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In many physical scenarios, close relations between the bulk properties of quantum systems and theories
associated with their boundaries have been observed. In this work, we provide an exact duality mapping between
the bulk of a quantum spin system and its boundary using projected entangled-pair states. This duality associates to
every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds
to the excitation spectrum of the boundary Hamiltonian. We study various specific models: a deformed AKLT
model [I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett. 59, 799 (1987)], an Ising-type model
[F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett. 96, 220601 (2006)], and Kitaev’s
toric code [A. Kitaev, Ann. Phys. 303, 2 (2003)], both in finite ladders and in infinite square lattices. In the
second case, some of those models display quantum phase transitions. We find that a gapped bulk phase with
local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk
is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered
states yield nonlocal Hamiltonians. Because our duality also associates a boundary operator to any operator in
the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their
boundary.
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I. INTRODUCTION

It has long been speculated that the boundary plays a
very significant role in establishing the physical properties
of a quantum field theory. This idea has been very fruitful in
clarifying the physics of the fractional quantum Hall effect, and
it is also the origin of the holographic principle in black hole
physics. An explicit manifestation of this fact is the so-called
area law. The area law states that for ground (thermal) states
of lattice systems with short-range interactions, the entropy
(quantum mutual information) of the reduced density operator
ρA, corresponding to a region A, is proportional to the surface
of that region rather than to the volume, at least for gapped
systems.1–4 Criticality may reflect itself in the appearance of
multiplicative and/or linear logarithmic corrections to the area
law.5,6

Apart from the deep physical significance of this law,
it has important implications regarding the possibility of
simulating many-body quantum systems using tensor network
(TN) states.7–10 For instance, it has been shown11 that any state
of a quantum spin system fulfilling the area law in one spatial
dimension (including logarithmic violations) can be efficiently
represented by a matrix product state (MPS),12,13 the simplest
version of a TN.

Very recently, another remarkable discovery has been made
with relation to the area law.14 It has been shown that
for certain models in two spatial dimensions the reduced
density matrix of a region A has a very peculiar spectrum,
which is called the entanglement spectrum: by taking the
logarithm of the eigenvalues of ρA, one obtains a spectrum
that resembles very much that of a one-dimensional critical
theory (i.e., as prescribed by conformal field theory). This
has been established for different systems as diverse as
gapped fractional quantum Hall states14 or spin-1/2 quantum

magnets.15 Interestingly, the correlation length in the bulk of
the ground state can be naturally interpreted as a thermal length
in one dimension.15

This is all very suggestive of the fact that the reduced
density matrix is the thermal state of a one-dimensional
theory. However, there is a clear mismatch in dimensions:
the Hilbert space associated to ρA has two spatial dimensions,
whereas the one-dimensional theory obviously has only one.
Intuitively, this is clear because all relevant degrees of freedom
of ρA should be located around the boundary of region A.
The main question addressed in this paper is to explicitly
identify the degrees of freedom on which this one-dimensional
Hamiltonian acts.

We show that projected entangled-pair states (PEPS)16

give a very natural answer to that question. The degrees of
freedom of the one-dimensional theory correspond to the
virtual particles which appear in the valence bond description
of PEPS and that “live” at the boundary of region A.16,17 More
specifically, PEPS are built by considering a set of virtual
particles at each node of the lattice, which are then projected
out to obtain the state of the physical spins. As we show,
the boundary Hamiltonian can be thought of as acting on
the virtual particles that live at the boundary of region A.
Furthermore, we present evidence that, for gapped systems,
such a boundary Hamiltonian is quasilocal (i.e., it contains
only short-range interactions) in terms of those (localized)
virtual particles. As a quantum phase transition is approached,
the range of the interactions increases. Finally, we show that
the interactions lose their local character for the case of
quantum systems exhibiting topological order. We also show
how operators in the bulk can be mapped to operators on the
boundary.

The fact that the boundary Hamiltonian is quasilocal
has important implications for the theory of PEPS which
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go well beyond those of the area law. While PEPS are
expected to accurately represent the low-energy sector of local
Hamiltonians in arbitrary dimensions,18 it has not been proven
that one can use them to determine expectation values in
an efficient and accurate way. For that, one has to contract
a set of tensors, a task which could in principle require
exponential time in the size of the lattice. In order to circumvent
this problem, a method was introduced16 which successively
approximates the boundary of a growing region by a matrix
product density operator, which is exactly the density matrix of
local virtual particles discussed before. It is not clear a priori
to which extent that density matrix can be approximated by a
MPS; more specifically, the bond dimension of that MPS could
in principle grow exponentially with the size of the system if
a prescribed accuracy is to be reached, which would lead to
an exponential scaling of the computational effort. However,
that MPS does nothing but approximate the boundary density
operator ρA for different regions A. In case such an operator
can be written as a thermal state of a quasilocal Hamiltonian, it
immediately follows that in order to approximate it by a MPS
one just needs a bond dimension that scales polynomially with
the lattice size,18 and thus the expectation values of PEPS can
be efficiently determined.

II. PEPS AND BOUNDARY THEORIES

A. Model

We consider a PEPS, |�〉, of an Nv × Nh spin lattice in two
spatial dimensions. Note that one can always find a finite-range
interaction Hamiltonian for which |�〉 is a ground state.19

We assume that we have open (periodic) boundary conditions
in the horizontal (vertical) direction: the spins are regularly
placed on a cylinder and the state |�〉 is translationally
invariant along the vertical direction (see Fig. 1). All spins
have total spin S, except perhaps at the boundaries where
we may choose a different spin in order to lift degeneracies
related to the open boundary conditions. We are interested in
the reduced density operator, ρ�, corresponding to the spins
lying in the first � columns, that is, when we trace all the spins
from column � + 1 to Nh.

More specifically, the effective Hamiltonian H�, cor-
responding to those spins, is defined through ρ� =
exp(−H�)/Z�, with Z� a normalization constant. We are
interested not only in the entanglement spectrum14 but also
in the specific form of H� and its interaction length, as we
define below.

In order to simplify the notation, it is convenient to
label the spin indices of each column with a single vector.
We define In = (i1,n,i2,n, . . . ,iNv,n), where ik,n = −S, − S +
1, . . . ,S for n = 2, . . . ,Nh − 1. (For n = 1 or n = Nh we may
have different spin S.) Thus, we can write

|�〉 =
∑

I

cI

∣∣I1,I2, . . . ,INh

〉
. (1)

For a PEPS we can write

cI =
∑
�

L
I1
�1

B
I2
�1,�2

· · · BINh−1
�Nh−2,�Nh−1

R
INh

�Nh−1
. (2)

Here �n = (α1,n,α2,n, . . . ,αNv,n), where αk,n = 1,2, . . . ,D

and D is the so-called bond dimension. Each of the BI ’s can
be expressed in terms of a single tensor, Âi ,

B
In

�n−1,�n
= tr

[
Nv∏
k=1

Âik,n

αk,n−1,αk,n

]
, (3)

where for each value of i,α,α′, Âi
α,α′ is a D × D matrix, with

elements Ai
α,α′;β,β ′ (where the indices α and β correspond to

the virtual particles entangled along the horizontal and vertical
directions, respectively;16 see Fig. 1). For the first (left) and
last (right) column we define LI and RI similarly in terms of
the D × D matrices l̂iα , and r̂ i

α′ :

L
I1
�1

= tr

[
Nv∏
k=1

l̂ik,1
αk,1

]
, (4)

R
INh

�Nh−1
= tr

[
Nv∏
k=1

r̂
ik,Nh
αk,Nh−1

]
. (5)

Thus, the tensors Â, l̂, and r̂ (for which explicit expressions
are given later) completely characterize the state |�〉, which is
obtained by “tiling” them on the surface of the cylinder. The
first has rank 5, whereas the other two have rank 4. Here we
have taken all the tensors A to be equal, but they can be chosen
to be different if the appropriate symmetries are not present.

B. Boundary density operator

We now want to express the reduced density operator ρ� in
terms of the original tensors. In order to do that, we block all

FIG. 1. (Color online) (top) We consider an Nv × Nh spin lattice
in a cylindrical geometry. The PEPS is obtained by replacing each
lattice site with a tensor A and contracting the virtual indices α and
β along the horizontal and vertical directions. (bottom) We cut the
lattice into two pieces, left and right. The virtual indices α of the
tensors A along the cut are shown. The state |�L〉 acts on the spins
(ik,n) as well as on the virtual spins along the cut.
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the spins that are in the first � columns, and those in the last
Nh − � columns, and define

L̂Ia = LI1BI2 · · · BI�, R̂Ib = BI�+1 · · · BINh−1RINh , (6)

where we have collected all the indices I1, . . . ,I� in Ia and the
rest in Ib. With this notation, the state |�〉 can be considered a
two-leg ladder, i.e., N̂h = 2, and �̂ = 1, where ρ�̂ is the density
operator corresponding to a single leg. Thus, we have

|�〉 =
∑
Ia,Ib

∑
�

L̂
Ia

�R̂
Ib

� |Ia,Ib〉. (7)

It is convenient to consider the space where the vectors LI

and RI act as a Hilbert space and to use the bra-ket notation
there as well. That space, which we call virtual space, is
the one corresponding to the ancillas that build the PEPS
in the valence bond construction.16 They are associated to
the boundary between the �th and the (� + 1)st columns of
the original spins. The dimension is thus DNv (see Fig. 1).
In order to avoid confusion with the space of the spins, we
have used |v) to denote vectors on that space. We can define
the (unnormalized) joint state for the first � columns and
the virtual space, |�L〉, and similarly for the last columns,
|�R〉, as

|�L〉 =
∑
Ia

|L̂Ia )|Ia〉, |�R〉 =
∑
Ia

|R̂Ib )|Ib〉 (8)

with

|L̂Ia ) =
∑
�

L̂
Ia

� |�), |R̂Ib ) =
∑
�

R̂
Ib

� |�), (9)

and |�) the canonical orthonormal basis in the corresponding
virtual spaces. The state |�〉 can then be straightforwardly
defined in terms of those two states. The corresponding
reduced density operators for both virtual spaces are

σL =
∑
Ia

|L̂Ia )(L̂Ia | , σR =
∑
Ib

|R̂Ib )(R̂Ib | . (10)

In terms of these operators, it is very simple to show that

ρ� =
∑
	,	′

|χ	〉〈χ	′ | (	|
√

σT
L σR

√
σT

L |	′), (11)

where |	) is an orthonormal basis of the range of σL, σT
L is

the transpose of σL in the basis |�), and we have defined an
orthonormal set (in the spin space)

|χ	〉 =
∑

I

(	| 1√
σL

|L̂I ) |I 〉. (12)

Now, defining an isometric operator that transforms the virtual
onto the spin space U = ∑

	 |χ	〉(	|, we have

ρ� = U

√
σT

L σR

√
σT

L U †. (13)

The isometry U can also be used to map any operator acting
on the bulk onto the virtual spin space. Note that this map is
an isometry and hence not injective; i.e., a boundary operator
might correspond to many different bulk operators. This is of
course a necessity, as U is responsible for mapping a two-
dimensional theory to a one-dimensional one.

C. Boundary Hamiltonian

The previous equation shows that ρ� is directly related to the
density operators corresponding to the virtual space of the an-
cillary spins that build the PEPS. In particular, if we have σT

L =
σR =: σb (e.g., when we have the appropriate symmetries as
in the specific cases analyzed below), then ρ� = Uσ 2

b U †. The
reduced density operator ρ� is thus directly related to that of
the virtual spins along the boundary. Since U is isometric it
conserves the spectrum and thus the entanglement spectrum
of ρ� coincides with that of σ 2

b . By writing σ 2
b = exp(−Hb),

we obtain an effective one-dimensional Hamiltonian for the
virtual spins at the boundary of the two regions whose spectrum
coincides with the entanglement spectrum of ρ�.

We are interested to see to what extent Hb is a local
Hamiltonian for the boundary (virtual) space. We can always
write Hb as a sum of terms involving different spin operators.
For instance, for D = 2, we can take the Pauli operators σα

(α = x,y,z) acting on different spins, and the identity operator
on the rest. We group those terms into sums hn, where each
hn contains all terms with interaction range n, i.e., for which
the longest contiguous block of identity operators has length
Nv − n. For instance, h0 contains only one term, which is a
constant; h1 contains all terms where only one Pauli operator
appears; and hNv

contains all terms where no identity operator
appears. We define

dn = tr
(
h2

n

)/
2Nv , (14)

which expresses the strength of all the terms in the Hamiltonian
with interaction length equal to n. A fast decrease of dn

with n indicates that the effective Hamiltonian describing the
virtual boundary is quasilocal. In the examples we examine
below, this is the case as long as we do not have a quantum
phase transition. In such a case, the length of the effective
Hamiltonian interaction increases.

D. Implications for PEPS

In the case σb can be written in terms of a local boundary
Hamiltonian, one can draw important consequences for the
theory of PEPS. In particular, it implies that the PEPS
can be efficiently contracted, and correlation functions can
be efficiently determined. The reason can be understood
as follows. Let us consider again the cylindrical geometry
(Fig. 1), and let us assume that we want to determine any
correlation function along the vertical direction, e.g., at the
lattice points (�,1) and (�,x). It is very easy to show that such
a quantity can be expressed in terms of σL and σR . If we are
able to write these two operators as matrix product operators
(MPOs), i.e., as

D∑
in,jn,=1

tr[Mi1,j1 · · · MiNv ,jNv ]
∣∣i1, . . . ,iNv

〉〈
j1, . . . ,jNv

∣∣, (15)

where the M are D′ × D′ matrices, then the correlation
function can be determined with an effort that scales as
Nv(D′)6. It was shown by Hastings18 that if an operator can be
written as exp(−Hb/2), where Hb is quasilocal, then it can be
efficiently represented by a MPO; that is, the bond dimension
D′ only scales polynomially with Nv . Thus, the time required
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to determine correlation functions only scales polynomially
with Nv .

Later, when we examine various examples, we use a MPO to
represent σb. In that case, we can directly check if we obtain a
good approximation by using a MPO by simply observing how
much errors increase when we decrease the bond dimension
D′. We see that the error increases when we approach a
quantum phase transition. Furthermore, whenever σb can be
well approximated by a MPO, we can use the knowledge
gained in the context of MPS12,13 to observe the appearance
of a quantum phase transition in the original PEPS. For that,
we just have to recall that the correlation length ξ is related to
the two largest (in magnitude) eigenvalues, λ1,2, of the matrix∑

i M
i,i ; ξ = 1/ ln(|λ1/λ2|). For |λ1| = |λ2|, the correlation

length diverges, indicating the presence of a quantum phase
transition.

E. Qualitative discussion

In order to better understand the structure of σb, let us
first consider a one-dimensional (1D) spin chain. Even though
the boundary of the chain, when cut into two parts, has zero
dimensions, it helps us to understand the two-dimensional (2D)
systems. We take Nv = 1 so that the PEPS reduces to a MPS.
We can use the theory of MPS12,13 to analyze the properties
of the completely positive map (CPM) E . (The matrices Ai

of the MPS are the Kraus operators of the CPM.) In the limit
Nh → ∞, σb is nothing but the fixed point of such a CPM.
For gapped systems, E has a unique fixed point, and thus σb

is unique. For gapless systems, E becomes block diagonal
(and thus there are several fixed points), the correlation length
diverges, and we can write

σb = ⊕B
n=1pnσ

(n)
b , (16)

where B is the number of blocks which coincides with
the degeneracy of the eigenvalue of E corresponding to the
maximum magnitude. In such a case, the weights pn depend
on the tensors l and r which are chosen at the boundaries.
For critical systems, one typically finds that D increases as a
polynomial in Nv such that one obtains logarithmic corrections
to the area law.6,20

The 2D geometry considered here reduces to the 1D case
if we take the limit Nh → ∞ by keeping Nv finite. According
to the discussion above, we expect to have a unique σb if we
deal with a gapped system. As we illustrate below with some
specific examples, this operator can be written in terms of a
local Hamiltonian Hb of the boundary virtual space which
is quasilocal. As we approach a phase transition, the gap
closes and the correlation length diverges. In some cases,
the boundary density operator can be written as a direct sum
(16), eventually leading to the loss of locality in the boundary
Hamiltonian.

III. NUMERICAL METHODS

In order to determine σb we make heavy use of the
fact that |�〉 is a PEPS. We have followed three different
complementary numerical approaches that we briefly describe
here.

A. Iterative procedure

First of all, for sufficiently small values of Nv (typically
Nv � 12), we can perform exact numerical calculations and
determine σL,R according to Eq. (10). The main idea is to start
from the left and find first σL for � = 1 by contracting the
tensors li appropriately. Then, we can proceed for � = 2 by
contracting the tensors Ai corresponding to the second column.
In this vein, and as long as Nv is sufficiently small, we can
determine σL,R for all values of � and Nh.

B. Exact contractions and finite size scaling

The second (exact) method is a variant applicable to larger
values of Nv (typically up to Nv = 20) but restricted to a
finite width in the horizontal direction. It consists of exactly
contracting the internal indices of two adjacent blocks of size
Nv/2 × Nh. These two blocks are then contracted together in
a second step. Although limited by the size 2Nv+2Nh of the half
block (which has to fit in the computer RAM), this approach
can still handle systems of size 20 × 2 or 16 × 8 and can be
supplemented by a finite size scaling analysis.

C. Truncation method

Finally, to take the Nh → ∞ limit, we can use the methods
introduced in Ref. 16 to approximate the column operators.
The main idea is to represent those operators by tensor
networks with the structure of a MPS. We contract one
column after another, finding the optimal MPS after each
contraction variationally. In particular, since we consider
translationally invariant states, we can choose the matrices
of the corresponding MPS to all be equal, which simplifies the
procedure. We can even approach the limit Nv,Nh → ∞ as
follows (see also Refs. 9 and 21):

(i) We start out with � = 1 and contract the second column,
obtaining another tensor network with the same MPS structure,
but with increased bond dimensions.
(ii) We continue adding columns, up to some � = r , where

we start running out of resources. At that point, we have a
tensor network with the MPS structure representing σL. Let
us denote by Cn

α,β the basic tensor of that network, where n =
1, . . . ,D2 and α,β = 1, . . . ,D2r (n denotes the index at the
(vertical) boundary, i.e., pointing in the horizontal direction).
(iii) When the bond indices α,β grow larger than some pre-
determined value, say Dc � D2r , we start approximating the
tensor network using one with bond dimension Dc as follows.
We first construct the tensor Kα,α′;β,β ′ = ∑

n Cn
α,βC̄n

α′,β ′ . Later
we always deal with the case in which K is Hermitian (when
considered as a matrix); if this is not the case, one can always
choose a gauge where it is symmetric.13 We determine the
eigenvector, Xβ,β ′ , corresponding to the maximum eigenvalue
of K , diagonalize X, consider the Dc largest eigenvalues, and
build a projector onto the corresponding eigenspace. We then
truncate the indices α and β by projecting onto that subspace.
(iv) We continue in the same vein until the truncated tensor

structure converges, which corresponds to the limit Nh → ∞.
(v) We can do the same with σR by going from right to left.

For the examples studied below, σL = σR =: σb = σT
b , and

thus we have to carry out this procedure just once.
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IV. NUMERICAL RESULTS FOR AKLT MODELS

We now investigate some particular cases. We concentrate
on the Affleck, Kennedy, Lieb, and Tasaki (AKLT) model,22–24

whose ground state, |�〉, can be exactly described by a PEPS
with bond dimension D = 2, as shown in Figs. 2 and and 3.
The spins in the first and last columns have S = 3/2, whereas
the rest have S = 2. The AKLT Hamiltonian is given by a sum
of projectors onto the subspace of maximum total spin across
each nearest-neighbor pair of spins,

HAKLT =
∑
〈n,m〉

P (s)
n,m, (17)

where P (s)
n,m is the projector onto the symmetric subspace of

spins n and m. This Hamiltonian is su(2) and translationally
invariant. This invariance is inherited by the virtual ancillas,
and thus σb and Hb are also inherited. These symmetries
can be used in the numerical procedures. Note that if Hb

has these symmetries and has short-range interactions, then,
since the ancillas have spin-1/2 (as D = 2), it is generically
critical.

The lattice is bipartite. It is convenient to apply the operator
exp(iπSy/2) to every spin on the B sublattice: this unitary
operator does not change the properties of ρ� but rather slightly
simplifies the description of the PEPS. Thus, we can write the
AKLT Hamiltonian as in Eq. (17) but with P (s)

n,m → P̃n,m :=
exp(iπ (fnSy,n + fmSy,m)P (s)

n,m exp(iπ (fnSy,n + fmSy,m), with
fn = 0,1/2 if the spin n is in the A or B sublattice, respectively.

We study finite Nh-leg ladders, as well as infinite square
lattices. We start out in the next subsection with the simplest
case of Nh = 2. Note that for this particular case the subsystem
we consider when we trace one of the legs is a spin
chain itself, so the density operator ρ�=1 already describes

(a) (b)

(c)

FIG. 2. (Color online) (a) Ribbon made of two (Nh = 2) coupled
periodic S = 1/2 Heisenberg chains (two-leg ladder). (b) Ground
state of a two-leg S = 3/2 AKLT ladder. Each site is split into three
spins-1/2 (red dots). Nearest-neighbor spins-1/2 are paired up into
singlet valence bonds. (c) PEPS representation for S = 3/2 and S = 2
sites of AKLT wave functions in the valence bond (singlet) picture
(for connection to the “maximally entangled picture”; see text). Open
squares indicate the rm

α1,α2,α3
and Am

α1,α2,α3,α4
tensors defined in the text

and open circles correspond the to 2 × 2 matrix [0,1; −1,0].

(a) (b)

FIG. 3. (Color online) (a) Four-leg (Nh = 4) AKLT ladder on a
cylinder partitioned (dotted green line) into two halves. (b) Schematic
representation of the density matrix σ 2

b of a four-leg (Nh = 4, � = 2)
AKLT ladder. After being “cut” the two halves are “glued” together
(physical indices are contracted).

a one-dimensional system and thus the physical spins already
represent the boundary. In such a case, we do not need to
resort to the PEPS formalism but we can also study other
model Hamiltonians besides the AKLT one. For example, we
consider the su(2)-symmetric Heisenberg ladder Hamiltonian
of S = 1/2 [Fig. 2(a)],

HHeis =
∑
〈n,m〉

Jn,mSn · Sm, (18)

where the exchange couplings Jn,m are parametrized by
some angle θ ; i.e., Jleg = cos θ (Jrung = sin θ ) for nearest-
neighbor sites n and m on the legs (rungs) of the ladder.
Although the ground state has no simple PEPS representation,
it can be obtained numerically by standard Lanczos exact
diagonalization techniques on finite clusters of up to 14 × 2
sites.15 Similarly to the AKLT two-leg ladder [Fig. 2(b)],
it possesses a finite magnetic correlation length ξ which
diverges when θ → 0 (decoupled chain limit). The opposite
limit θ = π/2 (θ = −π/2) corresponds to decoupled sin-
glet (triplet) rungs (strictly speaking, with zero correlation
length).

For infinite systems, we are also interested in the behavior
of Hb along a quantum phase transition. To this aim, we also
consider a distorted version of the AKLT model, and we define
a family of Hamiltonians

H (�) =
∑
〈n,m〉

Qn(�)Qm(�)P̃n,mQn(�)Qm(�), (19)

where Qn(�) = e−4�S2
z,n . Note that the Hamiltonian is trans-

lationally invariant and has u(1) symmetry. As � increases, it
penalizes (nematic) states with Sz = 0, and thus the spins tend
to take their maximum value of S2

z . As we show, there exists a
critical value of � where a quantum phase transition occurs.
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A. Two-leg ladders: Comparison between AKLT and
Heisenberg models

Let us start out with the su(2)-symmetric � = 0 AKLT
model in a two-leg ladder configuration, where ρ� corresponds
to the state of one of the legs; that is, we take Nh = 2, � = 1,
and all spins have S = 3/2 as shown in Fig. 2(b). The
Hamiltonian is gapped,22,23 and the ground state is a PEPS
with bond dimension D = 2. The tensors corresponding to
the two legs, l and r , coincide and are given by rm

α1,α2,α3
=

〈sm|α1,α2,α3〉, where αi = ±1/2, and |sm〉 is the state in
the symmetric subspace of the three spin-1/2 with Sz|sm〉 =
m|sm〉, m = −3/2, − 1/2,1/2,3/2.

We first examine the entanglement spectrum of Hb com-
puted on a 16 × 2 ladder. It is shown in Fig. 4(b) as a function
of the momentum along the legs, making use of translation
symmetry (the vertical direction is periodic) enabling us
to block-diagonalize the reduced density matrix in each
momentum sector K . Note that it is also easy to implement
the conservation of the z component Sz of the total spin so
that each eigenstate can also be labeled according to its total
spin S. The low-energy part of the spectrum clearly reveals
zero-energy modes at K = 0 and K = π consistent with the
conformal field theory of central charge c = 1.

It is of interest to compare the two-leg AKLT results to the
ones of the two-leg S = 1/2 Heisenberg ladder (18) sketched
in Fig. 2(a) and investigated in Ref. 15. Figure 4(a), obtained
on a 14 × 2 ladder for a typical parameter θ = π/3, shows the
entanglement spectrum of ρ� which, again, is very similar
to that of a single nearest-neighbor Heisenberg chain. As
mentioned in Ref. 15, in the first approximation, varying the
parameter θ (and hence the ladder spin-correlation length) only
changes the overall scale of the energy spectrum. Hence, it has
been suggested15 to connect this characteristic energy scale to
an effective inverse temperature βeff .

FIG. 4. (Color online) Entanglement spectra of Hb (with respect
to the ground-state energy ξ0) vs total momenta K in the chain
(vertical) direction. (a) Two-leg (14 × 2) quantum Heisenberg ladder,
(b) two-leg (16 × 2) AKLT ladder, and (c) eight-leg (16 × 8) AKLT
ladder. The eigenvalues are labeled according to their total spin
quantum number using different symbols (according to the legend
on the graph).

The above results strongly suggest that Hb is “close” to
a one-dimensional nearest-neighbor Heisenberg Hamiltonian.
To refine this statement and make it more precise, we perform
an expansion in terms of su(2)-symmetric extended-range
exchange interactions,

Hb = A0Nv +
∑
r,k

Ar Sk · Sk+r + RX̂, (20)

where RX̂ stands for the “rest,” i.e., (small) multispin
interactions. The amplitudes Ar can be computed from simple
trace formulas,

Ar = 4

Nv

tr

{
Hb

∑
k

σ z
k σ z

k+r

}/
2Nv , (21)

requiring the full knowledge of the eigenvectors of Hb (i.e., of
σb). The value of A0 is fixed by some normalization condition,
e.g., tr σb = 1. Assuming X̂ is normalized as an extensive
operator in Nv , i.e., 1

Nv
tr{X̂2} = 2Nv , the amplitude R is given

by

R2 = 1

Nv

tr
{
H 2

b

}/
2Nv − NvA

2
0 − 3

16

Nv/2∑
r=1

A2
r . (22)

The coefficients Ar and R of two-leg Heisenberg ladders are
plotted in Fig. 5(a) as a function of the parameter θ , in both the
Haldane (Jrung < 0, i.e., ferromagnetic) and the rung singlet
phases (Jrung > 0, i.e., antiferromagnetic). Generically, we find
that Hb is not frustrated; i.e., all couplings at odd (even) dis-
tances are antiferromagnetic (ferromagnetic), Ar > 0 (Ar <

0). Clearly, the largest coupling is the nearest-neighbor one

(a)

(b)

FIG. 5. (Color online) (a) Amplitudes Ar of the (isotropic) spin-
spin couplings up to distance r = 7 of the effective boundary Hamil-
tonian of a quantum Heisenberg two-leg ladder in the Haldane and
rung singlet phases vs θ . (b) Ratio of the same amplitudes normalized
to the nearest-neighbor coupling (r = 1). Computations are carried
out on 12 × 2 (open symbols) and 14 × 2 (closed symbols) systems.
Note that when θ → π/2 (decoupled rung singlets), Ar/A0 → 0 for
r � 1 and all the weights of the reduced density matrix become equal
to 2−Nv (A0 = ln 2).
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FIG. 6. (Color online) Two-leg quantum Heisenberg ladders:
ratio of the amplitudes |Ar | by the nearest-neighbor amplitude A1

plotted using a logarithmic scale as a function of r for different values
of θ . (a) Antiferromagnetic and (b) ferromagnetic leg couplings (the
rung couplings are antiferromagnetic in both cases).

(r = 1). Figure 5(b) shows the relative magnitudes of the
couplings at distance r > 1 with respect to A1. These data
suggest that the effective boundary Hamiltonian Hb is short
range, especially in the strong rung coupling limit (θ → π/2)
where |Ar ′/Ar | → 0 for r ′ > r . The amplitude A1 of the
nearest-neighbor interaction can be identified to the effective
inverse temperature βeff which, therefore, vanishes (diverges)
in the strong (vanishing) rung coupling limit.

Next, we investigate the functional form of the decay of the
amplitudes |Ar | with distance. The ratio |Ar |/A1 versus r is
plotted (using semilog scales) in Figs. 6(a) and 6(b) for 12 × 2
and 14 × 2 Heisenberg ladders, respectively, with different
values of θ . Similar data for a 20 × 2 AKLT ladder is shown
in Fig. 7(a), providing clear evidence of exponential decay of
the amplitudes with distance:

|Ar | ∼ exp (−r/ξb). (23)

The Heisenberg ladder data are also consistent with such
behavior (even though finite size corrections are stronger than
for the AKLT case, especially when θ → 0 or π ). It is not clear,
however, how deep is the connection between the emerging
length scale ξb and the two-leg ladder spin correlation length
ξ . Note that the latter can be related15 to some effective thermal
length associated to the inverse temperature βeff ∝ A1.

Thanks to the PEPS representation of their ground state,
AKLT ladders can be (exactly) handled up to larger sizes
than their Heisenberg counterparts (typically up to Nv = 20),
enabling a careful finite size scaling analysis of the boundary
Hamiltonian (20). As shown in Fig. 8(a) for two-leg (Nh = 2)
ladders, we observe a very fast exponential convergence of the
coefficients Ar with the ladder length Nv ,

|Ar | = A∞
r + c1 exp

(
−Nv

c2

)
, (24)

where c1 and c2 are two positive adjustable parameters. Hence,
one gets at least seven (three) digits of accuracy for all distances
up to r = 5 (r = 7) in the thermodynamic limit Nh → ∞.

FIG. 7. (Color online) AKLT ladders: (a) Ratio |Ar |/A1 plotted
using a logarithmic scale as a function of r . Results are approximation
free for finite Nh while the Nh → ∞ limit is obtained by finite size
scaling [see Fig. 8(b)]. (b) Comparison with

√
dr+1/d2 (solid symbols)

computed (see text) on a two-leg and infinitely long (Nh = ∞)
cylinder.

In fact, as pointed out previously, the boundary Hamiltonian
Hb should not contain only two-body spin interactions.
However, the total magnitude of all leftover (multibody)
contributions, R, is remarkably small in the AKLT two-leg
ladder; as shown in Fig. 8(a), R < A4. In fact, the full
magnitude of all many-body terms extending on r + 1 sites
is given by

√
dr+1 and can be compared directly to |Ar |

(after proper normalization). Figure 7(b) shows that
√

dr+1/d2

and |Ar |/A1 are quite close, even at large distance. Note,
however, that multibody interactions are significantly larger in
the boundary Hamiltonian of the Heisenberg ladder, as shown

FIG. 8. (Color online) (a) Finite size scaling of the amplitudes Ar

for a two-leg AKLT ladder vs 1/Nv (Nv = 14, 16, 18, 20). (b) Finite
size scaling of the amplitudes Ar for Nh-leg AKLT ladders vs 1/Nh

at fixed Nv = 16 (open symbols) or Nv = 18 (solid and + symbols).
(c) Von Neumann (VN) entropy per unit length [normalized by ln(2)]
vs 1/Nh at fixed Nv = 16.
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in Fig. 5 (although no accurate finite size scaling analysis can
be done in that case).

B. Nh-leg AKLT ladder

Now we consider the AKLT model on an Nh-leg ladder
configuration; we take � = Nh/2. The spins in the first and
last legs have S = 3/2, and the corresponding tensors coincide
with the ones given above. The rest of the spins have S = 2, and
the corresponding tensor is Am

α1,α2,α3,α4
= 〈sm|α1,α2,α3,α4〉,

where αi = ±1/2, and |sm〉 is the state in the symmetric
subspace of the four spin-1/2 with Sz|sm〉 = m|sm〉, m =
−2, − 1,0,1,2 [see Fig. 2(c)]. An example of a four-leg ladder
and of a schematic representation of ρ� is shown in Fig. 3.

Let us now follow the same analysis (20) of the boundary
Hamiltonian as we did for the case of two legs. The decay
with distance of the coefficients Ar are reported in Fig. 7(a)
for four-, six-, and eight-leg AKLT ladders. Clearly, the decay
is still exponential with distance for all values of Nh studied but
the characteristic length scale associated to this decay (directly
given by the inverse of the slope of the curve in such a semilog
plot) smoothly increases with Nh.

Next, we perform a careful finite size scaling analysis in
Fig. 8(b) to extract the Nh → ∞ limit of all Ar . We have access
to cylinders of perimeter Nv = 16 (Nv = 18) with horizontal
lengths Nh = 2, 4, 6, and 8 (Nh = 2 and 4) for which an exact
contraction of the tensors can be done. Apart from the case
when the distance r along the boundary approaches Nv/2,
Ar (Nh) depends very weakly on Nv and can be well fitted
according to

ln
(|Ar |/A∞

r

) = − c3

Nh

exp

(
−Nh

c4

)
, (25)

where c3 and c4 are two positive adjustable parameters. This
extrapolation is very accurate up to r = 5, while reasonable
estimates can still be obtained for r = 6 and r = 7. The extrap-
olated values of A∞

r are reported in Fig. 7(a), which shows that
Ar also decays exponentially fast with r in an infinitely long
cylinder (Nh = ∞). The characteristic emerging length scale
is estimated to be still very short, around one lattice spacing.

Finally, we compute the von Neumann entanglement
entropy defined by SVN[

√
ρ�] = −tr{√ρ� ln

√
ρ�} with the

appropriate normalization tr{√ρ�} = 1. SVN scales like Nv

(area law) and is bounded by Nv ln 2. Figure 8(c) shows
that the entropy converges very quickly with Nh to its
thermodynamic value, which is very close to the maximum
value. The entanglement of the two halves of the AKLT
cylinder is therefore very strong. Note that very similar results
are obtained using ρ� instead of

√
ρ�.

C. Thermodynamic limit and phase transitions

Now we consider the Nv,Nh → ∞ for the deformed AKLT
model in order to investigate the phase transition. We compare
some of the results with the two-leg ladder as well. The spins
in the first and last legs have S = 3/2, and the rest have S = 2.
The corresponding tensors are defined according to

lmα1,α2,α3
= rm

α1,α2,α3
= 〈sm|Q(−�)|α1,α2,α3〉,

(26)
Am

α1,α2,α3,α4
= 〈sm|Q(−�)|α1,α2,α3,α4〉,

FIG. 9. (Color online) AKLT model with finite “nematic” field
�: (a) Relative amplitude

√
dr+1/d2 in a two-leg ladder plotted using

a logarithmic scale as a function of r and (b) the same for an infinitely
long cylinder (Nh = ∞). From bottom to top, � is incremented from 0
to �max by constant steps. (c) Effective temperature βeff [see Eq. (27)]
vs � for the two cases reported in (a) and (b). All results are obtained
for Nv = 16 (Dc = 50, and 100 iterations such that the tensors C

already converge).

where αi = ±1/2, and |sm〉 is the state in the symmetric sub-
space of the three (four) spin-1/2 with Sz|sm〉 = m|sm〉, m =
−3/2, − 1/2,1/2,3/2 (m = −2, − 1,0,1,2), respectively.

We use the approximate procedure sketched in Sec. III C.
In particular, for Nv larger than the correlation length, the
obtained tensors Cn

α,β are independent of Nv . We have
considered those tensors (with Dc = 50 and 100 iterations)
and built σb and Hb out of them. Note that the su(2) symmetry
is explicitly broken by a finite � so that it becomes more
convenient to use the variable dn of Eq. (14) instead of Ar to
probe the spatial extent of Hb. We recall that (dn)1/2 is the mean
amplitude of all interactions acting at distance r = n − 1. We
have plotted in Fig. 9 all dn, n � Nv/2, for Nv = 16 as a
function of �. As � increases, we see that the interaction
length of the effective Hamiltonian increases and one sees
a long-range interaction appearing. This indicates that we
approach a phase transition. For the case of the ladder, the
interaction length remains practically constant for the same
range of variation of �.

Similarly to the investigation of the Heisenberg ladder,15 it
is interesting to define an effective inverse temperature via the
amplitude of the nearest-neighbor interaction,

βeff = 8

√
d2

3
, (27)

where the prefactor is introduced conveniently so that βeff =
A1 in the su(2)-symmetric limit � = 0. As seen in the inset
of Fig. 9, the inverse temperature of the ladder scales linearly
with �. For the infinite cylinder, no singularity of βeff is seen
at the crossover between short- and long-range interactions.

Next, we plot the inverse correlation length as a function
of � both for one dimension (i.e., an infinitely long ladder)
and for two dimensions (i.e., Nv = Nh = ∞) in Fig. 10(a),
obtained with Dc = 150 and 100 iterations. (No differences
are observed by taking Dc = 50 and 50 iterations.) Clearly,
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FIG. 10. (Color online) (a) Inverse correlation length ξ−1 vs �

for both an AKLT two-leg ladder and an infinitely long cylinder
(Nh = ∞). These data correspond to the infinite circumference limit,
i.e., Nv = ∞. The arrow marks the phase transition in the infinitely
long cylinder. Comparison with the inverse of the emerging length
scale ξb is obtained by fitting the decay of the coefficients of Hb plotted
in Fig. 9(a) as

√
dr+1/d2 ∼ exp (−r/ξb). (b) Truncation error in the

Nh → ∞ procedure. The results are compared with those obtained
with Dc = 150, and 100 iterations have always been used.

the divergence of ξ (i.e., ξ−1 = 0) shows the appearance
of a phase transition at � = 0.0061 in two dimensions. In
contrast, ξ−1 never crosses zero in the case of the ladder (i.e.,
in one dimension). We have compared ξ with the “emerging”
length scale ξb obtained by fitting the decay of the coefficients
of Hb as

√
dr+1/d2 ∼ exp (−r/ξb) on Nv = 16 two-leg and

infinitely long (i.e., Nh = ∞) cylinders. In the two-leg ladder,
we see that the divergence of the correlation length ξ for
� → ∞ results from the interplay between (i) a (moderate)
increase of the range ξb of the Hamiltonian Hb and (ii) a
linear increase with � of the effective temperature scale βeff ,
therefore approaching the Teff → 0 limit when � → ∞. This
contrasts with the case of two dimensions (Nv = Nh = ∞)
where the divergence of ξ occurs at finite effective temperature
when Hb becomes sufficiently long range. However, it is
hazardous to fit the decay of the coefficients of Hb to obtain its
functional form at the phase transition. Finally, in Fig. 10(b)
we have plotted the truncation error made by taking different
Dc in the limit Nh → ∞, and, again around � ≈ 0.006, the
error increases. This is consistent with the expectation that,
as Hb contains longer-range interaction, the boundary density
operator σb requires a higher bond dimension to be described
as a TN state.

V. NUMERICAL RESULTS FOR ISING PEPS

We now continue by considering the Ising PEPS introduced
in Ref. 19. They all have bond dimension D = 2 and exhibit
the Z2 symmetry of the transverse Ising chain. They depend
on a single parameter, θ ∈ [0,π/4]. For θ ∼ π/4 one has a
state with all the spins pointing in the x direction, whereas
for θ ∼ 0 the state is of Greenberger-Horne-Zeilinger (GHZ)
type (a superposition of all spins up and all spins down). In
the thermodynamic limit (Nv,Nh → ∞) for θ ≈ 0.35 they

FIG. 11. Entanglement spectrum of a 16 × 2 Ising PEPS ladder
vs momentum along the ladder leg direction. Comparison between
(a) θ = 0.2 and (b) θ = 0.5 using the same energy scale. (c) Zoom in
of the low-energy part of (b).

feature a phase transition, displaying critical behavior, where
the correlation functions decay as a power law. Thus, by
changing θ we can investigate how the boundary Hamiltonian
behaves as one approaches the critical point.

A. Two-leg ladders

The tensors corresponding to the two legs, l and r , coincide
and are given by rm

α1,α2,α3
= am(α1)am(α2)am(α3), where m =

0,1, αi = ±1/2, and am(α) are parametrized as a0(−1/2) =
a1(1/2) = cos θ and a0(1/2) = a1(−1/2) = sin θ .

As seen in Fig. 11, the entanglement spectrum of the two-leg
ladder is gapped for all θ values and resembles that of an Ising
chain (equally spaced levels) with small quantum fluctuations
revealed by the small dispersion of the bands. The effective
inverse temperature, qualitatively given by the gap (or the
spacing between the bands), decreases for increasing θ .

The interaction length of the boundary Hamiltonian for
the ladder is displayed in Fig. 12(a). The strength of the
interactions decays exponentially with distance for all values
of θ . As we increase this angle, one only observes a decrease
of the interaction length. Note that, as opposed to the AKLT
models studied in the previous sections, d1 
= 0. Indeed, there
always exists a term with a single Pauli operator σx , describing
an effective transverse field in Hb. Thus, that Hamiltonian is
given by a transverse Ising chain in the noncritical region of
parameters.

We have also plotted the inverse correlation length ξ−1

as a function of θ in Fig. 13 (open blue dots). Although the
correlation length increases as θ decreases, it only tends to
infinity in the limit θ → 0, as it must be for a GHZ state. No
signature of a phase transition is found otherwise.

B. Thermodynamic limit and phase transitions

We now move to the case of an infinitely long cylinder.
As above, to grow the cylinder in the horizontal direction,
one considers rank 5 tensors, which here take the form
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FIG. 12. (Color online) Ising PEPS: Relative amplitude
√

dn/d1

in (a) a two-leg ladder and (b) an infinitely long (Nh = ∞) cylinder as
a function of n for θ varying from 0.1 to ∼0.51 with constant intervals
(0.1, 0.1585, 0.2171, 0.2756, 0.3342, 0.3927, 0.4512, and 0.5098,
from top to bottom). Logarithmic scales are used on the vertical axis
in both (a) and (b). Inset shows the ratio of the effective transverse
field

√
d1 over the effective Ising nearest-neighbor coupling

√
d2 vs

θ for Nh = ∞ (Dc = 50 and 100 iterations). All results are obtained
for Nv = 12.

Am
α1,α2,α3,α4

= am(α1)am(α2)am(α3)am(α4), using the same ap-
proximation scheme with 100 iterations as before.

The parameters dn describing the boundary Hamiltonian Hb

behave very differently in the ladder and infinite cylinders as
shown in Fig. 12. While for the Ising PEPS ladder Hb remains
short ranged with exponential decay of dn versus n, the infinite
cylinder shows a transition toward long-range interactions,
suggesting the existence of a phase transition. This is very
similar to what occurred in the AKLT distorted model.

FIG. 13. (Color online) Ising PEPS: Inverse correlation length
ξ−1 vs � for both two-leg ladder and infinitely long cylinder
(Nh = ∞, Dc = 150 and 100 iterations). These data correspond to
the infinite circumference limit, i.e., Nv = ∞. The arrow marks the
phase transition in the infinitely long cylinder. Comparison with the
inverse of the emerging length scale ξ−1

b obtained by fitting the decay
of the coefficients plotted in Fig. 12 as

√
dn ∼ exp (−n/ξb).

As long as Hb remains short range, the density matrix ρ�

can be (qualitatively) mapped onto the thermal density matrix
of an effective quantum Ising chain (including a “family” of
transverse-like fields) and, therefore, no ordering is expected
(at finite effective temperature). However, a phase transition
can appear when Hb becomes long ranged as in the case for an
infinitely long cylinder. This is evidenced by the behavior of
correlation lengths computed for the two-leg and infinitely
long (Nh = ∞) cylinder and reported in Fig. 13. These
correlation lengths are compared to the respective emerging
length scales ξb characterizing the decay of

√
dn with n. In

the two-leg ladder case, ξb increases quite moderately when
θ → 0 (ξb ∼ 1), so the divergence of the correlation length ξ

in this limit is only attributed to a vanishing of the effective
temperature scale Teff . In contrast, as for the AKLT model, the
phase transition in two dimensions occurs at finite (effective)
temperature at the point where ξb → ∞.

In summary, these results evidence that, whenever we
approach a phase transition, the interaction length of the
boundary Hamiltonian increases.

VI. TOPOLOGICAL KITAEV CODE

Let us finally consider systems with topological order. We
focus on Kitaev’s code state:25 It can be defined on a square
lattice with spin-1/2 systems (qubits) on the vertices, with two
types of terms in the Hamiltonian,

hX = X⊗4, hZ = Z⊗4 (28)

(where X and Z are Pauli matrices), each of which acts on the
four spins adjacent to a plaquette, and where the hX and hZ

form a checkerboard pattern [see Fig. 14(a)]. The ground-state
subspace of the code state can be represented by a PEPS with
D = 219; a particularly convenient representation is obtained
by taking 2 × 2 blocks of spins across hZ-type plaquettes and
jointly describing the spins in each block by one tensor of the
form26

Ai1,2,i2,3,i3,4,i4,1
α1,α2,α3,α4

=
{

1 if ix,x+1 = αx+1 − αx mod 2 ∀ x,

0 otherwise.
(29)

Here, ix,x+1 denotes the spin located between the bonds αx and
αx+1 (numbered clockwise), as shown in Fig. 14(b). It can be
checked straightforwardly that the resulting tensor network is
an eigenstate of the Hamiltonians of Eq. (28). Excitations of
the model correspond to violations of hX terms (charges) or
hZ terms (fluxes), which always come in pairs.25

We put the code state on a cylinder of Nh × Nv tensors (i.e.,
2Nh × 2Nv sites), where we choose boundary conditions

|χθ ) = cos
θ

2
|0)⊗Nv + sin

θ

2
|1)⊗Nv . (30)

This yields a state which is also a ground state of hb
Z = Z⊗2

terms at the boundary, but not of the corresponding X⊗2

boundary terms; in other words, charges (Pauli Z errors)
can condense at the boundaries of the cylinder.27 The full
Hamiltonian—including the hb

Z terms at the boundary—has
a twofold degenerate ground state which is topologically
protected, and where the logical X and Z operators are a
loop of Pauli X’s around the cylinder and a string of Pauli Z’s
between its two ends (where they condense), respectively.
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(a)

(b)

α

α

α
⊗

α

FIG. 14. (Color online) (a) Checkerboard decomposition in the
Kitaev code. Spin-1/2 are represented by (red) dots at the vertices of
the square lattice. X and Z operators act on the four spins of each
type of (shaded and nonshaded) plaquettes. (b) PEPS representation
of the Kitaev code (see text).

To compute ρ�, we start by considering the PEPS on the
cylinder without boundary conditions (30), i.e., with open
virtual indices at both ends (labeled B and B ′). Cutting the
cylinder in the middle leaves us with σBL, the joint reduced
density operator for the virtual spaces at the boundary, B (or
B ′), and the cut, L (or R). From Eq. (29), one can readily infer
that the transfer operator for a single tensor is 1⊗4 + X⊗4 and,
thus,

σBL = σB ′R ∝ 1⊗Nv ⊗ 1⊗Nv + X⊗Nv ⊗ X⊗Nv , (31)

where the two tensor factors correspond to the B (B ′)
and L (R) boundary, respectively. Imposing the boundary
condition |χθ )(χθ |, Eq. (30), at B (B ′), we find that (up to
normalization)

ρ� ∝ (1 + sin2 θ ) 1⊗Nv + (2 sin θ ) X⊗Nv ,

which is the thermal state ρ� ∝ exp[−βeffH�] of H� =
−sign(sin θ ) X⊗Nv at an effective inverse temperature

βeff =
∣∣∣∣tanh−1

[
2 sin θ

1 + sin2 θ

]∣∣∣∣ .
The fact that H� acts globally is a signature of the topological
order, and it comes from the fact that measuring an X loop
operator gives a nontrivial outcome (namely sin θ ). Note that
the entropy S(ρ�) increases by one as 1/βeff goes from zero
to infinity. This can be understood as creating an entangled
pair of charges |vac〉 + f (βeff)|c,c∗〉 across the cut, thereby
additionally entangling the two sides by at most an ebit and
subsequently condensing the charges at the boundaries.

Instead of considering σL, one can also see the topological
order by looking at σBL: It is the zero-temperature state of
a completely nonlocal Hamiltonian X⊗Nv ⊗ X⊗Nv which acts
simultaneously on both boundaries in a maximally nonlocal
way; this relates to the fact that the expectation values of any
two X loop operators around the cylinder are correlated.

Let us point out that systems with conventional long-range
order behave quite differently, even though they also exhibit

correlations between distant boundaries. Consider the spin-1/2
Ising model without field, which has a PEPS tensor

Ai
α1,α2,α3,α4

= δi,α1δα1,α2δα2,α3δα3,α4 .

The resulting local transfer operator is |0)(0|⊗4 + |1)(1|⊗4 and,
thus,

σBL = |0)(0|⊗Nv + |1)(1|⊗Nv .

By imposing boundary conditions at B, one arrives at

ρ� = sin θ |0)(0|⊗Nv + cos θ |1)(1|⊗Nv ,

which is the thermal state of the classical Ising Hamiltonian

H (β) = −
∑

i

ZiZi+1 − log tan θ

2βNv

∑
i

Zi

for β → ∞. Thus, for the Ising model, ρ� is described by a
local Ising Hamiltonian rather than by a completely nonlocal
interaction as for Kitaev’s code state. The same holds true for
σBL, which is the ground state of a classical Ising model with-
out field: while it has correlations between the two boundaries,
they arise from a local (i.e., few-body) interaction coupling
the two boundaries rather than from terms acting on all sites
on both boundaries together. Correspondingly, the long-range
correlations in the Ising model can be already detected by
measuring local observables instead of topologically nontrivial
loop operators as for Kitaev’s code state.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have introduced a framework which allows
us to associate the bulk of a system with its boundary in
the spirit of the holographic principle. To this end, we have
employed the framework of PEPS, which provides a natural
mapping between the bulk and the boundary, where the latter
is given by the virtual degrees of freedom of the PEPS. This
framework allows us to map the state of any region to a
Hamiltonian on its boundary in such a way that the properties
of the bulk system, such as the entanglement spectrum or
the correlation length, are reflected in the properties of the
Hamiltonian. Since our framework also identifies observables
in the bulk with observables on the boundary, it establishes
a general holographic principle for quantum lattice systems
based on PEPS.

In order to elucidate the connection between the bulk system
and the boundary Hamiltonian, we have numerically studied
the AKLT model and the Ising PEPS. We found that the
Hamiltonian is local for systems in a gapped phase with
local order, whereas a diverging interaction length of the
Hamiltonian is observed when the system approaches a phase
transition, and topological order is reflected in a Hamiltonian
with fully nonlocal interactions; thus, the quantum phase
of the bulk can be read off the properties of the boundary
model.

Our holographic mapping between the bulk and the
boundary in the PEPS formalism has further implications. In
particular, the contraction of PEPS in numerical simulations
requires that the boundary operator be approximated by
one with a smaller bond dimension, which can be done
efficiently if the boundary describes the thermal state of
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a local Hamiltonian, i.e., for noncritical systems. Also,
since renormalization in the PEPS formalism requires that
we discard the degrees of freedom in the bond space with the
least weight,28 the duality allows us to understand real-space
renormalization in the bulk as Hamiltonian renormalization on
the boundary.

Our techniques can also be applied to systems in higher
dimensions, and in fact to arbitrary graphs, to relate the
boundary of a system with its bulk properties. The mapping
applies to arbitrary regions in the lattice, such as simply
connected (e.g., square) regions used, for instance, for the
computation of topological entropies. Also, relating the bulk
to the boundary using the PEPS description can be generalized
beyond spin systems by considering fermionic or anyonic
PEPS,29 as well as continuous PEPS in the case of field
theories.30,31 Finally, when studying edge modes, the one-
dimensional system which describes the physical boundary
is given by a matrix product operator acting on the virtual
boundary state and, thus, the relation between bulk properties

and the virtual boundary implies a relation between the
properties of the bulk and its edge mode physics.
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