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Magnetic field control of intersubband polaritons in narrow-gap semiconductors
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We investigate theoretically the polariton coupling between the light confined in a planar cavity and the
intersubband transitions of a two-dimensional electron gas confined in semiconductor quantum wells in the
presence of a vertical magnetic field. We show that in heterostructures made of nonparabolic semiconductors,
the polaritons do not fit a two-level problem, since the cavity photons couple to a nondegenerate ensemble of
intersubband transitions. As a consequence, the stationary polariton eigenstates become very sensitive to the
vertical magnetic field, which thus plays the role of an external parameter that controls the regime of light–matter
interactions. At intermediate field strength, we predict that the magnetopolaritons have energy dispersions ideally
suited to parametric amplification.
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I. INTRODUCTION

Intersubband (ISB) polaritons are mixed states formed by
the strong coupling of the light within a microcavity and the
intersubband transitions of electrons confined in a semicon-
ductor quantum well (QW) embedded in the cavity. Since
the first experimental demonstration in 2003 (Ref. 1) with
a GaAs/AlGaAs multiple quantum well (MQW) structure,
intense research efforts have been devoted to the study of
ISB polaritons. With this kind of polaritons, the light–matter
coupling can reach very large values2,3 becoming comparable
to (or even larger than) the bare frequency of the cavity and
of the ISB excitations. In this ultrastrong coupling regime,
interesting quantum effects appear.4–7 Moreover, since the
coupling strength is proportional to the square root of the
number of electrons, it can be controlled by electrical gating.8,9

Besides the observation of the strong coupling regime by
means of reflectance spectroscopy as in the first experiments,
and of photovoltaic measurements,10 the electrical injection of
cavity polaritons and their electroluminescence is also being
studied with considerable effort.11–14 Moreover, the coupling
of the ISB transition with a surface plasmon supported by
a metal grating has been demonstrated.15 In the effort of
reaching larger light–matter couplings toward the ultrastrong
coupling regime, other materials beside GaAs/AlGaAs have
been considered, such as, for instance, InAs/AlSb MQWs.
Also the smaller effective mass of InAs with respect to GaAs
(m∗

InAs/m∗
GaAs = 0.39) implies a stronger coupling.3 At zero

magnetic field, the polaritons can be simply and effectively
described by a two-level problem,4 where the first level is
the cavity mode with energy Ecav, and the second level is
the ISB transition with energy E21 between the first (ground)
and the second (excited) subband; the coupling is quantified
by the Rabi frequency �R , where 2h̄�R gives the splitting
of the upper and lower polariton branches at the resonance
Ecav = E21.

When a magnetic field B is applied along the QW growth
axis ẑ, neither the energies nor the strength of the ISB–cavity
coupling are altered; thus, a fortiori, the two-level description
of the polariton levels remains valid, if we still focus on

transitions between the Landau levels belonging to different
subbands. A theoretical study on the possibility of obtaining
ultrastrong magnetopolariton couplings exploiting transitions
between Landau levels in the same subband is reported in
Ref. 16. Actually, the aforementioned insensitivity to a vertical
magnetic field is exact only for parabolic-band materials.
It remains a very good approximation for GaAs-based het-
erostructures, since GaAs shows very little nonparabolicity. On
the contrary, as we show below, in narrow-gap semiconductors
such as InAs or InSb, the band nonparabolicity effects
cannot be disregarded in the calculation of the polaritonic
states.

In this work, we demonstrate that in the nonparabolic case,
the ISB polaritons cannot be simply described in terms of two
levels. Instead, the cavity photons couple to a nondegenerate
ensemble of ISB transitions, giving rise to a complex evolution
of the polariton dispersion for increasing B. We shall show
that three different coupling regimes exist as a function of
the intensity of the magnetic field. To this end, we consider a
InAs/AlSb MQW heterostructure grown along the ẑ axis. This
choice is motivated by the experimental observation of ISB
polaritons in this system,3 as well as by the significant band
nonparabolicity of InAs. Band parameters and band offsets
are taken from Ref. 17. We consider a cavity with effective
thickness Lz so that for the lowest mode kz = π/Lz holds.

The photon energy is given by Ecav = (h̄c/
√

ε∞ )
√

k2
‖ + k2

z ,

where k‖ is the in-plane k vector and ε∞ is the dielectric
constant of the material embedded in the cavity. Due to the
usual ISB selection rules, we consider only light which is TM
polarized (i.e., with a component of the electric field along the
growth axis ẑ).

II. RESULTS AND DISCUSSION

The nonparabolicity effect can be described in a QW
(Ref. 18) by an effective mass for the in-plane motion m∗

n,
depending on the subband index n. We set the QW width
to 6.6 nm and calculate that the ISB transition energy at
zero magnetic field is E0

21 = 310 meV, and the effective
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FIG. 1. Subbands of a nonparabolic material at B = 0 (not to
scale). Since the two subbands have different masses and thus
different curvatures, the transition energy depends on the in-plane
wavevector. We calculate: εF − E0

1 ≈ 27 meV and �Ec = �Ek=0 −
�EkF

≈ 11 meV (while E0
21 = 310 meV).

masses for the first and second subbands are m∗
1 = 1.68 m�6

and m∗
2 = 2.85 m�6 , where m�6 = 0.026 m0 is the InAs bulk

effective mass. For the simulation, we choose the cavity mode
coupled to nQW = 5 QWs, each with an electron density n2D =
5 × 1011 cm−2 in its first subband (n = 1; all calculations are
performed at zero temperature). At B = 0, the ensemble of
ISB transitions forms a finite-width continuum. As depicted in
Fig. 1, this is due to the fact that the two subbands have different
curvatures (since m∗

1 �= m∗
2). Therefore, the ISB transition

energy depends on the in-plane wavevector k‖, reaching its
minimum value at the Fermi wavevector k‖ = kF . The width
of the continuum is given by �Ec = πh̄2n2D(1/m∗

1 − 1/m∗
2).

With the application of a magnetic field B along the growth
axis, each subband splits into a set of discrete Landau levels
(LLs) with approximate energies

En,j (B) = E0
n +

(
j + 1

2

)
h̄eB

m∗
n

, (1)

where n is the subband index, j = 0,1, . . . is the LL index,
and E0

n is the subband edge energy at B = 0. In Eq. (1),
we have assumed that the effective mass depends mainly
on the subband index n and not on the LL index j , which
is a reasonable assumption as far as the LL separation is
much smaller than the intersubband transition energy (this
was checked for all relevant values of the B field). Note that,
here and in the following, we do not consider explicitly the
Zeeman spin splitting of the LLs, since the ISB transitions are
spin conserving.

Within the electric dipole approximation, the ISB transi-
tions verify �j = 0. The transition energy �Ej (B) = E2,j −
E1,j for electrons in the j th LL is then given by

�Ej (B) = E0
21 +

(
j + 1

2

)
h̄eB

(
1

m∗
2

− 1

m∗
1

)
. (2)

We note that in the parabolic case, since m∗
1 = m∗

2 = m∗,
we obtain as expected that �Ej (B) = E0

21 does not depend on
the magnetic field; therefore, all transitions for the different
LLs are degenerate at the same energy E0

21, and we can safely
apply the same two-level formalism as used at B = 0.

In the nonparabolic case, we have instead an ensemble of
transitions at different B-dependent energies. In particular,
since m∗

2 > m∗
1, �Ej (B) decreases with B for all j values, as
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FIG. 2. (Color online) Polariton branches at fixed in-plane vector
k‖ versus the magnetic field B for a InAs/AlSb MQW structure
embedded in a microcavity (black solid lines). Blue dotted–dashed
line: bare cavity mode energy Ecav. Red dashed lines: ISB transition
energies �Ej (B), plotted only in the B range in which the
corresponding LLs in the ground subband are not empty. For the
parameters, see text.

shown by red dashed lines in Fig. 2. The number of active ISB
transitions is given by the number of filled LLs in the ground
subband n = 1, and thus also depends on B. In Fig. 2, each
�Ej transition energy is in fact plotted versus B only in the
B range for which the En=1,j level is not empty, i.e., for B <

Bj = πh̄n2D

e
· 1

j
for j � 1 (while the j = 0 LL is always filled).

In order to have a significant coupling with more than one
ISB level, we choose a cavity geometry with a cavity mode
energy Ecav < E0

21 (blue dotted–dashed line of Fig. 2), so that
in the absence of coupling, the photon energy crosses the bare
ISB transition energies. In particular, in Fig. 2, we choose
an effective cavity thickness Lz = 1.5 μm and we set ε∞ =
12.32 for the dielectric constant of the InAs cavity. The in-
plane wavevector is fixed to k‖ = 4.99 μm−1, corresponding
to an angle of propagation inside the cavity of θ = 67.2◦ with
respect to the ẑ axis.

For the calculation of the polaritons, we note that each
allowed transition channel j is independent of the others and
occurs at a different energy �Ej (for B �= 0). We thus describe
the polariton eigenstates (for a given in-plane k‖ vector) as a
linear combination of the state |a〉 with one photon in the cavity
mode and no ISB excitations, and the set of states |bj 〉 with
one ISB excitation associated to a given LL j and no photons
in the cavity. The coupling between the |a〉 and |bj 〉 states is
then given by

�j = �̃

√
nj

n2D
, (3)

where nj is the population of the j th LL in the ground subband
(so that

∑
j nj = n2D). The frequency �̃ is calculated in a way

similar to the B = 0 case:4

h̄�̃ =
√

e2h̄2n2DnQWE0
21f21 sin2 θ

2m0ε0ε∞EcavLz

,
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where f21 is the oscillator strength, which has been defined
and calculated taking into account the nonparabolicity as
described in Ref. 19: f12 = 0.79 m0/m�6 for our parameters.
The calculated polariton branches are represented by black
solid lines in Fig. 2. Note that, for a given value of B, we have
included in the calculation only the |bj 〉 states originating from
nonempty LLs.

The system parameters have been chosen in order to achieve
a significant coupling between the cavity mode |a〉 and more
than one ISB transition level |bj 〉. This can be achieved only if
the coupling energy h̄�̃ is of the order of the typical deviation
of the ISB transition energies with respect to E0

21. In fact, if
the coupling is much larger than the energy separation between
the different ISB transitions, the latter ones behave essentially
as a single degenerate level for what concerns the coupling
with the cavity photons, and we then recover the ordinary
two-level regime (not shown). In InAs/AlSb heterostructures,
the ISB transition energy deviation is typically of the order
of 10–15 meV at B ≈ 10 T (see Fig. 2). For the parameters
used in Fig. 2, the coupling h̄�̃ is about 5 meV. We notice
moreover that the effects of the squared vector potential can
be safely neglected in our structure, since the A2 correction
is of the order (Ref. 4) of h̄2�̃2/E0

21, which is much
smaller than cavity energy Ecav (in our case h̄�̃ 
 Ecav ≈
E0

21).
From Fig. 2, it is apparent that the polariton levels

display a complex evolution as a function of the magnetic
field. We distinguish three field regions. For large B fields,
where only the j = 0 LL is filled, we recover the two-level
correspondence, valid also for parabolic materials. As B

decreases, however, more LLs start to be filled and as a
consequence, more ISB transitions couple to the light. At B =
Bj (j � 1,2, . . .) a new state appears, which, however, has a
zero coupling at this precise value of the magnetic field, since
the corresponding LL is empty. Decreasing B, its population
increases (while the populations of lower LLs decrease), so that
the coupling is spread between the levels. Finally, in the B → 0
limit, we end up with a bare cavity mode coupled to (and
placed inside) a finite-width continuum of ISB transitions. As
it is well known,20 the resulting eigenstates depend on the ratio
between the continuum width and the coupling strength. Since
in our case �Ec ≈ 2h̄�̃, two polariton states appear near each
side of the bare ISB continuum limits (see Fig. 2 and discussion
below).

From the above discussion, we see that the magnetic field
assumes the role of a real external control parameter, which
can be used to tune the regime of light–matter interactions.
To illustrate this point more clearly, we also study the
eigenvector components of the polariton eigenstates. In Fig. 3,
we show the squared modulus of the “light” part of the
polariton eigenvectors, i.e., the component of the eigenvectors
associated to the state |a〉. The magnitude of this component
displays the three different regimes mentioned above. At large
B fields, we clearly identify the two polaritons resulting
from the strong coupling between light and the j = 0 ISB
transitions. In the opposite B regime, i.e., for small B values,
we see that the light component is mainly concentrated on
the two extremal polariton branches. All other polaritons
have a significantly smaller light component, and thus this
regime resembles a two-level regime. Note, however, that all
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FIG. 3. (Color online) Squared modulus of the “light” part of the
polariton eigenvectors. Same parameters as in Fig. 2.

states have an influence on the overall coupling also in the
B → 0 limit, and therefore, they cannot be disregarded in the
calculation of the polariton coupling. Finally, there is a third
regime for intermediate values of the magnetic field: in this
case, the light is coupled with a discrete set of ISB states, and
the resulting polariton branches have a similar magnitude of
the light component.

To discuss more in detail the intermediate regime, we focus
on a magnetic field B = B2 = 5.17 T, which corresponds to
a complete filling of the j = 0 and 1 LLs. Since the two LLs
have the same population, Eq. (3) implies that the respective
states |b0〉 and |b1〉 couple to the light with the same strength
h̄�̃/

√
2. As a consequence of this and of the relative energy

position of the uncoupled levels, the three resulting polaritons
states have a similar magnitude of the light component, as it
can also be deduced from Fig. 3. The dispersion of these three
polaritons (at B = B2) as a function of the in-plane wavevector
k‖ is shown in Fig. 4; the uncoupled cavity mode frequency
and intersubband transitions are also shown with blue dotted–
dashed and red dashed lines, respectively. The vertical line
indicates the value of k‖ used in Fig. 2.

The magnetic field control of the ISB polaritons might be
observable in an optical experiment. For very strong B fields
(not discussed here), the cavity mode is energetically isolated,
well above all the ISB levels, so that any spectrum probing
the light component of the system eigenstates should reveal
a single intense peak at the bare cavity energy. Decreasing
towards the high fields of Figs. 2 and 3 (B ≈ 15 T), the
optical spectrum is expected to display instead two peaks,
characteristic of the strong ISB (j = 0)–cavity coupling.
The spectrum then evolves into three peaks of comparable
intensities when decreasing the field to B ≈ B2. More peaks
are expected to emerge when we further decrease B, if the
broadening is small enough to allow to resolve them; the
central peaks should decrease in amplitude as B is further
decreased, to the benefit of the two main lines at B = 0.

Let us finally discuss an interesting aspect of the
intermediate field region, resulting from the existence of
multiple polariton lines. In Fig. 4, for k‖ = k‖R (vertical gray
line), the cavity mode lays exactly at mid-distance from the
two j = 0 and 1 ISB transitions. Moreover, since the bare
cavity dispersion is to a good approximation a linear function
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FIG. 4. (Color online) Polariton branches as a function of the
in-plane wavevector (black solid lines) for B = B2 = 5.17 T. The blue
dotted–dashed line (red dashed lines) represent the cavity mode (j =
0 and 1 ISB transitions) in the absence of coupling. The vertical line
indicates the k‖ = k‖R value (see text) at which Fig. 2 is calculated.
Orange and green arrows: sets of entangled states in an optical
parametric oscillator phenomenon (see text). Same parameters of
Fig. 2.

of k‖ around k‖R , it can be easily shown that the resulting
polariton dispersions Em(k‖) (with m = 1, 2, 3 for the three
branches) have the following interesting “mirror” property:
they fulfill E3(k‖R + k) + E1(k‖R − k) = 2E2(k‖R), with k a
small deviation from the resonance wavevector. Two of such
sets of three-polariton states are pictured by green and orange
arrows in Fig. 4. The three polaritons of each set are thus
exactly phase matched in both energy and wavevector spaces.
Additionally, the upper and lower states have always identical
group velocities, while all three wave velocities coincide for
a particular value of detuning k = kV (orange arrows towards
the upper-branch with smaller and lower-branch with larger
wavevectors in Fig. 4). This might lead to improved nonlinear
optical response, such as in the optical parametric oscillation
phenomenon,21 which has been studied in the literature in
monolithic semiconductor microcavities exploiting exciton
polaritons22–25 and coupled microcavities.26 After pumping
on the central state, entangled photon pairs (idler and signal)
would be expected from the upper and lower branches. These
latter would propagate along well-defined directions with
respect to the pump beam, allowing an angular discrimination
of the beams at the sample outcome (see below). Moreover, the
generation would be polychromatic (even if possibly enhanced
for k = kV ) above the frequency of separation between the two
ISB bare transitions, with angular separation of colors in free
space.

Of course, the present model is valid when the typical
lifetimes of the cavity mode and of the electronic excitations
are large enough to treat the different transitions independently.
For what concerns the latter one, calculations performed
in a similar system27 show that the shortest lifetime (due
to inelastic optical-phonon scattering) is larger than 1.5 ps,
corresponding to a broadening of about 0.5 meV. The cavity
mode lifetime can be tuned by tailoring the optical cavity; in
typical experiments, the cavity mode broadening is of the same
order of the electronic excitations one.1 The different states
in the intermediate and high-field regions are thus expected
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FIG. 5. (Color online) Polariton branches for B = B2 = 5.17 T
as a function of the angle of the coupled light in the substrate. The
blue dotted–dashed lines (red dashed lines) represent the cavity mode
(j = 0 and 1 ISB transitions) in the absence of coupling. The orange
arrows connect the same states as in Fig. 4. Same parameters of
Fig. 2.

to be distinguishable in the experiments. Additionally, it is
also worth recalling that in a typical reflectance spectroscopy
measurement, photons with fixed (E,k‖) propagate in the
substrate (of index nsub) with fixed angle θ (with respect to
the layers normal) given by

sin θ = h̄c

E nsub
k‖.

In Fig. 5, we show the energy versus θ plot for the
polaritonic states around the resonance region of Fig. 4
(nsub = 3.51, as in the experiments of Ref. 3). The orange
arrows connect the same states as in Fig. 4, i.e., those for
which the central and generated polaritons have the same
group velocities. As we can see, the angle difference is small
(to ensure that they all fall in the experimental light cone)13

but sizable (slightly less than 10◦), so that all three states, even
though broadened, couple to an external mode and can thus be
in principle revealed in an experiment.

The efficiency of the aforementioned nonlinear process
relies on interpolariton interactions. In the context of exciton
polaritons, polariton–polariton couplings have been previously
studied.28–30 The corresponding scattering matrix elements
depend, however, on the peculiar properties of the exciton
components of the polaritons. The study of the scattering
processes for intersubband polaritons in the presence of
nonparabolic dispersions is, however, beyond the scope of this
work.

III. CONCLUSION

In conclusion, we have shown that for intersubband
polaritons in narrow-gap semiconductors, with a significant
nonparabolicity, the magnetic field plays a true role of an
external control parameter that allows to tune the regime of
light–matter interactions. It becomes then possible to tune the
strength of the coupling of the light with the different non-
degenerate intersubband levels. We have reported numerical
results for a InAs/AlSb system, and we have identified three
different regimes for the polariton coupling as a function of
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the intensity of the magnetic field. Finally, we have presented
a design for an optical parametric oscillator in the FIR spectral
range. The structure is based on the existence of a mirror
dispersion scheme for the magnetopolaritons, which ideally
allows fulfilling phase-matching requirements for the pump
and parametric waves.
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