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Domain wall propagation in ferromagnetic semiconductors: Beyond the one-dimensional model
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We have investigated experimentally the field-driven propagation of domain walls (DWs) in perpendicularly
magnetized ferromagnetic semiconductor layers. The results were then compared with the historical one-
dimensional (1D) DW propagation model widely used in spintronics studies of magnetic nanostructures.
Anomalous velocity peaks, not predicted by the 1D model, were observed experimentally. Using micromagnetic
simulations we show indeed that, in the particular regime of layer thickness (h) of the order of the exchange
length, velocity peaks appear in the precessional regime, their shape and position shifting with h. Analyses of the
simulations show a distinct correlation between the curvature of the DW and the twist of the magnetization vector
within it and the velocity peak. Associating a phenomenological description of this twist with a four-coordinate
DW propagation model, we show that the velocity peaks result from the torque exerted by the stray field created
by the domains on the twisted magnetization. The position of the peaks is well predicted from the DW’s first
flexural mode frequency and depends strongly on the layer thickness. Comparison of the proposed model with
data obtained on GaMnAs and GaMnAsP shows that the anomalies observed close to Walker breakdown are
indeed induced by the flexion resonance of the domain wall.
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I. INTRODUCTION

The 1970s saw the establishment of the main theories
describing magnetic domain wall (DW) propagation, among
which is the so-called one-dimensional (1D) model.1–5 These
studies fueled the intense efforts toward the building of
magnetic bubble memories. They have recently come back into
fashion, with new schemes being proposed to use domains or
DWs as the building blocks of a nonvolatile and downscalable
memory.6–8 Described in different formalisms,1–5 the 1D
model assumes that the DW propagation can be fully described
by two time-dependent variables: the position q0(t) of the
DW and the azimuthal angle φ0(t) of the magnetization
unit vector �m inside the DW. For a defect-free sample, the
velocity versus field curve v(H) is then shown to consist of
a high-mobility regime where the configuration of �m within
the DW is stationary [φ0(t) constant] up to the Walker field
HW , followed by a negative-mobility regime and then again a
linear, lower-mobility regime, where �m precesses around the
applied field.

While these two regimes have indeed been evidenced
experimentally,9–11 one or two unexpected kinks have repeat-
edly been observed in a variety of configurations: in-plane
magnetized Permalloy,12,13 out-of-plane magnetized garnets,14

as well as out-of-plane magnetized ferromagnetic semicon-
ductor GaMnAs.10 It has also been observed in field-assisted
current-induced propagation.15 The present paper aims to
address this issue, all the more crucial as the 1D model
is now routinely used as a guideline for a vast number of
studies on current-induced DW propagation.16–18 Whereas
differences with the 1D model in the stationary regime were
attributed quite early on to the nucleation/annihilation of
Bloch lines,19 those in the precessional regimes have been
considered only by the numerical simulations of Patterson
et al.20 (perpendicularly magnetized layer), who did not isolate

the physical mechanism(s) for these kinks. A very recent paper
has investigated this phenomenon in in-plane magnetized
layers.13

In the following section of this paper (Sec. II), we
present experimental v(H) curves obtained on perpendicularly
magnetized GaMnAs and GaMnAsP thin films of varying
thickness, magnetization, magnetic anisotropy, and exchange
constant. Ferromagnetic semiconductors offer weak pinning
which conveniently allows all DW propagation regimes to be
observed.10 Their magnetic parameters can easily be tuned by
careful doping21–23 or by varying the temperature. The layer
thickness can also be varied across the exchange length. In
both of these materials we obtained an unusual velocity versus
field behavior, which we then investigated numerically. In
Sec. III, we present simulated v(H) curves for perpendicularly
magnetized ferromagnetic layers of increasing thickness (h =
10–40 nm) obtained with an open source micromagnetic
simulation software24 in the (2D) two dimensional limit. In
Sec. IV, we analyze extensively the three-component magnetic
configuration within the DWs and relate it to the position of
the v(H) peaks in Sec. V. In particular, we give evidence on the
role of the flexion of the DW and the twist of its magnetization
vector in increasing the DW velocity above the 1D model
value for certain fields. Those particular fields are found to
correspond to the first flexural mode resonance of the DW.
Section VI compares these findings with the experimental data
and discusses how they can relate to DW propagation in other
geometries.

II. EXPERIMENTAL RESULTS

Figure 1 summarizes the experimental results obtained on
out-of-plane magnetized GaMnAs and GaMnAsP layers. In all
these measurements, the DW velocity was determined using
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magneto-optical imaging and a magnetic field pulse technique
fully described in Ref. 10. Figure 1(a) shows the v(H) curve at
20, 50, and 80 K for a 50-nm-thick Ga0.93Mn0.08As0.915P0.085

layer grown over GaAs. Figure 1(b),1(c), and 1(d) show data
for three Ga0.93Mn0.07As samples grown on an InyGa1−yAs
pseudo-substrate: h = 50 nm at temperatures 4–90 K (y =
10%, previously published in Ref. 10), h = 20 nm (y = 15%,
T = 40 K) and h = 40 nm (y = 15%, T = 60 K). After
annealing, these last two layers have Curie temperatures
of, respectively, 118 K and 136 K. The micromagnetic
parameters of both h = 50 nm layers were determined using
Kerr microscopy as detailed in Ref. 21 (where they are referred
to as samples B and D). The main differences between these
two samples are a higher uniaxial anisotropy in GaMnAs and
a higher exchange constant and saturation magnetization in
GaMnAsP.

All the v(H) curves roughly follow the 1D model: They
exhibit a high mobility up to the Walker field (5–7 mT),
followed at high fields by a lower mobility in the precessional
regime. However, they also evidence anomalies with respect
to the 1D model curve in two regions broadly indicated by
polygons in Fig. 1. At low fields in the precessional regime
(region 1), the velocity is almost constant instead of decreasing,
as expected from the 1D model. At low temperatures, the
h = 50 nm GaMnAs and GaMnAsP curves all show a plateau
in velocity which is progressively pushed downward toward
the Walker peak as the temperature is increased. At T
=80–90 K, a negative-mobility region is eventually obtained.
The h = 40 nm curve shows a broad kink around Walker
breakdown (μ0HW ≈ 5 mT), while the h = 20 nm curve
exhibits distinctly Walker breakdown (μ0HW = 14 mT), a
narrow negative mobility region before a kink at 23 mT. At
higher fields (region 2), kinks of varying amplitude appear.

FIG. 1. (Color online) Experimental velocity versus field data
(curves shifted for clarity where needed). The polygons indicate
the velocity anomaly regions, labeled 1 (low field) and 2 (high
field). The arrows point to the H = 0 resonance fields of the
DW flexural modes determined numerically (see Section VI).
(a) Ga0.93Mn0.08As0.0915P0.085, h = 50 nm. (b) Ga0.93Mn0.07As, h =
50 nm (reproduced from Ref. 10). (c) Ga0.93Mn0.07As, h = 20 nm.
(T = 40 K), (d) h = 40 nm (T = 60 K).

In the GaMnAs data [Figs. 1(b)–1(d)], the h = 50 nm curves
show a weakly temperature-dependent kink at around 100–
110 mT, the h = 40 nm a split kink centered around 100 mT,
and the h = 20 nm once again a broad split kink centered
around 105 mT. The GaMnAsP curve [Fig. 1(a)] also exhibits
a very broad bump appearing in region 2: around 50 mT at
T = 20, 50 K, and 34 mT at T = 80 K. To summarize, all sam-
ples exhibit a broad, high-field kink (region 2) whose position
varies weakly with the layer’s thickness and magnetization
(temperature), and a low-field feature (region 1) that shifts
downward with temperature and thickness.

III. SIMULATIONS

A. Geometry and results

To identify the physical origins of these peaks, numerical
simulations were performed varying only one parameter in
the first place: the thickness of the layer. The film was taken
as infinite in the x direction, as shown in Fig. 2(a). The DW
propagates along the y direction. The normal to the film is
denoted z. The simulation was laid out on a 2D mesh with cell
dimensions c2, and a strip of length25 d = 1 μm. The FastPipe
magnetostatic calculation procedure was used. The thicknesses
investigated were h = 10 nm (c = 1 nm), and h = 20, 30,
40 nm (c = 2 nm). The applied field H = Hz was constant
and perpendicular to the plane of the layer, and micromag-
netic parameters typical of GaMnAs at T = 80 K10,26 were
used: magnetization M = 33 kA m−1, uniaxial anisotropy
coefficient Ku = 8878 J m−3 and field μ0Hu = 2Ku/M , and
exchange constant A = 5.10−14 J m−1. The resulting exchange
length was � =

√
2A/μ0M2 = 8.6 nm, i.e., of the order

of h. Given the high value of the factor Q = 2Ku

μ0M2 > 3 in
our layers, the complex in-plane anisotropy of GaMnAs was

FIG. 2. (Color online) (a) Geometry of the simulation, side view
of the layer. The DW propagates toward the left; its mean position
along y is given by q0(t) (not to scale). (b) DW propagation evidencing
curvature, shown here for h = 80 nm to highlight the effect. (c) DW
free oscillation (Hz = 0), after initializing the simulation from either
of the top two positions. Magnetic parameters used for the simulations
are indicated in the text.
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ignored. Its influence will be discussed later. The damping
coefficient was taken as α = 0.3. This rather large damping
coefficient was determined self-consistently using DW dy-
namics measurements10 and is about an order of magnitude
higher than that found by ferromagnetic resonance27 (FMR).
As explained in greater details in Ref. 10, this discrepancy
was already encountered in garnets, and mainly stems from
the fact that dissipation phenomena largely differ for a moving
DW (the present study and Ref. 10) or a uniform magnetization
(FMR studies).

The magnetization orientation vector �m is three dimen-
sional (3D), but laid out on a 2D mesh. It was defined in
Cartesian (mx , my , mz)(y,z) coordinates. Within the domain
wall, we used the standard (q, θ,ψ)(z,t) coordinates [Fig. 2(a)],
where q(z,t) denotes the position of the DW along the
propagation direction, θ is the polar angle of the magnetization
in the DW with respect to the film normal, and ψ is the
azimuthal angle with respect to the x axis. Averaging over z

yields the usual coordinates (q0,�,φ)(t) with the well-known
relationship �̇ = − q̇0

�
sin �, where the dot denotes the time

derivative5 and � = √
A/K is the static DW width. From

the simulations, the instantaneous velocity vinst = d
2

∂〈mz〉
∂t

was
averaged over many periods, and the resulting v(H) curves are
shown in Fig. 3. For comparison, the baseline of the curves
was fitted to the 1D model velocity (keeping α fixed to 0.3,
and varying μ0HW and �), using the (q0,φ0)(t) solutions to
the Landau–Lifshitz–Gilbert (LLG) equation1 for H > HW :

q̇0(t) = γ�μ0M

2(1 + α2)
sin 2φ0 + αγ�

1 + α2
μ0H, (1)

φ0(t) = arctan

⎡
⎣HW

H
+

√
1 −

[
HW

H

]2

tan

(
2πt

T

)⎤
⎦ . (2)

In these expressions, HW = αM/2 is the Walker field
for a film of infinite thickness and T = 1+α2

μ0γ
2π√

H 2−H 2
W

is the

precession period [time for φ0(t) to span 360◦]. The average
DW velocity then reads v(H) = 1

T

∫ T

t=0 q̇0(t)dt .
The simulations were performed up to 300 mT (400 mT

for h = 10 nm), but only the first part of the curve is
shown in Fig. 3 as the mobility remains identical for higher
fields. Although the simulations do not fully reproduce the
experimental data, some also evidence strong variations to the
1D model close to the Walker peak. For h = 10 nm [Fig. 3(a)],
the numerical simulations reproduce the standard 1D model
curve. A high mobility is observed up to the Walker field,
then a narrow negative-mobility region-followed by a positive
lower-mobility regime. The DW velocity reaches over 30 m s−1

at μ0H = 250 mT. No kinks were observed in the 0–400 mT
range. The h = 20–40 nm curves evidence a similar behavior
up to Walker breakdown, but distinctive kinks appear above: at
≈70 mT for h = 20 nm, ≈37 mT for h = 30 nm, and at 25 and
35 mT for h = 40 nm. The shape of the kinks also evolves with
layer thickness, becoming sharper with increasing h, and even
splitting in two for the thickest h = 40 nm. Walker breakdown
occurs at a low field (μ0HW = 3 mT, velocity VW = 4 ms−1)
for the thinnest layer, and then gradually converges to the
infinite thickness film value μ0HW = 6 mT for h = 40 nm.
In parallel, � decreases slightly with thickness (from 2.6 to

(a)

(b)

(c)

(d)

FIG. 3. (Color online) Simulated velocity versus field (squares):
(a) h = 10 nm, (b) h = 20 nm, (c) h = 30 nm, and (d) h = 40 nm.
In (a), (b) and (d), the solid line is a fit to the 1D model, and the stars
are the maximum DW elongation η0. In (c) the open circles are the
twist amplitude S0 and its Lorentzian fit (solid line). Extrema values
of the twist are 8◦ and 108◦.

2.3 nm), reflecting the change of demagnetizing factors of the
DW with layer thickness, which in turn modifies the values of
HW and �.28 The precession frequency of the magnetization
fprec obtained as the inverse of the period of mx(t) was found
identical for all thicknesses and linear with the applied field.
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B. Image analysis

The time-dependent magnetization structures [of the type
in Figs. 2(b) and 2(c)] were then treated numerically to
extract for every 100 iterations the DW width � and the
depth-dependent DW position q(z,t) and ψ(z,t) angle (the
latter averaged over 2� along y). The z-averaged angle φ(t)
is given by 1

Ni

∑Ni

1 ψi(z,t) with Ni the number of cells across
the thickness. Plotting simultaneously vinst (t) and φ(t) for
H > HW over one precession period shows the main features
of the precessional regime [Fig. 4(a)]: �m precesses around
the applied field, inducing a demagnetizing field across the
wall. This sinusoidal field produces a torque on �m, leading
to an alternating forward or backward motion of the DW.
The applied field term in Eq. (1) ensures that the total
wall displacement over one period is strictly positive. As
expected from the 1D expression for φ0(t) [Eqs. (1), (2)], the
instantaneous velocity is then maximum for φ = 45◦ (modulo
180◦) and minimum for  = 135◦ [180◦], corresponding to
the extrema of the demagnetizing torque [arrows in Fig. 4(a)].

Meanwhile, the DW length is not constant but undergoes
a T -periodic elongation which shows up as a time-dependent
flexion in Figs. 2(b) and 4(b). To quantify this flexion, we
define the elongation of the DW as η(t) = [l(t) − h]/h where

(a)

(b)

FIG. 4. (Color online) Dynamics over one precession period
under μ0H = 70 mT for the sample h = 20 nm. (a) Instantaneous
velocity (open squares) and mean φ(t) (full squares) over one
precession period. Arrows indicate maximum (minimum) velocities
for the canting angle close to 45◦ (modulo 180◦) [135◦ (modulo
180◦)]. (b) DW elongation (η, solid line) and DW twist (S, line with
diamonds).

l(t) is the curvilinear integral of q(z,t). The simulations show
that the DW goes from no elongation (l = h, η = 0) to the
maximum (η0, stars in Fig. 3) while φ(t) varies from 0 to 360◦.
Careful analysis shows that the curvature is always of an n = 1
mode type (following the numbering of Slonczewski29), i.e.,
odd about the layer’s midheight. For all layers, η0(H) reaches
a maximum at a resonance field Hres which decreases with in-
creasing layer thickness. This maximum elongation increases
with h: η0 = 1.53% for h = 10 nm (μ0Hres = 300 mT),
2.3% for h = 20 nm (μ0Hres = 70 mT), 3.7% for h = 30 nm
(μ0Hres = 35 mT) and 4.8% for h = 40 nm (μ0Hres = 25 mT).
Far from Hres, the flexion becomes negligible. Note that, setting
aside the h = 10 nm curve, the Hres fields correspond exactly
to those of the kinks in the v(H) curve. The enhancement of
velocity therefore seems related to the DW flexion.

The depth dependence of the ψ angle of the propagating
DW evidences a clear twist of the magnetization from top
to bottom of the layer (Fig. 2(a) and 5), but quite differently
from the textbook 180◦ twist case of a static Néel–Bloch–Néel
DW.3,30 Plotting ψ(z,t) over a whole period shows that the
twist is sinusoidal across the layer’s thickness, and that its
amplitude S(t) also varies sinusoidally in time over T with
a span of S0 [Fig. 5(a)]. The time and depth dependence of

(a)

(b)

FIG. 5. (Color online) Depth dependence of ψ(z,t) over half a
precession period for (a) h = 20 nm, μ0H = 70 mT and (b) h = 40
nm, μ0H = 35 mT. Weakly localized horizontal Bloch lines appear
in the thicker layer.
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ψ(z,t) are then described in the first approximation by the
following phenomenological expressions:

ψ(z,t) = φ0(t) + ψ̃(z,t), (3)

ψ̃(z,t) = −S(t,H ) cos
πz

h
, (4)

S(t,H ) = −S0(H ) sin
2πt

T (H )
. (5)

For h =10–30 nm and h = 40 nm when μ0H < 30 mT,
the twist amplitude is minimum for t = T/4, maximum around
3T/4, and null for t = 0 (modulo T/2) [Fig. 4(b)]. Twist and
curvature are intimately related, being in quadrature phase
with respect to each other. The thickness dependence of S0 is
as expected: It increases with thickness, since the exchange
energy cost of a twist can be more easily accommodated in
a thicker layer. Strikingly, S0(H ) follows the same trend as
η0(H ): It reaches a maximum at Hres [see Fig. 3(c) for the
h = 30 nm case]. At resonance, the full twist amplitude of the
DW magnetization across the layer’s thickness (2S0) reaches
about 90◦ for h = 20 nm, 216◦ for h = 30 nm, and 230◦ for
h = 40 nm.

For the thickest layer h = 40 nm, a different behavior
appears around μ0H = 30 mT, as can be seen in Fig. 5(b) : the
twisting direction inverts at a given depth. This corresponds
to a horizontal Bloch line (HBL). These appear where the
magnetization is most labile as a result of the competition
between the stray field emanating from the domains and the
demagnetizing field within the DW.3 For h = 30 nm, very
weakly localized HBLs also appear around 45 mT. This is
consistent with the estimated HBL width π� = 27 nm. Layers
of 30 and 40 nm can thus accommodate with difficulty a full
HBL.

To summarize, this first analysis gives two fundamental
results: The kinks in the v(H) curves occur at fields maximizing
both the curvature and the twist of the DW, and twist and
curvature are coupled variables.

IV. ANALYSIS

To get more insight into the respective roles of the DW
flexion and magnetization twist on the kinks of the v(H) curves,
the analytical model of Malozemoff and Slonczewski31 will be
used. Let us beforehand recall the general equations coupling
the time derivatives of (q0,φ0)(t) in the 1D model:

q̇0(t) = μ0M

2
γ� sin 2φ0 + α�φ̇0(t), (6)

φ̇0(t) = − αμ0M

2(1 + α2)
γ sin 2φ0 + γ

1 + α2
μ0H. (7)

In the precessional regime, the propagation is achieved by a
balance of the torque associated with the oscillating demagne-
tizing field [first term of the right-hand side of Eq. (6)] created
by the precession, and the dissipation of the energy brought by
the field in the form of a damping contribution (second term).
For H � HW , the demagnetization term averages out to zero,
and the damping term takes over and propels the DW forward
with a velocity proportional to the applied field [Eqs. (1),(7)].
In this simple 1D model, two different routes appear to increase
v(H): an increased precession rate or an increased damping.

As mentioned above, however, the simulations showed no
substantial difference for φ̇ between the different thicknesses.
Concerning the damping, an alternative way for the system to
dissipate energy would be by direct coupling to spin waves
(SWs) in the bulk of the material, or by a SW-like excitation
of the magnetization in the vicinity of the DW.32,33 Plotting
the mx,y,z(y) components for different thicknesses does not
evidence any particular wake, but only a slight deformation
of the DW profile for H ≈ Hres. Concerning bulk SWs, their
lowest (k = 0) frequencies34 lie much higher than the typical
precession frequencies, thus forbidding any direct coupling
between the DW and bulk SWs. It therefore seems necessary
to go beyond the 1D model and take into account the full
thickness dependence of the magnetization configuration.

For a twisted DW taken as infinite in the x direction, the
DW surface energy is expressed to first order in exchange,
magnetostatic, and curvature terms as31

σ = σ0

[
1 + 1

2
(∇q)2

]
+ 2A� (∇ψ)2

+μ0M
2� sin2 ψ − �μ0πMHy sin ψ − 2μ0MHq. (8)

In this expression, σ0 = 4
√

AK is the 1D Bloch wall
surface energy. The term [1 + 1

2 (∇q)2] corresponds to the
energy increase due to the elongation of the DW, and the
term A(∇ψ)2 corresponds to the exchange energy cost arising
from the twist. Since q and φ are conjugated coordinates, it is
reasonable to assume that so are ∇q and ∇ψ . By analogy with
a spring or a twisted rope, and looking at Fig. 4(b) , the DW
energy contains a kinetic (flexion ∇q) and an elastic (twist
∇ψ) term which balance each other out. When the DW is
very twisted, the energy cost of an additional curvature is too
high: the flexion is minimal, and vice versa. Hy can stem from
volume or surface magnetic charges created by the DW or
domains. Here, we will consider only Hy as the y component
of the stray field arising from up- and down-domains on either
side of the DW. The curvature of the domain will be considered
small enough to neglect the fields along y and z resulting
from magnetic charges appearing along the DW due to its
curvature.31 Among the different expressions demonstrated
for Hy ,3,30 we will use that of Ref. 3, as it remains valid down
to the � ≈ h limit:

4πHy(z) = −2M ln

[
z2 + �2/4

(h − z)2 + �2/4

]
+ 8M

�

×
[
z arctan

(
�

2z

)
−(h − z) arctan

(
�

2(h − z)

)]
.

(9)

It is determined by computing the potential arising from
the −M and +M surface charges (varying linearly over a
width �) of domains on either side of the DW. Any effects
of the volume charges created within the DW are ignored.
This field is stationary, but varies throughout the thickness
of the material. It pins the magnetization of a static DW in
Néel configuration at the surfaces of the layer, so that the
equilibrium structure of the wall is twisted. For h = 30 nm, it
amounts to a field of over 55 mT at the surface of the layer.
This is likely an overestimation of the actual Hy though, since
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FIG. 6. (Color online) Velocity computed analytically using the
(q, ψ , ∇q, ∇ψ) model for h = 30 nm and H > HW , and the
corresponding simulated OOMMF curve. Inset close-up of the kink
area evidencing the respective contributions to the velocity of the
applied field (A), the demagnetizing field (B), and the domains’ stray
field (C). See Eq. (10) and text for details.

the volume contribution has been ignored. Finally, using the
LLG equation leads to the equation31

q̇(z,t) = γ�

1 + α2

[
μ0M

2
sin 2ψ + αμ0H − π

2
μ0Hycosψ

−2A∇2ψ

M
+ ασ0∇2q

2M

]
. (10)

The DW velocity is then obtained by a double integration
on time and space, v(H) = 1

T

∫ T

t=0
1
h

∫ h

z=0 q̇(z,t)dz dt , provided
the canting angle is known. As expressed in Eqs. (3)–(5),
ψ(z,t) can easily be written as the sum of the 1D model
uniform φ0(t) given by Eq. (2), and a depth-dependent angle
ψ̃(z,t) varying sinusoidally across the layer (in the absence
of a HBL). Moreover, the oscillation amplitude S0(H ) can
be fitted by a Lorentzian [Fig. 3(c) , solid line]. The negative
signs in Eqs. (4),(5) mimic the phase seen in the simulations:
The twist is null when the wall is in a Bloch configuration
(φ0 = 0 [180◦]), and extremum when it is in a pseudo-Néel
configuration (φ0 = 90◦ [180◦]).

The resulting computed velocity is plotted in Fig. 6 for
h = 30 nm, along with the corresponding micromagnetic
simulation already presented in Fig. 3(c). The Walker field
and DW thickness injected in Eq. (10) are those of the 1D
model baseline fit of the h = 30 nm curve: μ0HW = 5 mT and
� = 2.28 nm. The v(H) curve obtained using the analytical
model given by Eqs. (9) and (10) resembles very much the
numerical simulation. The mobility above Walker breakdown
is linear for the 1D model curve, but shows a kink when
the magnetization twist is taken into account. At the peak
(μ0H ≈ 38 mT), the velocity has increased from 4.7 m s−1 to
about 10 m s−1, to be compared with the value of 9.2 m s−1

obtained in the simulation. At high fields, the calculated curve
eventually coincides with the 1D model one. The kink is in fact
broader than the one observed in the simulation, which is not
surprising considering the approximations needed to establish
Eq. (9). A very similar result is obtained for the h = 20 nm
curve, showing that the velocity increase is due to the twist of
the magnetization.

A partial analytical integration of Eq. (10) over t and z gives
some insight as to which of the three terms Hy , ∇2q, and/or
∇2ψ– absent from the 1D model expression - governs the
shape of v(H). Taking into account the boundary conditions
∂ψ

∂z
|0,h = ∂q

∂z
|0,h = 0 immediately shows that the ∇2q and ∇2ψ

terms do not contribute at all. Using the odd nature about
z = h/2 of both Hy and ψ̃ then leaves

〈v〉 = �γ

1 + α2

{
μ0M

2

1

T

∫ T

0
J0

(
2S0 sin

2πt

T

)
sin 2φ0dt

+ π

2 T h

∫ T

0
sin φ0

∫ h

0
μ0Hy(z) sin ψ̃dzdt + α μ0Hz

}
.

(11)

J0(x) refers to the m = 0 Bessel function of the first kind.
In the absence of twist within the DW (S0 = 0), the ψ̃ term
vanishes, and the 1D expression is recovered. In the absence of
time dependence of the twist [S(t) = S0], the second term in
Eq. (11) vanishes by time integration of the T-periodic sin φ0

term. This leaves an expression very similar to the 1D equation,
save for a decrease by J0(2S0) of the demagnetization term.

When the twist is taken to be time dependent as described
in Eqs. (3)–(5), the demagnetizing field [first term of Eq. (11)]
created across the DW over one period is decreased compared
with the pure Bloch DW case, as previously. The second term
of Eq. (11) reflects the strength of the torque �m × �Hy averaged
over the thickness of the layer, and over a period. Because both
the stray field and the z-dependent DW magnetization angle
ψ̃ invert signs at midheight of the layer, the integration over
the layer thickness of this torque will always be nonzero. The
sign of this contribution is moreover given by the phase of the
twist amplitude S(t) with respect to the mean azimuthal angle
of the DW φ0(t). As shown in Fig. 4, when the twist is winding
clockwise up the layer (S < 0), the magnetization lies opposite
the direction of motion (φ0 =0–180◦, sin φ0 > 0). When the
twist is winding counterclockwise (S > 0), the magnetization
is facing the direction of motion (φ0 =180–360◦, sin φ0 < 0).
As a result, this integration over a whole precession period
yields a net positive contribution to the DW velocity. The
amplitude of Hy can easily be of the order of 1.3M at the
surface, and so the �m × �Hy torque will dominate the first term.
Plotting only the applied field and demagnetizing field terms
calculated with a twisted magnetization (labeled A and B in
the inset Fig. 6) gives a curve very similar to the one computed
from the 1D model, Eq. (6). It is thus clearly the stray field
term (C) that yields a velocity increase.

For an increased velocity to appear, it is therefore required
to combine both a twist of the DW magnetization across the
layer, and a particular time dependence of this twist amplitude
(negative twist when the mean magnetization angle is in
the 0–180◦ quadrant). As shown above, the twist and curvature
are coupled variables. At fields giving a maximum flexion, a
maximum twist will therefore also be obtained. The position
of the resulting kink in the v(H) curve will then be indirectly
related to the field dependence of the curvature η(H ), given by
∇2q. For h = 10 nm, the small amplitude of the flexion (and
therefore of the twist), and its very broad resonance make the
kink undetectable in the v(H) curve.
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Finally, we come to the double kink for h = 40 nm. At
low field the kink is very similar to the h = 30 nm curve,
but abruptly drops around μ0H = 30 mT. Since the velocity
increase is directly due to the continuous and symmetrical
twist of the DW across the layer’s width, HBLs are likely to
severely disrupt the scheme presented above, all the more so
as the HBL is tighter. As shown in Fig. 5(b), HBLs precisely
start appearing around μ0H = 30 mT for h = 40 nm. They
thus seem responsible for splitting the peak into a sharp kink
followed by a broad bump.

V. POSITION OF VELOCITY PEAKS

A. Simulations

An important question remains concerning the position of
the velocity peaks, as well as their thickness dependence.
Because the shape of η0(H ) and S0(H ) recalls a resonance,
the free oscillation of a DW was investigated. With H = 0 in
the numerical simulation, the DW is initialized in one of the
configurations shown in the top images of Fig. 2(c) : either
an “n = 1”sine mode or an “n = 0” cosine mode, using once
again the numbering of Slonczewski.29 The DW is then let to
relax with no initial velocity. In both cases, its movement is
initially highly nonlinear, and then rapidly falls into a damped
oscillation of the n = 1 mode. Higher orders of the DW are
also occasionally observed. The frequency spectrum of the
DW elongation obtained by fast Fourier transform is centered
around the free-oscillation frequency fFO of the DW. This
frequency is found to decrease when the thickness increases:
fFO = 8.20, 2.34, 1.28, and 0.88 GHz for h = 10, 20, 30, and
40 nm, respectively.

Let us now compare these frequencies with the precession
frequency of the magnetization within the DW (solid line in
Fig. 7, independent of layer thickness). As shown by the arrows
in Fig. 7, when the applied field induces a precession frequency
close to fFO , a velocity peak is obtained. The v(H) peak and
the η0(H ) therefore likely correspond to the resonance of the
n = 1 flexion mode of the DW.

More exactly, the free-oscillation resonance field falls
slightly higher than the actual peak for h = 20 nm (78 mT
instead of μ0Hres = 70 mT) and 30 nm (48 mT instead of
μ0Hres = 35 mT), and between the peak and the bump for
h = 40 nm (35 mT). An explanation as to why the peaks
are observed at lower frequency than expected from the
free-oscillation simulations can be put forward. A DW in
movement (under field) cannot be expected to have quite
the same resonance frequency as a freely oscillating DW. In
particular, applying an external field Hz will be a disadvantage
to the higher-order modes of the DW where magnetic charges
due to its curvature will create an important magnetostatic
contribution. For Hz = 0, the free-oscillation frequency likely
reflects the presence not only of the n = 1 mode but also of
higher-order (and higher-frequency) modes. These are indeed
observed when plotting the DW depth profile. These higher
modes are progressively stifled upon increasing the field, and
the frequency spectrum brought lower. This has been verified
by doing Fig. 2(c)-type simulations for h = 20 nm under
an applied field of 1, 3, 7.5, and 15 mT. As a result, the
resonance under field appears at a slightly lower frequency

FIG. 7. (Color online) Velocity versus field curves (closed sym-
bols, shifted vertically for clarity), and precession frequency (solid
line): the fields giving the peaks in the v(H) curves coincide with
the ones yielding the simulated free-oscillation frequencies (H = 0).
Inset comparison between the thickness dependence of the analytical
resonance frequencies (fSL) given in Ref. 29 and the numerically
simulated ones (fFO ).

(and lower fields) than the free oscillation frequency. An
interesting conclusion to this is that a DW cannot truly be
considered as a harmonic oscillator as is often argued (Ref. 35
and references therein), but rather as a parametric oscillator
whose resonance frequency will effectively depend on the
forcing function (applied field in our case).

B. Analytical model

Slonczewski29 established an approximate expression for
the flexural mode frequencies fSL of an assembly of domains
arranged in stripes of infinite length (no applied field),
neglecting damping. In our 2D geometry (neglecting modes
propagating along the wall for now), they can be expressed as
a function of n-indexed wave vectors kz(n) = nπ/h:

fSL = γ

2π

√
μ0M + 2A

M
k2
z

√
μ0M�kz + 2A

M
k2
z . (12)

The inset of Fig. 7 compares the simulated resonance
frequencies determined above (fFO , open squares) with the
frequency of the first fSL mode computed from Eq. (12)
with the numerical simulation’s parameters. Since fSL was
established at the first order in �kz, it largely underestimates
the resonance frequencies for very thin layers, but both plots
eventually converge for h > 70 nm. Using Eq. (12) as a
guideline shows that, for h � � and h � �, the position of
the peaks in v(H) (given by fFO) will vary roughly like 1/h

with thickness and be very dependent on the �/h ratio. It will
not depend on the uniaxial anisotropy. This is to be compared
with the

√
A dependence of the oscillation frequency of a

transverse DW simulated numerically in Permalloy.35 For
sample thicknesses much larger than the exchange length,
the frequency will vary as 1/

√
h, A1/4, and K

−1/4
u . Although

Eq. (12) can serve as a general guideline, one must, however,
keep in mind that the restoring force in Ref. 29 is somewhat
different from the one in our geometry.
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VI. DISCUSSION

Let us now consider how the experimental data of Fig. 1 can
be explained in the light of the proposed model. Contrary to the
virtual material used in the simulations, GaMnAs also exhibits
a complex in-plane anisotropy, which can induce anisotropic
velocities leading to spectacular noncircular domain shapes.36

However, the difference in velocity along the main axes
being around 10% only, the effect of the in-plane anisotropy
is likely much weaker than the mechanisms described
above.

The simulations [h = 20 and 40 nm of Figs. 3(b)
and 3(d)] reproduce qualitatively the low-field (region 1) kinks
of the corresponding GaMnAs samples, but they do not appear
at the same fields. The high-field (region 2) anomalies are
not reproduced in the simulations. To estimate where the
flexion-induced kinks could be expected for each sample,
the DW resonance frequencies were then determined for each
h = 50 nm sample by micromagnetic simulations (μ0H = 0)
as described above, using the experimental values of M , Ku,
and A.21 No sufficiently accurate value of A was available
for the h = 20, 40 nm samples. The resonance fields found by
comparing fFO with the precession frequency are indicated by
arrows directly on the v(H) curves of Fig. 1(a) and 1(b): 48, 40,
and 23 mT for the GaMnAsP sample (T = 20–80 K), and 48.5,
38, 37, 29, and 31 mT for the GaMnAs sample (T = 4–90 K).
The arrows point to fields of the same order of magnitude
as the ones at which the anomalies are observed. Together
with the fact that only the region 1 kinks vary downward
with temperature and upward with thickness, region 1 likely
corresponds to flexion/twist-induced kinks. A better prediction
of the kink shapes and positions would very probably be
obtained by doing full 3D simulations, as well as taking into
account the influence of additional flexural modes of vibrations
(propagating along the plane of the DW and described by a
k// wave vector) on the resonance frequency of the DW. The
dispersion curves calculated in Ref. 29 (Fig. 6 in particular)
seem to suggest that the resonance frequency slightly increases
with k//. This would likely give a slightly more spread-out
feature extending to higher energies.

The region 2 kinks in GaMnAs and GaMnAsP can therefore
not be explained by the twist/curvature model, as they
shift only weakly with thickness or temperature. A tentative
explanation for the origin of these kinks is the parametric
excitation put forward by Randoshkin37 whereby the bulk
SWs of the domains couple to the DW magnetization, thus
providing an efficient energy dissipation channel, leading
to a velocity increase. This phenomenon is expected for
frequencies equal to twice the precession frequency: fbulk =
2fprec, which would be slightly above region 2 for all samples
given their anisotropy fields. The mechanism for this coupling
has however never been fully investigated. In the simulations,
it would appear at around Hu/3 = 179 mT. It has not
been observed, possibly due to the strong damping in the
simulations.

VII. CONCLUSION

To summarize, we have investigated experimentally and
numerically field-driven DW propagation in ferromagnetic

layers of thickness close to the exchange length. The data
reveal anomalous velocity peaks appearing in the precessional
regime, which were partially reproduced numerically. The
simulations show that these low-field anomalies are correlated
with the maximum flexion of the DW and the maximum
twist of the magnetization vector inside the wall, both being
intimately coupled. To elucidate their respective roles, we
complement the historical (q, ψ) DW propagation model
with the phenomenologically determined ∇ψ (twist). The
velocity peaks are then well reproduced and found to result
from the torque effect of the stray field on the twisted
magnetization. When the DW magnetization is sufficiently
twisted across the layer thickness, the stray field emanating
from the up- and down-domains surrounding it induces an
efficient torque on the total DW magnetization. Because the
amplitude of this twist varies over one precession period, the
torque averages out to a strictly positive value. Anomalies in
v(H) curves are therefore obtained for the particular range of
thickness over the exchange length ratio, allowing a strong
twist of the DW magnetization, but forbidding the appearance
of HBLs, which tend to stifle the velocity enhancement.
The resonance field of the twist/curvature is such that the
corresponding precession frequency is then close to the DW
flexural resonance frequency, and strongly depends on the
layer thickness. The experimental v(H) curves obtained for
ferromagnetic GaMnAs and GaMnAsP layers show velocity
enhancement related to this DW magnetization twist and
stray field-induced torque just above Walker breakdown. At
a high field, they exhibit broad velocity bumps of different
origins, which may be related to nonlinear excitation of
bulk SWs not evidenced by our 2D simulations. A full
3D simulation of the velocity would surely yield additional
information.

The description of the velocity versus field curve in
terms of the (q,ψ ,∇q,∇ψ) variables is an alternative and
promising way to understand DW propagation experiments
in perpendicular-to-plane magnetized samples. The case of
Bloch DWs being much simpler in essence than transverse or
vortex DW of in-plane magnetized layers, one must be cautious
to apply this model to explain the experimental observations
of Refs. 12 and 13. Different from our analysis, the work of
Yang et al.13 seems to point out that the kinks they observe in
v(H) curves without an applied transverse field stem from the
stabilization of vortex-antivortex modes, but they have not iso-
lated the physical origin of the appearance of this phenomenon
at particular fields. The study of in-plane magnetized layers
would therefore call for more thorough investigation, as well as
the relevance of our model in current-induced DW propagation
experiments.15
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