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GaAs/AlxGa1−xAs heterostructure

J. Łusakowski,1,* R. Buczko,2 K.-J. Friedland,3 and R. Hey3

1Faculty of Physics, University of Warsaw, ul. Hoża 69, PL-00-681 Warsaw, Poland
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Photoluminescence (PL) measurements were carried out on a Be-acceptor δ-doped GaAs/Al0.33Ga0.67As
heterostructure at 1.6 K at magnetic fields up to 5 T. The studied PL originated from the recombination of
free electrons in a two-dimensional electron gas with holes captured on Be acceptors. The electron concentration
on the first electric subband was estimated by an analysis of the evolution of Landau levels in the magnetic
field. To find the concentration of electrons on the second electric subband we analyzed the PL intensity at zero
magnetic field and compared it with calculations based on a spherical model of a shallow acceptor. Calculations
carried out for different models of an acceptor-bound hole envelope wave function allow to discuss quantitatively
the validity of approximations often used to describe free-to-bound �6 → �8 transitions.
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I. INTRODUCTION

The population of the second electrical subband (SES) in
heterostructures and quantum wells influences many of their
physical properties, which was observed in a large variety
of experiments. To give a feeling of a diversity of studies
related to this subject, let us present the following (nonex-
haustive) list of investigations. For example, it was shown
that the population of higher subbands opens new channels of
electron-scattering mechanisms, which degrades the electron
mobility.1,2 An influence of occupation of the SES on the
thermopower was found in experiments on a high-electron-
mobility GaAs/AlGaAs heterostructure.3 Time-resolved Kerr-
rotation studies on a single GaAs/AlGaAs heterostructure4

showed a big difference in the spin dynamics of electrons
on the first and second subbands. A strong dependence on
the magnetic field (B) was observed for the effective mass of
electrons on the SES in a system of two coupled quantum
wells.5 A Fermi-energy edge singularity in the SES was
investigated by photoluminescence and photoluminescence
excitation spectroscopy in an asymmetric modulation-doped
AlGaAs/InGaAs quantum well in connection with many-body
effects in a high-density electron gas. In a GaAs/AlGaAs
heterostructure with two subbands populated, a strong devia-
tion from 1/B-periodic oscillations of the magnetization of a
two-dimensional electron gas, typically observed in systems
with only one subband occupied, were found.6 The attenuation
of the surface acoustic waves in the quantum-Hall-effect
regime was observed to be influenced by the population of the
SES.7

One of the basic questions in this kind of investigation con-
cerns the concentration of electrons on the SES. This quantity
is usually difficult to determine, in particular, in cases when
the system investigated is driven out of the thermodynamic
equilibrium or the concentration on the second subband is very
small. The present paper describes an approach to solve this
difficulty in a single GaAs/AlGaAs heterostructure δ-doped
with Be acceptors.

Before going into the details of this study, let us point out
that two-dimensional GaAs/AlGaAs single heterostructures

and quantum wells doped with Be acceptors have been widely
investigated both in the context of the basic physical properties
as well as applications. Spectroscopic studies on Be-doped
quantum wells were carried out by optical techniques to give
essential information about the symmetry and energy of accep-
tor states spatially confined by a quantum well (see, for exam-
ple, Refs. 8–12 and references therein, also a general review
on optical properties of impurities in modern nanomaterials
can be found in Ref. 13). The energy of transitions between
Be acceptor levels, or acceptor levels split by the magnetic
field, falls within mid- or far-infrared (THz) range. For this
reason, quantum structures doped with Be acceptors have been
used as basic components of mid-infrared and THz detectors.
In particular, Be-doped multiple quantum wells are broadly
used as quantum-well infrared photoconductor detectors.14–16

An electrostatic potential induced by a barrier-related quantum
confinement is a tool that is used to tune the energy and splitting
of an acceptor level and enables engineering of a detector
response.

Thus, the present paper falls within two areas of interest:
the physics of electrons on the second electrical subband
and application of Be-doped quantum structures as detectors.
The peculiarity of the system investigated in the present
work is that Be acceptors are situated far enough from
the GaAs/AlGaAs interface and thus can be considered as
embedded in a bulk GaAs crystal. For this reason, we do
not consider any quantum-confinement effect on Be acceptor
levels.

The aim of this paper is to present a scheme of analysis
allowing to evaluate the electron concentration on electrical
subbands in an optically excited heterostructure, i.e., in a
system driven to nonequilibrium conditions by a laser light.
To determine the free-electron concentration, one usually
performs Hall-effect, Shubnikov-de-Haas-effect, or plasma-
reflectivity measurements. These techniques are not reliable if
the investigated sample is subjected to a local optical excita-
tion, as it is, for instance, in the case of a photoluminescence
(PL) experiment. The reason is that the concentration of
carriers in the area where the laser spot is focused is usually
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quite different from that in the nonilluminated part of the
sample, while the methods mentioned above give only an
average value of the concentration. On the other hand, this is
the concentration in the optically excited area that is required
to analyze the experimental data. Thus, it is of great interest to
determine the electron concentration directly from the optical
experiment data. One of methods was proposed by Babiński
et al.,17 who correlated Shubnikov-de-Haas-like oscillations of
a free-to-bound luminescence intensity from a GaInAs quan-
tum well to the electron concentration on the first electrical
subband. Another approach was proposed by Kukushkin and
Timofeev18 and Hartmann et al.19 in the case of a free-to-bound
transition in a single heterostructure doped with shallow
acceptors.

In the present paper, we develop ideas presented in Refs. 18
and 19 by considering PL experiments carried out on a single
GaAs/AlGaAs heterostructure with a δ layer of Be acceptors
introduced at 30 nm from the GaAs/AlGaAs interface into
the GaAs channel. A two-dimensional gas of free electrons
(2DEG), which resides at the interface, appears due to doping
of the AlGaAs barrier with shallow donors. At liquid-helium
temperatures, which are of interest here, and in the dark, only
the first electric state of the heterostructure quantum well is
occupied. However, an optical excitation with a laser beam
during a PL experiment leads to a nonequilibrium population
of the second electric subband, which is evidenced in PL
spectra.

Although a PL originating from the recombination of
electrons on the second subband with holes in the δ layer
was always clearly observed, the Landau quantization of the
SES was not reported.18–20 The electron concentration on
the SES was determined in Ref. 19 only at strong magnetic
fields, corresponding to ν < 1. Let us note, however, that a
possible drawback of such an approach comes from a strong
localization of electrons induced by the magnetic field that
can essentially reduce the free-electron concentration. In the
present paper, we apply the idea of Ref. 19 to determine
the electron concentration on the SES (n2) by considering
the ratio of PL intensity originating from the first and the
second subbands (I1 and I2, respectively). There are, however,
important differences between the present approach and that of
Ref. 19. First, the ratio analyzed, I2/I1, is determined at zero
magnetic field (B = 0), and not at high B. Second, we use an
essentially more realistic model to describe the electron and
hole wave functions. We took explicitly into account the L = 2
part of the hole envelope part as well as the nonzero k vector of
free electrons that were neglected in previous studies.18,19 We
show that at a weak optical excitation of the heterostructure
investigated, the electron concentration on the second subband,
n2 ≈ (4 ± 1) × 109 cm−2, is really too small to allow observa-
tion of the Landau quantization. Considering a more advanced
model of the acceptor envelope wave function we were able to
show conditions when approximations resulting from a simpler
approach based on a Bohr model of a shallow acceptor are
justified.

The paper is organized as follows. The sample in-
vestigated, the experimental techniques, and the results
are presented in Sec. II. Section III describes a theo-
retical model of the electric-dipole optical transitions in-

FIG. 1. A structure of the sample investigated (not to scale). A Be
δ layer is marked by a dotted line. A semitransparent gate (top left)
and an ohmic contact (top right) are shown with hatched rectangles.
A GaAs cap on the top of AlGaAs barrier is indicated with a thick
line.

cluding a 2DEG electron and an acceptor bound hole.
The results are discussed in Sec. IV and concluded in
Sec. V.

II. EXPERIMENT AND RESULTS

The sample under investigation was a high-quality
GaAs/Al0.33Ga0.67As heterostructure grown on a semi-
insulating GaAs substrate (see Fig. 1). The GaAs channel of
about 1 μm above 50 periods of a 5-nm/5-nm GaAs/AlAs
superlattice contains unintentional acceptors at a concentration
less than 1014 cm−3. The AlGaAs barrier comprises an
undoped 45-nm-thick AlGaAs spacer and a uniformly Si-
doped 35-nm-thick AlGaAs layer; the doping level amounts
to 1018 cm−3. A δ layer of Be atoms with a concentration of
109 cm−2 was introduced into the GaAs channel at the distance
z0 = 30 nm away from the GaAs/AlGaAs interface. Based on
the growth conditions, the width of the δ layer is estimated to
be one atomic layer. The barrier of the structure was covered
with a 15-nm-thick GaAs cap layer.

The measurements were carried out in an optical helium
cryostat supplied with a split coil; the magnetic field was
perpendicular to the 2DEG layer. All measurements were
carried out at 1.60 ± 0.03 K. The luminescence was excited
by a He-Ne laser. If not stated differently, all data presented in
this paper were obtained in one experimental run at the same
excitation power of about 10 mW/cm2. The luminescence was
analyzed with a spectrometer supplied with a charge-coupled-
device (CCD) camera. A semitransparent Au gate electrode
and an ohmic contact were fabricated on the sample surface
and the concentration of the 2DEG was tuned by polarizing
the gate with a voltage source.

A scheme of the heterostructure energy band structure in
the vicinity of the GaAs/AlGaAs interface is shown in Fig. 2,
which gives also an idea about optical transitions expected
in the investigated heterostructure. To preserve a clarity of the
figure we do not indicate all possible transitions, like donor- or
acceptor-bound excitons or optical transitions in the AlGaAs
barrier.

An overall shape of the PL spectrum in a broader range of
energy is shown in the inset to Fig. 3. There are two clearly
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FIG. 2. A scheme of the band structure of the GaAs/AlGaAs
heterostructure. Dark (grey) dots mimic electrons (holes). A Be
δ layer is marked with a short vertical arrow. Some of the pos-
sible optical transitions are indicated: free-exciton recombination
(E), donor-acceptor recombination (D-A), and 2DEG electron-hole
localized on a Be acceptor in the δ layer (F-B; free-to-bound).

separated parts of the spectrum: a lower-energy part around
1.49 eV, which is related to 2DEG Be-acceptor–bound-hole
recombination (F-B transition in Fig. 2 ), and a higher-energy
one around 1.50–1.51 eV, which is related to band-to-band
transitions involving free (the arrow E in Fig. 2) and bound
excitons. Since the high-energy part of the spectrum was of no
interest in the present investigation, we did not carry out either
its detailed analysis or identification of constituent lines. In
the present paper, we concentrate only on transitions between
electrons in the 2DEG and holes bound to acceptors in the δ

layer.
A luminescence originating from recombination of free

electrons with an acceptor bound hole in the δ layer can be
masked with a broad structure of donor-acceptor transitions.
We avoided this problem by keeping the power of the laser
excitation on a very low level of a few mW/cm2. Examples
of the corresponding data are shown in Fig. 3; at such low
excitation powers, no additional features appear in spectra
when the power is changed. What is only observed is a shift

FIG. 3. PL spectrum of 2DEG Be-acceptor–bound-hole transi-
tions for the excitation power of 5 (open squares) and 10 mW/cm2

(solid line). The spectra are normalized to their maximum. Inset: PL
spectrum involving band-to-band transitions (at about 1.50–1.51 eV)
and recombination between 2D electrons and holes bound in the Be
δ layer (at about 1.49 eV).

of the line and its shrinkage with increasing excitation power,
which reflects changes in 2DEG concentration, and agrees with
previous studies.18 Another experimental proof of a negligible
role of donor-acceptor transitions is that spectra at the magnetic
field, showing a few well-resolved Landau levels, could always
be simulated with a sum of Lorenzians only, with their number
corresponding to the number of peaks in the spectrum, without
any additional background level.

Following Ref. 18, to determine the electron concentration
on the first electric subband n1 we considered a PL originated
from a radiative recombination of 2DEG with optically excited
holes captured in the δ layer and we analyzed the influence
of the magnetic field on PL spectra. In the magnetic field,
the density of states of the 2DEG is quantized into Landau
levels and a PL spectrum is composed of a number of peaks,
numbered with N = 0,1, . . ., see Fig. 4. A peak with a given
N corresponds to the recombination of electrons on the N th
Landau level with holes captured on acceptors. Since the
degeneracy of Landau levels grows with B, the number of
peaks in PL spectra decreases with increasing B. Tracing
the evolution of the spectra with the magnetic field, one can
determine the values of B at which luminescence from Landau
levels with a given N disappears. This defines the magnetic
field corresponding to the filling factor, ν = 2(N + 1), and thus
allows to estimate the concentration of the 2DEG. Typically,
one concentrates on the magnetic field Bν=2 (or Bν=4) since
this can be determined with a high precision. Knowing the
degeneracy of Landau levels and the value of Bν=2 one can
determine n1 = 2Bν=2/(h/2e), where h is the Planck constant
and e is the electron charge. Experiments show that Bν=2 can be
determined with a precision of 0.1 T, which limits the method
to electric subbands with an electron concentration higher than
about 1010 cm−2 (at which �n1 ∼ n1).

An evolution of PL spectra with the magnetic field, like
that shown in Fig. 4, was used to determine the electron

FIG. 4. Evolution of PL spectra as a function of B from 0 to
4 T every 0.4 T for n1 = 2.6 × 1011 cm−2. Dashed lines are guides
for the eye and indicate PL peaks originating from the second electric
subband (SES) and N = 0,1,2 Landau levels of the first electric
subband. A spectrum for B = 0.8 T shows also peaks corresponding
to N = 3,4,5, and 6, for B = 1.2 T peaks corresponding to N = 3
and 4, and for B = 1.6 T, a peak corresponding to N = 3.
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FIG. 5. Position of the PL peak from the second electrical
subband (open squares) and PL peaks from Landau levels of the
first subband (full squares) as a function of the magnetic field
B at n1 = 2.2 × 1011 cm−2. Solid lines: linear fit to experimental
data. Inset: experimentally determined E2 − E1 as a function of
experimentally determined n1.

concentration n1 for all gate polarizations applied, and also
to determine the energy of the bottom of the first and second
electric subbands (E1 and E2, respectively). An example of
this procedure in the case of n1 = 2.2 × 1011 cm−2 is shown in
Fig. 5. The energies E1 and E2 are determined by intersection
of linear fits (solid lines in Fig. 5) with the energy axis. Also,
one can notice that in this case Bν=4 ≈ 2.4 T. Since PL spectra
were measured each 0.2 T, the precision of estimation of n1 is
equal to about 2 × 1010 cm−2.

Figure 6 shows an evolution of the luminescence spectrum
at B = 0 as a function of n1. The spectra are normalized to the
maximum of the signal. An increase of the relative intensity
of the luminescence from the second subband is evident.

FIG. 6. Evolution of the shape of the PL spectrum at B = 0 as a
function of n1 equal to (in units of 1011 cm−2) 1.0 (thick solid line),
1.3 (diamonds), 1.6 (triangles), 2.2 (thin solid line), and 2.8 (open
squares). The sharp structure centered at about 1.493 eV is the PL
from the second subband.

FIG. 7. Deconvolution of a luminescence spectrum at B = 0
and n1 = 2.2 × 1011 cm−2 into Lorenzians. Identification of spectral
features is the same as in the Fig. 6. Inset: Experimentally determined
I2/I1 as a function of n1 (points), where I2 and I1 were calculated as
the area of the corresponding structures in spectra, like that shown in
the figure main body. Dashed line is guide to the eye.

The width of the spectra increases as n1 grows, reflecting
an increasing concentration of the 2DEG.

Each spectrum measured at B = 0 was deconvoluted to
determine signals originating from the first and the second
subband. An example is shown in Fig. 7 for n1 = 2.2 ×
1011 cm−2. The spectra were deconvoluted into Lorenzians.
The number of peaks was adapted for each spectrum separately
to reproduce precisely its shape. The signal originating from
the second subband was always described by a single peak
(thick solid line in Fig. 7). With the shape of a spectrum well
reproduced, the area of the peak corresponding to the second
subband is essentially independent of the number of peaks
used to describe the PL from the first subband. This results
from the fact that the PL from the second subband is a clearly
defined and strong feature in the spectra.

III. THE MODEL

The first task here is to calculate matrix elements of optical
transitions to determine the I2/I1 ratio observed in the experi-
ment. A detailed description of calculations is given below to
underline the essential difference of the present approach and
the simplified picture adopted previously,18,19 which neglected
both the L = 2 part of the acceptor envelope wave function and
the in-plane electron wave vector. Application of this model
in the case of a nonzero magnetic field and the first subband,
was described in Ref. 20. Here, the calculations are carried out
for zero magnetic field and both the first and second electric
subbands.

Let us denote the electron envelope wave function in
the nth subband as cn(z) exp(ikρ), where n = 1 and 2.
Functions cn(z) result from self-consistent calculations of the
electrostatic potential (a temperature of 1.6 K was assumed in
these calculations). The z axis is perpendicular to the 2DEG
plane; z = 0 corresponds to the position of the GaAs/AlGaAs
interface. Vectors k and ρ are, respectively, the electron
wave vector and position in the xy plane where the 2DEG
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resides. The periodic part of the electron wave function,
uj= 1

2 ,jz
= |R0,

1
2 ,j = 1

2 ,jz〉, corresponds to the total angular

momentum equal to j = 1
2 , and it is composed of s-like

functions (denoted as R0) and 1
2 spinors. Thus, the electron

functions are 〈r|n,k,jz〉 = cn(z) exp(ikρ)〈r|R0,
1
2 , 1

2 ,jz〉.
Since a spatial extension of a Be-acceptor wave function

is much smaller than the distance of the acceptor δ layer to
the GaAs/AlGaAs interface, we can consider an acceptor as
embedded in a bulk GaAs. Then, the hole wave function is
described within the spherical model of the acceptor25 as〈

r
∣∣ 3

2 ,Fz

〉 = f0(r)
〈
r
∣∣L = 0,J = 3

2 ,F = 3
2 ,Fz

〉
+f2(r)

〈
r
∣∣L = 2,J = 3

2 ,F = 3
2 ,Fz

〉
,

where f0(r) and f2(r) are radial functions, which are expressed
as a sum of exponents, and are numerically calculated.25 The
functions |L,J = 3

2 ,F = 3
2 ,Fz〉 are superpositions of spherical

harmonics YLM (|M| � L) and p-type periodic functions
uJ= 3

2 ,Jz
= |R1,

1
2 ,J = 3

2 ,Jz〉. The latter functions are, in turn,

built with sp3 orbitals R1 and the spin 1
2 . We choose the basis:

uJ= 3
2 , 3

2
= − 1√

2
(X + iY )α,

uJ= 3
2 , 1

2
= − 1√

6
[(X + iY )β − 2Zα],

uJ= 3
2 ,− 1

2
= 1√

6
[(X − iY )α + 2Zβ],

uJ= 3
2 ,− 3

2
= 1√

2
(X − iY )β,

where X, Y , and Z are functions transforming as x, y, and z

under operations of the Td symmetry group, respectively.
At B = 0, the luminescence can be considered as composed

of an equal number of photons of both circular polarizations.
For this reason, we calculate matrix elements of optical tran-
sitions corresponding to the operator p̂1,±1 = ∓(p̂x ± ip̂y),
where p̂x and p̂y are components of the momentum operator.
The interband matrix element of the operator p̂1,±1 in the �

point is〈
R0,

1

2
,
1

2
,jz

∣∣∣∣p̂1,±1

∣∣∣∣R1,
1

2
,
3

2
,Jz

〉

= −
√

3

2
C

1
2 ,jz

3
2 ,Jz,1,±1

{
1 1

2
3
2

1
2 1 0

}
〈R0‖p̂1‖R1〉 = C

1
2 ,jz

3
2 ,Jz,1,±1

p,

(1)

where C is the Clebsch-Gordan coefficient and p is a constant.
Let us consider the following matrix elements:

〈n,k,jz|p̂1,±1

∣∣∣∣3

2
,Fz

〉
=

∑
L=0,2

〈n,k,jz|p̂1,±1fL

∣∣∣∣L,
3

2
,
3

2
,Fz

〉

=
∑

L=0,2

L∑
M=−L

C
3
2 ,Fz

L,M, 3
2 ,Jz=Fz−M

×
〈
R0,

1

2
,
1

2
,jz

∣∣∣∣p̂1,±1

∣∣∣∣R1,
1

2
,
3

2
,Jz

= Fz − M

〉 ∫
c∗
n(z0 + z) exp(−ikρ)

×fL(r)YLM (ϑ,ϕ)d3r

=
∑

L=0,2

L∑
M=−L

C
3
2 ,Fz

L,M, 3
2 ,Fz−M

C
1
2 ,jz

3
2 ,Fz−M,1,±1

p

×
∫

c∗
n(z0 + z) exp(−ikρ)

×fL(r)YLM (ϑ,ϕ)d3r. (2)

The integrals are calculated in a coordinate system centered
on the acceptor at the distance z0 = 30 nm from the interface,
which explains the new z argument of c∗(z0 + z) in the
integrand.

Due to the cylindrical symmetry of our problem, calcula-
tions of matrix elements are easier to carry out with electron
envelope functions of the cylindrical symmetry. Let φ be the
angle determined by the direction of the k vector in the xy
plane. It is convenient to use the following superpositions of
states |n,k,jz〉: |n,k,m,jz〉 = 1√

2π

∫
eimφ|n,k,jz〉dφ. It shows

a cylindrical symmetry with mh̄ and jzh̄ being the angular mo-
mentum projections on the z axis of envelope and Bloch parts
of wave function, respectively. The total angular-momentum
projection is equal to (m + jz)h̄.

Finally, the matrix elements of 〈n,k,m,jz|p̂1,±1| 3
2 ,Fz〉

can be calculated using Eq. (2) and the integral value
1√
2π

∫
e−imφe−ikρ cos(φ−ϕ)dφ = √

2πe−imϕJm(kρ), where ϕ

defines the direction of the vector ρ. Using the identity

YLM (ϑ,ϕ) = ε

√
(2L+1)(L−|M|)!

4π(L+|M|)! P M
L (cos ϑ)eiMϕ [ε = (−1)M for

M > 0 and ε = 1 for M � 0] we get

〈n,k,m,jz|p̂1,±1

∣∣∣∣3

2
,Fz

〉
= p

∑
L=0,2

C
3
2 ,Fz

L,m, 3
2 ,Fz−m

C
1
2 ,jz

3
2 ,Fz−m,1,±1

ε

×
√

(2L + 1)(L − |m|)!
4π (L + |m|)! (2π )

3
2

×
∫

c∗
n(z0 + r cos ϑ)P m

L (cos ϑ)Jm

×(kr sin ϑ)fL(r)drd cos ϑ. (3)

IV. RESULTS AND DISCUSSION

Based on the above considerations one can analyze quan-
titatively the transitions considered. Let us first turn the
attention to the selection rules. Nonzero matrix elements are for
m = Fz ± 1 − jz, provided |m| � 2. The allowed transitions
are shown in Fig. 8(b) and are compared to the case when the
acceptor envelope function is described with the L = 0 part
only in Fig. 8(a). In Fig. 8, the hole states are described by
Fz (which is equal to Jz in the case L = 0), and the electron
states by jz. For readers’ convenience, in the case of L = 0,2
we indicated also the Jz components of each hole state with a
given Fz. We stress that the selection rules shown in Fig. 8 are
given for the B = 0 case and splitting of levels is introduced
only to show levels of different quantum numbers.21

We assume that the electron concentration on the first
and second subbands is equal to n1 and n2, respectively.
The value of n1 was experimentally determined with the
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(a) (b)

FIG. 8. Selection rules for the �6 → �8 free-to-bound transition.
Solid lines show σ− polarization and dashed lines σ+ polarization.
An acceptor-bound-hole envelope wave function is composed of
(a) the L = 0 part only or of (b) both the L = 0 and L = 2 parts.
The figure is plotted for the B = 0 case; levels are split for clarity
only.

procedure described in Sec. I. The intensity I1 was numerically
calculated as∫ kF

0

∑
m,jz,Fz,μ

∣∣∣∣
〈
n1,k,m,jz|p̂1,μ

∣∣∣∣3

2
,Fz

〉∣∣∣∣
2

dk, (4)

where the matrix elements are given by Eq. (3) with a
corresponding envelope c1(z) and the Fermi wave number
kF = √

2πn1. Since the concentration n2 is not known, the
intensity I2 was calculated with an appropriate envelope c2(z)
as a function of the maximum wave number kmax = √

2πn2.
We assume here that electrons in the second subband occupy
all states with 0 < k < kmax; this assumption will be discussed
below. The task now is to choose the correct value of kmax.
This problem was solved graphically with the help of Fig. 9.
In this figure, I2/I1 is simultaneously plotted as a function of
kF (n1) (experimental points) and as a function of kmax (solid
lines) at four values of n1. The correct value of kmax at a
given n1 is found by “putting” an experimentally measured
(more precisely, extrapolated) value on an appropriate curve,
which is represented with horizontal arrows. This value of
kmax is used next to calculate n2. One can notice that the
value of n2 is essentially independent of n1 and equal to
about (4 ± 1) × 109 cm−2 (with kmax = 1.5 × 10−4 Å−1). The
assumption of occupation of all states in the second subband
up to kmax implies that the intersubband relaxation is much
faster than processes that reduce n2. In fact, we checked in
time-resolved measurements that the decay time of PL from the
second subband is equal to about 200 ns while the intersubband
relaxation due to the emission of phonons is expected to occur
on a ps time scale. In such conditions, the occupation of the
second subband is determined mainly by the optical excitation
power (which was kept constant during all the experiments)
and is not related to the population of the first subband.

Let us explain the error of the estimation of n2. We
assume that the numerical procedures applied give exact
results for the I2/I1 ratio within the theoretical models used.
The wave vector kF is determined with the precision of

FIG. 9. Calculated (lines) and measured (points) ratio I2/I1 as
a function of the wave number. Solid lines: I2/I1 as a function of
kmax at n1 equal to (left to right) 2.8, 2.4, 1.9, and 0.9 (in units of
1011 cm−2). Points: experimental values of I2/I1 plotted as a function
of kF (n1). Dashed line is a polynomial fit. Vertical arrows show the kF

corresponding to a given n1. Horizontal arrows indicate the position
of an experimentally determined value on a calculated curve.

�kF = √
2π/n1�n1, which changes between 5 × 10−4 and

8 × 10−4 Å−1 with �n1 = 1010 cm−2. The uncertainty of kF

related to the scatter of I2/I1 points in Fig. 9 can be estimated
to be 5 × 10−4 Å−1, which gives a total uncertainty of kF of
about 10−3 Å−1. As one can notice in Fig. 9, the corresponding
uncertainty of kmax is smaller due to a steep I2/I1 dependence
on kmax—we estimate it to be 2 × 10−4 Å−1, which finally
gives �n2 = 109 cm−2.

The model developed in Sec. III allowed us to calculate
matrix elements of all the transitions indicated in Fig. 8 as a
function of the electron wave vector, but a detailed analysis
of this large amount of data is beyond the scope of the
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I 1
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FIG. 10. Intensity I2 calculated within the spherical L = 0 and 2
model (solid lines) and the Bohr model (dashed lines) of the acceptor
envelope function. The three pairs of curves are for n1 = 0.9, 1.9,
and 2.8 (in units of 1011 cm−2, bottom to top). Inset: intensity I1 as
a function of concentration n1 for the L = 0 and 2 model (squares)
and the Bohr model (dots). Dashed lines are guide to the eye.
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FIG. 11. Electron density corresponding to the envelope func-
tions of the first (solid lines) and second (dashed lines) subbands for
n1 = 0.9 × 1011 (thin lines) and 2.8 × 1011 cm−2 (thick lines). The
arrow shows the position of the δ-acceptor layer at 30 nm from the
GaAs/AlGaAs interface. Inset: I2/I1 calculated within the L = 0 and
2 model (solid lines) and the Bohr model (dashed lines) for n1 = 0.9,
1.9, and 2.8 (in units of 1011 cm−2, bottom to top).

present paper. We would like to mention only one remarkable
feature resulting from taking into account the L = 2 part
of the acceptor wave function that concerns the intensity of
transitions. Let us consider the σ− transitions indicated in
Fig. 8(a) for the L = 0 case. Due to the symmetry imposed
by the L = 0 approximation, the intensity of 1/2 → 3/2
is three times larger than that of −1/2 → 1/2 (the same
is true for −1/2 → −3/2 and 1/2 → −1/2 transitions for
σ+ polarization). We have found that within the L = 0 and
2 approximation, the relative intensity of these transitions
strongly depends on the electron concentration and decreases
to about 1.6 at n1 = 2.8 × 1011 cm−2.26

It appears, however, that the total intensities I1 and I2

depend relatively weakly on the acceptor-wave-function model
assumed. To show this, we compare in Fig. 10 the intensities
calculated within the L = 0 and 2 spherical model and the Bohr
model of the acceptor. In the latter case, the acceptor envelope
wave function was assumed to be (πa3

B)−1/2 exp(−r/aB),
with the Bohr radius aB = 20 Å, which corresponds to
the ionization energy of a Be acceptor in GaAs.12,22,23 The

intensities shown in Fig. 10 calculated within the L = 0 and
2 model are equal to about 85% of the corresponding values
obtained for the Bohr model. Since this value is approximately
independent of the concentrations n1 and n2, the ratio I2/I1 is
approximately the same within the two models, as it is shown
in the inset to Fig. 11.

The dependence of the intensity on the band population
can be understood with the help of Fig. 11, which shows the
distribution of the electron density related to the envelope wave
functions in the first and second subbands. An increase of the
concentration in the first subband is related to a sharpening
of the shape of a triangle heterostructure quantum well and a
corresponding narrowing of the electron-density distribution.
Then, for the first subband, an overlap of the electron and hole
envelope wave functions decreases, which results in a decrease
of I1 with n1. In the case of the second subband, the increase
of the concentration is related to a shift of the maximum of the
electron distribution toward the acceptor position, which gives
an increase of I2 with n1.

V. CONCLUSIONS

We carried out PL measurement on an acceptor-δ-doped
GaAs/AlGaAs heterostructure at 1.6 K as a function of the
2DEG concentration. The intensities of optical transitions in-
volving electrons on the first and second electric subbands and
holes localized in δ-layer acceptors were calculated and their
ratio was compared with experimentally determined values.
The calculations involved self-consistent calculations of the
electron wave functions and calculations of the acceptor wave
function within the spherical model by taking into account
both L = 0 and L = 2 parts of the envelope function. Results
of the calculations were compared with experimental data,
which allowed to determine the concentration of photoexcited
electrons on the second electron subband. In this way, we
propose an all-optical method to determine a nonequilibrium
concentration of optically excited electrons on the second
electron subband. We compared also results of the calculations
within the L = 0 and 2 model with calculations based on
a Bohr model of the acceptor wave function with the Bohr
radius equal to 20 Å. We showed that the results are only
weakly sensitive to the model of the wave function assumed,
in spite of an important difference in the scheme of selection
rules valid for these two cases.
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