state due
to coupling to acoustic phonons. In addition, phonons are
expected to cause quasiparticle decay. This implies, e.g., a
finite ARPES linewidth,18,19 where an anomalous behavior
was observed in Bi2Se3.20

In this paper, we formulate and study an analytically
tractable effective low-energy theory for the TI surface state
coupled to acoustic phonons. The phonon modes are obtained
from isotropic elastic continuum theory in a half-space
with stress-free boundary conditions.21,22 Their coupling to
the surface fermions is predominantly via the deformation
potential.23 For concrete numbers, we use published10,11,24

values for Bi2Te3. We compute the quasiparticle decay rate
� and find � ∼ T at high temperatures. This prediction
should be observable by ARPES. Phonons also affect the
surface resistivity and yield a characteristic T -dependent
contribution to ρ. Our theory is flexible enough to allow for
the use of microscopically derived phonon modes and coupling
matrix elements, e.g., resulting from (future) numerical force-
constant calculations.

II. MODEL

We consider energies below the TI bulk gap where only
surface electronic states are relevant. For the half-space z > 0,
the surface-state wave function χ (z) follows from the low-
energy band structure with Dirichlet boundary conditions at
z = 0,25

χ (z) = N (e−η−z − e−η+z), η± =
B0 ±

√
B2

0 + 4M0M1

2M1
,

(1)

with normalization N and material parameters (B0,M0,M1)
specified in Ref. 24. Since M0M1 < 0 and B0/M1 > 0, we
have Re(η±) > 0 and the state (1) decays exponentially. One
arrives at a massless 2D Dirac Hamiltonian (we set h̄ = 1),1

He =
∑

k,s=±
εksc

†
kscks , εks = svF |k| − μ, (2)

with the Fermi velocity vF � 4.36 × 105 m/s and the chemical
potential μ defining kF = |μ|/vF . A helical eigenstate with
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helicity s = ± has its spin structure tied to the surface
momentum k = (kx,ky). Helical fermions, ck = (ck+,ck−)T ,
are connected to the usual spinful operators, dk = (dk↑,dk↓)T ,
by a unitary transformation,

ck = Ukdk, Uk = 1√
2

(
eiθk/2 ie−iθk/2

eiθk/2 −ie−iθk/2

)
, (3)

where tan θk = ky/kx .
In order to describe noninteracting acoustic phonons we

employ isotropic elastic continuum theory with stress-free
boundary conditions at z = 0. We briefly summarize the re-
sulting eigenmodes21,22 before turning to the electron-phonon
coupling. Following the notation in Ref. 22 we label the
modes by the quantum numbers 	 = (q,
,λ), with surface
momentum q = (qx,qy), frequency 
 > 0, and mode type
λ ∈ (H,T ,L,R) explained below. In this nonstandard but very
convenient notation, the frequency 
 = 
	 is not specified
in terms of q and λ but represents a free parameter. With
r = (x,y) and surface area A, the displacement field operator
takes the form

U(r,z,t) =
∑
	

1√
2ρMA


u	(z)ei(q·r−
t)b	 + H.c., (4)

where b	 is a bosonic annihilation operator and ρM �
7860 kg/m3.10 The noninteracting phonon Hamiltonian is

Hp =
∑
	


	(b†	b	 + 1/2). (5)

The orthonormal eigenmodes u	(z) describe linear combina-
tions of e±ikl,t z waves, where

kl,t =
√

(
/cl,t )2 − q2. (6)

First, the horizontal shear mode, λ = H , with uH ‖ êz × êq

(where êq = q/q) decouples from all other modes and does
not generate a deformation potential; hence it is not discussed
further. The remaining modes are given by

u(z) =
(

iqφl − dφt

dz

)
êq +

(
dφl

dz
+ iqφt

)
êz,

(7)

φl,t = 1√
2π
kl,t

(al,t e
−ikl,t z + bl,t e

ikl,t z).

The incoming longitudinal mode, λ = L, with al = 1 and at =
0, exists for 
 > clq with real kl,t > 0. The eigenstate φ

(L)
l,t has

bl = −A and bt = B, where

A =
(
q2 − k2

t

)2 − 4q2klkt(
q2 − k2

t

)2 + 4q2klkt

, B = 4q
(
q2 − k2

t

)√
klkt(

q2 − k2
t

)2 + 4q2klkt

.

The incoming transverse mode, λ = T , with al = 0 and at =
1, exists for 
 > ctq. The eigenstate φ

(T )
l,t has bl = −B and

bt = −A. (For ctq < 
 < clq, we have kl = i|kl|.) Finally, the
energetically lowest solution is the Rayleigh surface wave, λ =
R, where al = at = 0 and kl,t = iκl,t q. Here the dispersion
relation is linear, 
 = cRq with surface velocity cR = ξct , i.e.,


 is not a free parameter in 	 anymore. Putting γ = (ct/cl)2,
we find

ξ =
{

8

3
− 4

√
12γ − 2

3
cos

[
1

3
cos−1

(
17 − 45γ

(12γ − 2)3/2

)]}1/2

.

With κl =
√

1 − γ ξ 2 and κt =
√

1 − ξ 2, we obtain

φ
(R)
l =

√
C

q
e−κlqz, φ

(R)
t = −

√
C

q

2iκl

1 + κ2
t

e−κt qz,

(8)

C−1 = κl − κt + (κl − κt )2

2κ2
l κt

.

Using the above values for cl,t we find ξ � 0.92, κl � 0.85,
κt � 0.39, and C � 1.20.

III. ELECTRON-PHONON COUPLING

The deformation potential couples the local electron density
to ∇ · U(r,z), with a coupling constant α. Reference 11 gives
the estimate α ≈ 35 eV. This yields the second-quantized
interaction Hamiltonian

Hep = α√
A

∑
q
λ

M
(λ)
q
 bq
λ

∑
kss ′

c
†
k+q,sXkq,ss ′cks ′ + H.c., (9)

where Uk in Eq. (3) defines the matrix

Xkq = Uk+qU
†
k . (10)

For the Rayleigh mode, the sum over 
 should be omitted with
the replacement 
 = cRq. With φ

(λ)
l specified in Eqs. (7) and

(8), we obtain the êq-independent electron-phonon coupling
matrix elements

M
(λ)
q
 = − (
/cl)2

√
2ρM


∫ ∞

0
dz |χ (z)|2φ(λ)

l (z), (11)

with the electronic surface state χ in Eq. (1). For q � Re(η−),
the overlap integral above reduces to φ

(λ)
l (z = 0). In what

follows, we discuss physical consequences obtained from the
Hamiltonian

H = He + Hp + Hep. (12)

In the concrete examples below, the chemical potential is μ =
vF kF = 0.05 eV, corresponding to the BG temperature TBG =
2kF cR/kB = 3.9 K and the Fermi temperature TF = 580 K.

IV. LIFETIME BROADENING

We begin with the self-energy �s(k,ω) for a helical
eigenstate s = ±. Following standard arguments,18,19 the main
contribution is captured to lowest nontrivial order in Hep.
Noting that the “tadpole” diagram vanishes identically, the
“rainbow” diagram18 yields independent contributions from
each mode λ,

�(λ)
s (k,ω) =

∑
s ′,ν=±

α2
∫ ∞

0
d


∫
d2q

(2π )2

∣∣M (λ)
q
Xkq,ss ′

∣∣2

×ν[nB(ν
) + nF (εk+q,s ′ )]

ω + i0+ + ν
 − εk+q,s ′
, (13)
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where nB (nF ) is the Bose (Fermi) function. For the R mode,
the q integral has to include the additional factor δ(
 − cRq),
while for λ = L,T , we have the respective constraint q <


/cl,t . The decay rate �(λ) = −2 Im �(λ) describing lifetime
broadening is then given by

�(λ)
s (k,ω) =

∑
ν=±

α2
∫ ∞

0
d
F

(λν)
ks,ω(
)

× [nB(
) + nF (
 + νω)] . (14)

Here the Eliashberg function18 is defined as

F
(λ±)
ks,ω (
) =

∑
s ′

∫
d2q
2π

∣∣M (λ)
q
Xkq,ss ′

∣∣2
δ(ω ± 
 − εk+q,s ′ ),

(15)

which represents a phonon density of states weighted by the
coupling matrix elements. Performing the angular integration
yields the result

F
(λν)
ks,ω(
) = 1

2πvF k

∫ q+

q−
q dq

∣∣M (λ)
q


∣∣2
(

q2
+ − q2

q2 − q2−

)s ′/2

,

(16)

q± =
∣∣∣∣ |μ + ω + ν
|

vF

± k

∣∣∣∣ ,
where s ′ ≡ s sgn(μ + ω + ν
).

For a discussion of the lifetime, we now consider the on-
shell case, ω = εks . For the Rayleigh mode with cR � vF , we
find s ′ = +, q+ � 2k, and q− = 0, yielding for both ν = ±
the analytical result

F
(R)
k (
) = C

2π


2
√

1 − (
/2cRk)2

ρMvF c4
l

�(2kcR − 
), (17)

with the Heaviside function �. The Eliashberg functions for
the other two phonon modes have to be computed numerically.
Together with Eq. (17), they are shown in Fig. 1. Numerically,
after a rescaling we find almost universal behavior in the sense
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FIG. 1. (Color online) Low-frequency behavior of the Eliashberg
functions F

(λ+)
k+ (
) for the three relevant acoustic phonon modes

(k = 0.1kF ). In the rescaled units used here, the functions are ap-
proximately k independent. Inset: Same for the “transport” Eliashberg
function F (see main text).
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FIG. 2. (Color online) Main panel: T dependence of the decay
rate � for k = kF and for k = 0.5kF . For k = 0.5kF , only the L

mode gives significant contributions. Inset: k dependence of � for
T = 3.9 K (solid line) and for T = 392 K (dashed line; the shown
result has to be multiplied by 10).

that the functions

(kF /k)2F
(λν)
ks (k
/kF ) (18)

are essentially independent of k. The 
 → 0 behavior is
dominated by the Rayleigh mode with F (
) ∼ 
2, but at
higher energy scales (in particular, outside the regime shown
in Fig. 1), the two other modes are much more important.

The resulting quasiparticle decay rate �k(T ) then follows
from Eq. (14) and is shown in Fig. 2. The decay rate is
dominated by the L mode except for very low energy scales,
i.e., when the particle is near the Fermi surface, k ≈ kF ,
and temperature is low, T � TBG. For high temperatures,
when kBT is higher than the maximum phonon energy,
Eq. (14) predicts a characteristic � ∼ T law, which allows one
to identify electron-phonon scattering processes in practice.
More precisely, the slope is determined by the effective
electron-phonon coupling parameter �k = 2πλkkBT , where

λk = 1

2π

∑
λ,ν=±

α2
∫ ∞

0
d


F
(λν)
k (
)



. (19)

At the Fermi surface, we find λkF
� 0.13 with the main

contribution coming from the L mode.
For k = kF and T � TBG, the decay rate is dominated by

the R mode, and we obtain

�kF
(T ) = 28ζ (3)C

π

α2c3
Rk3

F

ρMvF c4
l

(
T

TBG

)3

, (20)

with ζ (3) � 1.202.26 This T 3 law and the crossover to the
linear T dependence for T � TBG are shown in Fig. 2. We
note that away from the Fermi surface, the T = 0 decay rate
stays finite and scales as �k ∼ |k − kF |3 for k → kF .
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FIG. 3. (Color online) Temperature dependence of the phonon
contribution to the surface resistivity. Note the double-logarithmic
scales. Individual contributions of each phonon mode are also shown.

V. RESISTIVITY

Next we compute the phonon contribution to the resistivity,
ρ, using a quasiclassical Boltzmann transport theory as
employed recently for graphene,14,15

ρ = 2

e2v2
F D(μ)

1

〈τ 〉 , 〈τ 〉 =
∫

dε (−∂εnF )D(μ + ε)τ (ε)∫
dε (−∂εnF )D(μ + ε)

,

(21)

with the density of states D(E) = |E|/(2πv2
F ). This approach

is valid for |μ|〈τ 〉 � 1, which is equivalent to GQρ �
1 with the conductance quantum GQ = e2/h. Under the
Born approximation, the inverse of the energy-dependent
electron-phonon transport scattering time τ (εks) separates into
independent phonon mode contributions, 1/τ = ∑

λ 1/τ (λ),
with

1

τ (λ)(εks)
=

∑
qs ′

(1 − cos θk,q)W (λ)
k,s→k+q,s ′

1 − nF (εk+q,s ′ )

1 − nF (εks)
,

(22)

where θk,q = θk+q − θk is the angle between k and k + q.
Fermi’s golden rule yields the transition probability

W
(λ)
k,s→k+q,s ′ = 2π

A
∑
ν=±

α2
∫ ∞

0
d


∣∣M (λ)
q
Xkq,ss ′

∣∣2

× νnB(ν
) δ(εks + ν
 − εk+q,s ′ ). (23)

The result can again be expressed using a transport Eliashberg
function F (λ±)

ks (
) given by Eq. (15) with ω = εks and an
additional factor (1 − cos θk,q) in the integral. After the
angular integration, we obtain F as in Eq. (16) but with an

additional factor (q2 − q2
−)/[2k(q+ − k)] in the integrand. The

resulting functions are depicted in the inset of Fig. 1. After
some algebra, we arrive at27

1

τ (εks)
=

∑
λ,ν=±

α2
∫ ∞

0
d
F (λ,ν)

ks (
)

× νnB(ν
)
1 − nF (εks + ν
)

1 − nF (εks)
. (24)

In Fig. 3, we show the full T dependence of the phonon-
induced resistivity ρ. For T � TBG, the resistivity is domi-
nated by the 
 → 0 behavior of F(
). The latter comes from
the R mode with F ∼ 
4, which implies ρ ∼ T 5 as T → 0.
The prefactor can be evaluated exactly,

GQρ(T → 0) = 1488ζ (5)C

π

α2c3
Rk2

F

ρMv2
F c4

l

(
T

TBG

)5

, (25)

where ζ (5) � 1.037.26 We thus recover the standard BG power
law, ρ ∼ T 5, as in bulk three-dimensional metals,28 which is
here caused by the coupling to the Rayleigh surface phonon
mode. For T � TBG, on the other hand, we find a ρ ∼ T law
predominantly due to the L mode. For T ≈ TBG, all three
phonon modes are important.

VI. CONCLUSIONS

We have formulated an analytically tractable effective
low-energy theory of the surface Dirac fermion state in a
strong TI with deformation-potential coupling to acoustic
phonons. The influence of phonons could be observed as
the characteristic temperature-dependent decay rate � of
quasiparticles in ARPES, or from their T -dependent contribu-
tion to the surface resistivity. The phonon-mediated effective
interaction among surface fermions can also be attractive
at low frequencies, possibly allowing for superconducting
correlations; however, this topic as well as studies of the
electron-induced modification of phonon properties in this
system or the physics near the Dirac point (kF = 0) are left for
future work. We hope that our predictions will soon be tested
experimentally.

Note added: Recently, we became aware of an experimental
investigation of electron-phonon scattering for the topological
state of Bi2Se3.29 In particular, the order of magnitude
for the measured electron-phonon coupling strength, λ =
0.25(5), is in excellent agreement with our prediction for
Bi2Te3.
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Goldmann, and U. Höfer, Surf. Sci. Rep. 52, 219 (2004).

20S. R. Park, W. S. Jung, C. Kim, D. J. Song, C. Kim, S. Kimura, K.
D. Lee, and N. Hur, Phys. Rev. B 81, 041405(R) (2010).

21L. D. Landau and E. M. Lifshitz, Elasticity Theory (Pergamon,
New York, 1986), Chap. 24.

22Y. M. Sirenko, K. W. Kim, and M. A. Stroscio, Phys. Rev. B 56,
15770 (1997).

23For a phenomenological discussion of a different electron-phonon
coupling mechanism in the context of surface acoustic waves, see
P. Thalmeier, Phys. Rev. B 83, 125314 (2011).

24C. X. Liu, X. L. Qi, H. J. Zhang, X. Dai, Z. Fang, and S. C. Zhang,
Phys. Rev. B 82, 045122 (2010).

25H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang,
Nat. Phys. 5, 438 (2009).

26M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1971).

27Equation (24) ignores screening by the surface charge carriers them-
selves. Note that this approximation is consistent with experimental
results in graphene (Ref. 16).

28N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders
College, Philadelphia, 1976).

29R. C. Hatch, M. Bianchi, D. Guan, S. Bao, J. Mi, B. B. Iversen, L.
Nilsson, L. Hornekaer, and P. Hofmann, Phys. Rev. B 83, 241303(R)
(2011).

245322-5

http://dx.doi.org/10.1126/science.1189924
http://dx.doi.org/10.1038/nphys1762
http://dx.doi.org/10.1103/PhysRevB.81.241301
http://dx.doi.org/10.1103/PhysRevB.81.241301
http://dx.doi.org/10.1126/science.1189792
http://dx.doi.org/10.1126/science.1189792
http://dx.doi.org/10.1038/nphys1861
http://dx.doi.org/10.1002/pssb.2220840226
http://dx.doi.org/10.1002/pssb.2220840226
http://dx.doi.org/10.1103/PhysRevB.5.3171
http://dx.doi.org/10.1103/PhysRevB.5.3171
http://dx.doi.org/10.1103/PhysRevB.77.125209
http://dx.doi.org/10.1063/1.3396190
http://dx.doi.org/10.1063/1.3513826
http://dx.doi.org/10.1063/1.3513826
http://dx.doi.org/10.1016/j.progsurf.2006.03.001
http://dx.doi.org/10.1103/PhysRevB.77.115449
http://dx.doi.org/10.1103/PhysRevB.77.115449
http://dx.doi.org/10.1103/PhysRevB.82.195403
http://dx.doi.org/10.1103/PhysRevLett.105.256805
http://dx.doi.org/10.1103/PhysRevB.55.6701
http://dx.doi.org/10.1088/0953-8984/14/24/306
http://dx.doi.org/10.1088/0953-8984/14/24/306
http://dx.doi.org/10.1016/j.surfrep.2004.02.002
http://dx.doi.org/10.1103/PhysRevB.81.041405
http://dx.doi.org/10.1103/PhysRevB.56.15770
http://dx.doi.org/10.1103/PhysRevB.56.15770
http://dx.doi.org/10.1103/PhysRevB.83.125314
http://dx.doi.org/10.1103/PhysRevB.82.045122
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1103/PhysRevB.82.241303
http://dx.doi.org/10.1103/PhysRevB.82.241303

