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We analyze translationally invariant insulators with inversion symmetry that fall outside the current established
classification of topological insulators. These insulators exhibit no edge or surface modes in the energy spectrum
and hence they are not edge metals when the Fermi level is in the bulk gap. However, they do exhibit protected
modes in the entanglement spectrum localized on the cut between two entangled regions. Their entanglement
entropy cannot be made to vanish adiabatically, and hence the insulators can be called topological. There is a
direct connection between the inversion eigenvalues of the Hamiltonian band structure and the midgap states
in the entanglement spectrum. The classification of protected entanglement levels is given by an integer A\,
which is the difference between the negative inversion eigenvalues at inversion symmetric points in the Brillouin
zone, taken in sets of 2. When the Hamiltonian describes a Chern insulator or a nontrivial time-reversal invariant
topological insulator, the entirety of the entanglement spectrum exhibits spectral flow. If the Chern number is
zero for the former, or time reversal is broken in the latter, the entanglement spectrum does not have spectral
flow, but, depending on the inversion eigenvalues, can still exhibit protected midgap bands similar to impurity
bands in normal semiconductors. Although spectral flow is broken (implying the absence of real edge or surface
modes in the original Hamiltonian), the midgap entanglement bands cannot be adiabatically removed, and the
insulator is “topological.” We analyze the linear response of these insulators and provide proofs and examples of
when the inversion eigenvalues determine a nontrivial charge polarization, a quantum Hall effect, an anisotropic
three-dimensional (3D) quantum Hall effect, or a magnetoelectric polarization. In one dimension, we establish
a link between the product of the inversion eigenvalues of all occupied bands at all inversion symmetric points
and charge polarization. In two dimensions, we prove a link between the product of the inversion eigenvalues
and the parity of the Chern number of the occupied bands. In three dimensions, we find a topological constraint
on the product of the inversion eigenvalues thereby showing that some 3D materials are protected topological
metals; we show the link between the inversion eigenvalues and the 3D Quantum Hall Effect, and analyze the

magnetoelectric polarization (6 vacuum) in the absence of time-reversal symmetry.
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I. INTRODUCTION

One of the most active fields of research in recent years has
been the study of nontrivial topological states of matter. The
paradigm example of such a state is the quantum Hall effect,
with its integer (IQHE) and fractional (FQHE) versions. More
recently, examples of topological phases that do not require
external magnetic fields have been proposed, the first being
Haldane’s Chern insulator model.! Although this state has not
been experimentally realized, a time-reversal invariant (TRI)
version has been proposed and discovered.”™

Recent work in the theory of topological insulators>™
showed that an important consideration is not only which
symmetries the state breaks, but which symmetries must be
preserved to ensure the stability of the state. A periodic
table classifying the topological insulators and supercon-
ductors has been created. The table organizes the possible
topological states according to their space-time dimension
and the symmetries that must remain protected: time-reversal,
charge conjugation, and/or chiral symmetries.””'! The most
interesting entries in this table, from a practical standpoint,
are the two- and three-dimensional TRI topological insulators
which have been already found in nature>™® These are
insulating states classified by a Z, invariant that requires
an unbroken time-reversal symmetry to be stable. There are
several different methods to calculate the Z, invariant,>7->-12-10

1098-0121/2011/83(24)/245132(39)

245132-1

PACS number(s): 73.20.At, 73.43.—f

and a nontrivial value for this quantity implies the existence
of an odd number of gapless Dirac fermion boundary states
as well as a nonzero magnetoelectric polarizibility in three
dimensions.”!’

The current classification of the topological insulators
covers only the time-reversal, charge conjugation, or chiral
symmetries and does not exhaust the number of all possible
topological insulators. In principle, for every discrete symme-
try, there must exist topological insulating phases with distinct
physical properties, and a topological number that classifies
these phases and distinguishes them from the “trivial” ones.
So far, in our discussion we have used the term “topological”
cavalierly so before proceeding we should ask what makes
an insulator topological? We start by first defining a trivial
insulator: This is the insulator that, upon slowly turning off
the hopping elements and the hybridization between orbitals
on different sites, flows adiabatically into the atomic limit. In
most of the existent literature on noninteracting topological
insulators, it is implicitly assumed that nontrivial topology
implies the presence of gapless edge states in the energy
spectrum of a system with boundaries. However, it is well
known from the literature on topological phases that such
systems can theoretically exist without exhibiting gapless edge
modes.'® Hence the edge modes cannot be the only diagnostic
of a topological phase and, consequently, the energy spectrum
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alone, with or without boundaries, is insufficient to determine
the full topological character of a state of matter. In the bulk of
an insulator, it is a known fact that the topological structure is
encoded in the eigenstates rather than in the energy spectrum.
As such, one can expect that entanglement—which only de-
pends on the eigenstates—can provide additional information
about the topological nature of the system. However, we know
that topological entanglement entropy (or the subleading part
of the entanglement entropy),'>~! the preferred quantity used
to characterize topologically ordered phases, does not provide
a unique classification, and, moreover, vanishes for any non-
interacting topological insulator, be it time-reversal breaking
Chern insulators or TRI topological insulators. However, as we
will see, careful studies of the full entanglement spectrum?
helps in characterizing these states.?>3

The total entanglement entropy can be continuously de-
formed to zero for trivial insulators, since the atomic limit to
which every trivial insulator can be adiabatically continued
(by the above definition) is completely local and has flat,
featureless bands. We could therefore suggest that a nontrivial
topological state in a noninteracting translationally invariant
insulator should be defined as having an entanglement entropy
that cannot be adiabatically tuned to zero. However, even
this definition cannot be entirely correct, as the entanglement
entropy strongly depends on the nature of the cut made in the
system. Let us briefly review this result. For a single-particle
entanglement spectrum with eigenvalues {£,} the entanglement
entropy is determined via

Sent = — Z [Salnéy + (1 — &)In(l — &,)]. ey

Taking IQH states on the sphere, the many-body wave function
is a single Slater determinant of occupied Landau orbitals,
and hence an orbital cut®> would result in zero entanglement
entropy since all orbitals are fully occupied or unoccupied.
This leads to a set of {£,} which are all 0’s or 1’s and do not con-
tribute to Seq. Similarly, for a translationally invariant Chern
or TRI topological insulator on a lattice, a momentum space
cut would always give zero entanglement entropy since the
Hamiltonian is diagonal in this basis. A spatial cut, however,
would show midgap bands in the entanglement spectrum of
both the IQHE and the topological insulator case (i.e., a set of
eigenvalues spanning the “gap” between 0 and 1) similar to the
ones in the real energy spectrum,?3?42%:30:32.34 These midgap
states give large contributions to the entanglement entropy.
In fact, for such states, the entanglement entropy for the
spatial cut cannot be made to vanish by any adiabatic changes
in the Hamiltonian. We hence propose that a translationally
invariant insulator can be classified as topological if it cannot
be adiabatically connected to a state with zero entanglement
entropy for at least one kind of cut of the system. Explicitly,
an insulator should be characterized as topological if it has
protected midgap states in the single-particle entanglement
spectrum that cannot be pushed to eigenvalues O or 1 by any
adiabatic changes of the Hamiltonian.

In the current paper we analyze the physics of insulators
with inversion symmetry based on the above definition. Our
purpose is twofold: (i) we use these insulators to illustrate
interesting properties of the entanglement spectrum, and
(ii) we discuss topological electromagnetic response properties
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of these insulators which are controlled solely by the inversion
eigenvalues of the occupied bands. While some of the
inversion-symmetric insulators exhibit protected edge modes
in the energy spectrum with boundaries (e.g., a Chern insulator
with inversion symmetry), most do not. However, they can
still be topological because their entanglement spectrum for a
spatial cut exhibits protected midgap bands of states. This was
first pointed out for three-dimensional (3D) strong topological
insulators with inversion symmetry and soft time-reversal
breaking in Ref. 29. Although it was indicated in Ref. 29
that the entanglement spectrum cannot distinguish between a
TRI and inversion invariant topological insulator, and one with
TRI slightly broken (compared to the bulk gap), we show that
it can distinguish these states.

In Sec. III we explicitly show that inversion symmetric
topological insulators have two types of entanglement spectra,
both with protected midgap states. The characteristic which
distinguishes the two types of entanglement spectra (and the
two cases from Ref. 29) is the presence or absence of spectral
flow. For nontrivial TRI or Chern insulators the entanglement
spectrum exhibits spectral flow, very much like their energy
spectra. Heuristically this means that the filled and empty
bulk states are connected via an interpolating set of states
which are localized in real space on the partition between the
two entangled regions. Spectral flow in the energy spectrum
implies spectral flow in the entanglement spectrum. However,
if time reversal is broken for TRI topological insulators, or for
T -breaking insulators with vanishing Chern number, we show
that such spectral flow is interrupted in both the energy and
entanglement spectra, and the occupied bands are disconnected
from the unoccupied ones. One could then assume that, in
systems without a continuous spectral connection between
the bulk entanglement bands, one could push all the midgap
entanglement bands to entanglement eigenvalues 0,1, and
hence to a trivial insulator with vanishing entropy on every
cut. We find this not to be the case for special classes
of inversion symmetric insulators distinguished by a set of
inversion eigenvalues that change sign between two inversion
symmetric points in the Brillouin zone. In this case, while most
entanglement eigenvalues can continuously be deformed to 0
or 1, there is a set of protected midgap states/bands which
give the insulator nonzero entanglement entropy (even when
the spectral flow has been destroyed). For the case of time-
reversal and inversion invariant topological insulators, these
protected states were shown in Ref. 29 to exist even when time
reversal is weakly broken, indicating that inversion symmetry
is important. One of our main results is a formula relating
the number of protected midgap bands in the entanglement
spectrum to the inversion eigenvalues of the system at inversion
symmetric points [Eq. (64)]. In fact, at inversion symmetric k,
and for cuts which separate the system into two equal halves,
the entanglement spectrum has protected entanglement edge or
surface modes at exactly & = 1/2. This means that for this case
there is no finite-size level repulsion (splitting) between these
modes which is a common feature for the energy spectra of
real boundary or interface states. Even if the original system
has other topological invariants, such as the Chern number,
or the TRI Z, invariant, which are all trivial, the number
of protected entanglement edge modes can be nonzero. We
illustrate many of these properties via examples in Sec. V. As
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a guide to the reader, it may be better to skip Sec. III on a first
reading. Sections II, IV, and V are more physically motivated
and build on the conventional treatment of symmetry protected
topological insulators. Section IIT only need be studied if one
is interested in the entanglement spectra of such systems.
The main results of our work on entanglement are written
in Secs. [IIC 5, III C 6, and III D and are preceded by a review
of the entanglement spectrum and some explicit proofs of
our claims.

As for our second focus, in Sec. IV we analyze the physical
response of a subset of these inversion symmetric insulators,
and show important implications for charge polarization, the
parity of the Chern number, the 3D quantum Hall effect,
and the topological magnetoelectric polarizability. Namely,
given the set of inversion eigenvalues for the occupied bands
at all inversion symmetric points in the Brillouin zone,
we provide explicit, compact formulas and complementary
derivations for determining the physical responses which only
depend on the inversion eigenvalues. In particular, we show
the following: In one dimension, the product of inversion
eigenvalues over all occupied bands and over all inversion
symmetric points is related to the quantized charge polarization
[Eq. (68)]. In two dimensions, the product over the inversion
eigenvalues determines the parity of the Chern number of
the occupied bands [Eq. (93)]. In three dimensions, we show
several things: First, we prove a topological restriction for
the product of inversion eigenvalues of any insulator: it
must always equal +1. As such, some inversion symmetric
systems are topologically protected metals, which cannot be
made insulating with weak scattering. Second, we show that,
depending on the product of inversion eigenvalues in different
inversion symmetric planes, we will have 3D quantum Hall
effects on different planes in the sample [Eq. (106)]. We
then show that several inversion symmetric systems can
exhibit a quantized magnetoelectric polarizability, even though
the Hamiltonian may not be adiabatically continuable to a
time-reversal invariant topological insulator [Eq. (110)]. In
addition, we offer an alternative perspective by showing that
some of the inversion topological invariants are equivalent
to the wave-function monodromy, which in principle is an
experimentally measurable quantity [Eq. (91)].

Finally in Sec. V we end the paper with several examples
of interesting insulators and corresponding numerical results.
While most of the examples we chose have a topological
response connected with an inversion topological invariant, we
stress that the presence of midgap states in the entanglement
spectrum is not intrinsically related to the presence of a
nontrivial topological response. For example, two identical
copies of a strong-topological insulator with inversion and
time-reversal symmetry has a trivial Z, invariant and thus a
trivial response. However, this system will exhibit protected
midgap entanglement states. So, while some inversion in-
variant insulators have protected topological responses, some
do not. The situation is even more complicated: In several
cases, we prove that inversion eigenvalues by themselves
cannot uniquely determine the response. We can show that
a nontrivial quantum spin Hall state and two copies of a
Chern insulator each with Chern number unity have identical
inversion eigenvalues but obviously represent very different
states of matter. The question of relating all the inversion
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eigenvalues to a response function remains, in the cases where
possible, still unsolved.

II. PRELIMINARIES

Let us start our discussion with some observations for
simple two- and four-band model Hamiltonians, which will
be referenced throughout the paper and serve to illustrate
the methods of analysis we propose for inversion symmetric
insulators. The properties of the models that we discuss are
only dependent on a generic inversion symmetry and not
on other symmetries present “accidentally” in these simple
models.

Two-band model. The two-band model is

0=y [ci#cﬁl +He +cld+ m)c%cx] :

X

where «, m are two parameters and &, are Pauli matrices. The
model is symmetric under the inversion operation ¢, — 63¢_.
The Bloch representation of H, takes the simple form

ﬁz(k) = a cosk + sin(k)é; + (1 + m — cos k)63, 2)
and the inversion is implemented by the operator P = &3:

63H (k)63 = H(—k). 3

H, is gapped, except when m = —2 or 0. The energy spectrum
of the model with open boundary conditions is presented
in Figs. 1(a) and 1(b), for « = 0 and m = F1, respectively.
Throughout this paper, P, will denote the projector onto the
occupied bands at momentum k&, which is a K x K matrix
(K = total number of bands), whose entries depend on k.
The two special points ki,, = 0,7 where ﬂz(k) is mapped
onto itself by inversion will play a special role in the following
discussion. We are going to examine the (nonzero) eigenvalues
2(0) and ¢(rr) of Pr_gP Py and P_, PPy, respectively,

(@) (b)

%1 E1
0.5 0.5
0 0

FIG. 1. (Color online) Energy spectra for the simple 1D two-
band model with open boundary conditions for (a) « = 0m = —1
(nontrivial) (b) « = 0 m =1 (trivial). Entanglement spectra for the
two cases are shown in (c) and (d), respectively, for a half filled Fermi
sea ground state with periodic boundary conditions.
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for the three different insulating phases of H,. What we find
is the following:

MH¢O)y=¢@r)=—1,form > 0.

2)¢0)=¢(r) =41, form < 2.

B3¢0 =—-¢m)=+1,-2<m <0.

We can form a Z, topological invariant:

xe=[] @, €

kiny,i € ocCc.

which is topologically stable since one cannot change its value
without closing the gap of the Hamiltonian. The expression
of xp is similar to invariants formed for time-reversal and
inversion invariant topological insulators in two and three
dimensions.’

For the model of Eq. (2), xp takes the values yp = +1
for the insulating phases with m ¢ [—2,0], and xp = —1 for
m € [—2,0]. A direct calculation indicates that the phase with
xp = —1 displays a single end mode at each end of a system
with open boundaries, while the phases with xp = +1 do
not display any end modes. This simple model indicates that,
indeed, systems with inversion symmetry do possess nontrivial
topological phases that, for this simple case, can be classified
by the xp invariant. As we shall see in Sec. IVA, xp can
be linked to a physical response of the system, namely the
electric charge polarization, but it cannot completely classify
the topological phases of a system with inversion symmetry,
even in one dimension.

Four-band model. It is instructive to repeat a similar analysis
on a four-band inversion symmetric model. For this we use
the following Hamiltonian, written directly in the Bloch
representation:

H,(k) = sin(k)["} + bsin(k) + (1 —m — cosk)[o + 84
+ € cos(k)(1 + Iy), 5)

where [ =02 @, [ =1®t", g=1®t%, and [y =
o* ® °. The Pauli matrices t%,0¢ act in the orbital and
spin spaces, respectively. Hy(k) is symmetric under inversion,

()
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which is implemented by P = [y, and is gapped except for
a few values of the parameters b, §, €, and m. Note that this
system also has an accidental time-reversal symmetry with
T =(ic” ® 1)K (where K is complex conjugation), but this
can be broken without affecting the stability of the topological
state or removing the midgap modes in the entanglement
spectrum. The two lower energy bands are assumed occupied,
and in this case PyP Py and P, PP, are 4 x 4 matrices, each
displaying two nonzero eigenvalues ¢;(0) and ¢; (), i = 1,2.
We are going to present the inversion eigenvalues for the
insulating phases of the model. There are six such phases (we
discuss only five of them) and their energy spectra with open
boundary conditions are shown in Figs. 2(a)-2(e). Choosing
representative values for the parameters, we find the following:
Casel.b=56=€ =0andm < O:

00) = 50) =+1, &) = oH0r) = +1, (6)

and consequently xp = +1.
Case2.b=56 =€ =0andm =0.5:

00)=00)=-1, &) =) =+1, @)

and consequently yp = +1.
Case3.b=1,6=0.7,¢e =0,and m =< 0:

00 =-160)=+1, &0 =o@) =+, (&)

and consequently yp = —1.
Case4.b=1,6=1.7,¢ =0,and m = 0.5:

00)=-1,0)=+1, @@=+l LH)=-1, )

and consequently xp = +1.
Case5.b=1,8=1.7,¢ =0.7,and m = 0.5:

5010)=+1, 60)=-1, &) =+1, L) =-1, 10)

and consequently yp = +1.

The four-band model reveals a far richer internal structure.
Case 1 can be identified with a trivial topological phase and,
based on the value of xp and on the presence of end modes seen

E
2
0
-2
(f) (9) (h 0] (i)
g 1 1 g £ £1
05 05 05 05 05
0 0 0 0 0

FIG. 2. (Color online) (a)—(e) Energy spectra for H, in cases 1-5, respectively, with open boundary conditions. (f)—(j) Entanglement spectra

for H, in cases 1-5, respectively, with periodic boundary conditions.
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in Fig. 2(c), one will be inclined to classify case 3 as anontrivial
topological insulator. But one will have clear difficulties with
labeling cases 2, 4, and 5. This is a clear indicator that xp alone
is not enough for a full classification of inversion symmetric
insulators in one dimension and that additional topological
invariants are needed for a complete picture.

To understand how we can classify cases 2, 4, and 5, it
is instructive to consider the atomic limit of the model. By
the atomic limit we mean the limit of the adiabatic process
in which the hopping terms between different sites are tuned
to zero. Since the bands are dispersionless and completely
local (disentangled) in this limit, it makes sense to talk about
the parity of an entire band (or orbital), since its inversion
eigenvalues at k = 0,7 are identical. For a model with two
occupied bands, the atomic limit can lead to the following
cases, depending on how the occupied atomic orbitals behave
under inversion: two occupied bands of parity + (labeled ++),
two occupied bands of parity — (labeled ——), and one band
of parity + and one band of parity — (labeled +—). These
three options give the complete classification of the trivial
inversion symmetric insulators with two occupied bands in
one dimension. Now, a direct calculation will show that cases
1, 4, and 5 can be connected to their atomic limits without
closing the insulating gap and that case 1 can be identified
with ++ trivial insulator, while both cases 4 and 5 can be
identified with the +— trivial insulator. Note that cases 4 and
5 can be adiabatically connected to each other without closing
the bulk insulating gap. The —— trivial insulator also appears
as a phase in our four-band model if we take the large m limit
and is the sixth insulating phase that we mentioned.

Based on the above discussion and on the absence/presence
of the end modes in Fig. 2, we can consider cases 1, 4, and 5
as completely trivial and case 3 as nontrivial, but case 2 is still
uncharacterized. It cannot be continued to the trivial atomic
limit without closing the bulk gap; it displays end modes, yet
xp = +1. To distinguish this phase we must carefully consider
the inversion eigenvalues. We see that when the k;,, points are
considered separately, xp(kiny) = [ [;cocc. Ci(kiny) = 1. Thus at
each ki,, there are an even number of bands with negative
inversion eigenvalues. In this situation, when for each k;,, the
local product over the eigenvalues of the occupied bands is
trivial (4-1), we can define a second invariant

= Tl

kiny,i€0cCC./2

i (kiny), (1D

where the product over bands is defined to be the product of
half of the bands with negative inversion eigenvalues at each
kiny. Note that we do not require there to be an even number
of filled bands, just an even number of negative inversion

eigenvalues. Out of the five cases discussed above, the X7(>2 )

invariant can only be defined for cases 1 and 2 for which X7(32 4
is trivial/nontrivial, respectively. As we shall see in Sec. IV C4
the X7(,2 ) invariant is more relevant and important for inversion
symmetric insulators in three dimensions and is not very useful
for characterizing 1D insulators. However, we will see in
Secs. [ITand IV [in Egs. (64) and (91)] that a different invariant,

N = ny —nal, 12)
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where n; and n, are the number of negative inversion
eigenvalues at k = 0 and 7, respectively, is more useful for
classifying the inversion symmetric insulators. This invariant
generically indicates how many times the insulating gap must
close when one takes the atomic limit. As we shall see,
N also gives the number of robust midgap modes in the
entanglement spectrum localized on a single cut boundary.
For our four-band model, N' = 0 for cases 1, 4, and 5; N =1
for case 3, and N = 2 for case 2. This integer invariant, while
not directly related to any physical response, will serve as
a useful characterization of inversion symmetric insulators
which cannot be adiabatically connected to an atomic limit.
To conclude, the two- and four-band explicit models show that
insulators with inversion symmetry can display topologically
distinct phases, i.e., they cannot be continuously deformed into
one another without closing the insulating gap.

We now wish to lay out the procedure for the classification
for a generic insulator with inversion symmetry, the individual
steps of which will be discussed in great detail in the remainder
of the paper. The first step is to calculate the inversion
eigenvalues of all the occupied bands of a given inversion
symmetric model. We are implicitly assuming that (i) we have
chosen a gauge such that the inversion operator takes the same
form at each Bloch momentum, (ii) we have fixed a choice of an
indivisible crystal unit cell. The first assumption is important
for keeping the eigenvalue sign convention the same at each
inversion invariant momentum point. The second assumption
is important for the definition of the entanglement cut, as will
be touched on in Sec. V A 3. The inversion eigenvalues alone
determine whether or not the system is equivalent to an atomic
insulator via a calculation of the invariant A/ [cf. Eq. (12), and
Sec. IV A]. If the system is in one dimension we can further
characterize a possible nontrivial electromagnetic response by
calculating xp, which determines the charge polarization (cf.
Sec. IV A). If the insulator is in two or three dimensions we can
calculate analogous invariants to test for topological responses
including an IQHE (Sec. IV B), a 3D QHE (Sec. IVC 1), ora
3D magnetoelectric polarizability (Sec. IV C4). It will turn out
that the invariant V" also determines a set of protected modes in
the entanglement spectrum, which clearly show the distinction
between trivial and nontrivial insulators [Sec. [II C 5, Eq. (64)].
This makes clear our scheme for characterizing inversion
invariant insulators.

III. ENTANGLEMENT SPECTRUM OF TOPOLOGICAL
INSULATORS WITH INVERSION SYMMETRY

In this section we discuss the bipartite single-particle
entanglement spectra for inversion symmetric topological
insulators. Previous work on entanglement spectra in trans-
lationally invariant topological insulators was carried out in
Refs. 23,29,30, and 34, where it was shown that the primary
contributions to entanglement arise from states localized near
the spatial cut between regions A and B. Additionally the
entanglement spectrum of disordered Chern insulators has
been investigated in Ref. 32. The first indication that the
presence of inversion symmetry is important for the structure
of the entanglement spectrum was presented in Ref. 29. Here
it was shown that, while the physical edge spectrum of a time-
reversal and inversion invariant topological insulator is gapped

245132-5



TAYLOR L. HUGHES, EMIL PRODAN, AND B. ANDREI BERNEVIG

in the presence of an added Zeeman field (which does not
close the bulk gap), the entanglement spectrum still contains
a gapless mode. The authors of that work link the existence
of midgap states for each cut in the entanglement spectrum
with the existence of a & = w vacuum characteristic of a TRI
nontrivial topological insulator.’ Although, as we mentioned
before (and will discuss more in Sec. IV), there is not always
a direct and unique connection between the physical response
and protected states in the entanglement spectrum, this was
an essential indication that inversion symmetry could support
topological states and that the properties of the entanglement
spectra were closely connected with inversion symmetry.

We start this section by detailing how to obtain the
entanglement spectrum for noninteracting insulators. We then
look at the entanglement spectrum of topological insulators
and show that there are two fundamental properties which
may be present: (i) protected midgap states at entanglement
eigenvalue £ = 1/2, and (ii) spectral flow in the entanglement
spectrum. In the presence of inversion symmetry, there can be
midgap states in the entanglement spectrum, and these may or
may not be connected to the entanglement bulk band edges via
a spectral flow pattern. Hence there are two distinct types of
nontrivial entanglement spectra. One example that we will see
is TRI topological insulator parent states, which are inversion
symmetric but which may have time reversal slightly broken.
The time-reversal invariant case has both protected midgap
modes and spectral flow, while the T-broken case only has
protected midgap modes.

For now we focus solely on insulators with a generic inver-
sion symmetry and show its consequences on the entanglement
spectrum. First, we show that if the system is cut exactly
in half, then there can be midgap states in the entanglement
spectrum located exactly at a value of 1/2. This is equivalent
to the statement that the midgap eigenvalues of the flat band
Hamiltonian, for cuts exactly in half, exhibit no finite-size
level repulsion. We then give an expression for the number of
1/2 eigenvalues in the entanglement spectrum as a function
of the numbers of negative inversion eigenvalues at inversion
symmetric points. Reference 29 also points out the existence
of multiple exact midgap states in the entanglement spectrum
but does not relate them to the difference of the inversion
eigenvalues between inversion symmetric points.

In everything presented below, it is very important to clarify
that by a spatial cut in a translationally invariant system we
mean a cut between primitive unit cells. This point is important
when we consider systems with partially broken translation
symmetry, e.g., the dimerized models in Sec. V. The physics
is independent of the choice of the unit cell. For example, in
a multiorbital system with a one-site unit cell, the cut should
not be made through the orbitals on the same site.

A. Obtaining the entanglement spectrum of an insulator

All of the models we study are free fermion Hamiltonians.
To find the single-particle entanglement spectrum we use
Peschel’s method.>> We begin by assuming a quadratic
Hamiltonian of an insulator with @ = 1... K quantum states
per site, which is translationally invariant:

H =Y c Hpcpy, (13)
k
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and the canonical transformation U that diagonalizes it:
U'HU = diag(E,). (14)
U is the matrix of eigenvectors u" (k) of energy E,(k):
Uk) = (' (k),u* (k) . .. u" (k)), (15)

where each u” (k) is a K-component vector. In general, we will
use k to denote the wave vector of components k,, k,, etc.

The relationship between the normal-mode operators ygy
and the electron creation operators is

Uap(k)ygr = g (k) Y- (16)

To calculate the single-particle entanglement spectrum we
simply need the correlation function:

Cak =

P = (cl cip), a7

ij

where cja creates an electron in state « at site i. The expectation

value is taken in the ground state. We can view this correlator
as a matrix C;;, with entries that depend on i and j. We have

Zetkll lk7] aklcﬂk7 Zelk(z 0 Z u”(k)*u%(k)

ky,ka neocc.

= i prt, (18)
k

or more compactly
Cij =y eI B (19)
k

We want to make a translationally invariant cut along the y
direction so that k, is still a good quantum number (k, is a
shorthand notation for all the momenta parallel to the cut,
so we are implicitly also treating systems in two and three
dimensions). Thus we have

Cijky) = % Z ezkx(tfj)pk*:’ky’ (20)
kx

where L is the total number of sites along the cut. Following
Peschel, for the entanglement spectrum, we restrict 7, to
be in region A, which is an explicit cut in position space.
There are several physical choices for cuts, but for topological
insulators we will show that a spatial cut can distinguish
between topological and trivial insulators.

As an aside, note that for an insulator the spectrally flattened
Hamiltonian matrix where the states above/below the gap are
flattened to energies +1/2 and —1/2, respectively, is given by

Hyalky k) = 1 — P i, (1)

The two above expressions of the correlation function and of
the flat band Hamiltonian explicitly show that the entangle-
ment spectrum, i.e., the eigenvalues of the restricted Cf‘j’s , are
identical to the energy levels of the flat band Hamiltonian with
open boundaries in region A shifted by a constant (since the
eigenvalues of f’k are the same as I3k*). As such, if the flat band
Hamiltonian is topological (i.e., has protected edge states),
then immediately we know the entanglement spectrum will
have states localized on the cut. This agrees with the results of
Ref. 30. The interesting thing is that the flattened Hamiltonian
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can have midgap states even when the unflattened one does
not.

B. Properties of the entanglement spectrum

We would like to first get an intuitive idea of how the
entanglement spectrum of an insulator should look. The one-
body correlation function over the full system (not only over
region A) is a projector. It is the real-space representation of
the projector onto the occupied bands, and as such only has the
eigenvalues 0 and 1. This is shown explicitly in Appendix A.
When we make a cut, the eigenvalues of the one-body
correlator deviate from 0,1 but most of them only deviate
slightly. However, in the topologically nontrivial case, we must
get entanglement “edge” modes similar to the edge states,
but localized on the entanglement cut, because we are really
diagonalizing the spectrum of the open boundary flat band
Hamiltonian of a topological insulator.

From now on we choose to cut the system exactly in half.
A cut exactly in half will enable us to show the existence of
exact degeneracies rather than levels that are split by finite-size
effects with degeneracies only arising in the thermodynamic
limit. Our choice of cut does not matter in the thermodynamic
limit, where it cannot physically matter whether we make a cut
exactly in the middle or away from the middle. It is, however,
the case that if we cut the system in two identical halves, we
can prove things exactly, otherwise we can just give arguments.

The one-body matrix, computed in the basis Cj,a |0), takes

the block form
Cr Cir )
C= , (22)
< Crr Cg

where C is the matrix of the left half (the one we diagonalize
for the entanglement spectrum) (Cp);; = Cf‘j’s ,i,j € A; Cgis
the matrix of the right half (C);; = C;¥,i.j € B; Cpg is the
€A, jeB;withCp =
CTLR. Since CA’,;j = CA‘,-+,,,_,'+,1, the following extra property is
true if the cut is exactly symmetric (in which case a proper
translation of A gives B):

left-right coupling, (Crg)ij = C,

Cr=Cp. (23)
Moreover, the projector property C? = C,
(?L CLR)(CL CLR>:<C;L CLR>’ (24)
Cir CiL Cre Cp Cir CL
gives the following additional identities:
CL(l = Cp) = C|xCrr,CLrCly

= CIJ[RCLRCLCLR 4+ CLrCrL =Crg. (25

Using the last equation, if i is an eigenstate of the entangle-
ment spectrum matrix C; with eigenvalue (probability) p,

Cuyr = py, (26)

then C gy is also an eigenstate with eigenvalue 1 — p:

CrLCrrY = Crpyr — CrLrCr
= CrrY¥ — pCrr¥y = (1 — p)Crry. (27)
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If p=1/2, ¥ and Cp gy have the same 1/2 entanglement
probability, but as we shall see, this does not automatically
mean that the p = 1/2 entanglement probability is doubly
degenerate because ¥ and Cy gy are not linearly independent,
in general.

1. Properties of entanglement spectrum with
time-reversal symmetry

The entanglement spectrum maintains the symmetries of
the original Hamiltonian. For example, for time-reversal
symmetry of the original Hamiltonian TH (T = A (—k)
(equivalently, Tﬁk T = ﬁ_k):

TCijtk)T™ = > TPy 77!
kx

— Zefikx(i*j)TISkt,knyl

ke

- —iki(i=j) p

=2 P L,
ke

=D MR =Gk, (28)
k,\’

so we see that the correlator also has time-reversal symmetry,
and for spin-1/2 particles for which T2 =—1, the entanglement
levels come in pairs at k and —k. Thus there are entanglement
Kramers’ doublets at time-reversal invariant points where k =
—k mod G where G is a reciprocal-lattice vector.

C. Inversion symmetric topological insulators

In this section we give explicit arguments that the entan-
glement spectrum of an insulator with inversion symmetry
(and without any other symmetry) can have midgap states
pinned at exactly 1/2, without level repulsion when cut exactly
in half. An integer number of such modes is robust without
splitting, so the classification of the entanglement spectra of
insulators with inversion symmetry is given by an integer Z
(compare with the Z, case where an even number of modes
would be unstable). As an example, in one dimension, if a
bulk insulator has a number n; of filled bands with negative
inversion eigenvalues at k = 0 and a number n; at k = 7, we
give explicit arguments that the entanglement spectrum for a
system with periodic boundary conditions (when the system
is cut exactly in half) will have 2|n; — n,| protected midgap
modes atexactly 1/2. In more than one dimension, there will be
conserved momenta parallel to the cut (say k), for an insulator
cut in the x direction. When cut exactly in half, there will be
2|ny — ny| zero modes situated at the Ky1 = —K& mod G,
for which, in the periodic bulk (before the cut), there were
n| negative inversion eigenvalues at (ky.,k,) = (O,K)',) and
n negative inversion eigenvalues at (k,,k,) = (n,K)l,). We
illustrate this explicitly with several examples in Sec. V.

1. Properties of entanglement spectrum with inversion symmetry

With inversion symmetry,

PHKP'=H(-k), P’=1, P=P', (9
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we can define a unitary matrix B;;(k), which connects the
bands at k and —k:

|lui(—=k)) = Bj;(k)Plu;(k)), (30)

where the indices i, j run over the occupied bands 1, ...,N.
In fact, by performing simple band crossings between the N
bands below the gap (which does not influence the physics
in the gap which depends only on the ground state), we can
make the bands nondegenerate, in which case we can use
B} (k) = ¢'?®)s;;, but we do not need to choose this gauge

here. Since ﬁk =nlEF — Fl(k)], where n(x) is the Heaviside
function, we have

PBP = Py, (31)
which can be used to show

'Péijp = Zeik(iﬁ)ﬁjk = CA’ji = étlj (32)
k

We now want to relate the appearance of these 1/2 eigenvalues
with the inversion eigenvalues of the occupied bands. We
first consider the one-dimensional case where we will be able
to infer the behavior of the insulator just from k, = 0,7. In
principle only two sites in the x direction should be enough
to reveal the physics. Of course, with just two sites, our cut
has to be made right in the middle of the two-site problem,
i.e., we are computing the entanglement spectrum of one site
vs the other site. This seems a bit problematic at first because
if we are looking for the properties of the energy spectrum in
a topological insulator phase the wave functions of the states
localized on each end will overlap and the degeneracy of these
low-energy end states will be lifted because of the small size.
Crucially, we show that the flat-band Hamiltonian does not
have such finite-size eigenvalue repulsion between the edge
modes even when these modes rest on top of each other on
the same site. That is, even if we bring the ends close to each
other, e.g., on the same site (which is the meaning of the
one-site entanglement spectrum), it is still true that the end
modes do not exhibit level repulsion and are degenerate. This
statement is true in higher dimensions where the end states
become propagating edge and surface states. We prove this
statement for several particular cases, which indicate that it
is true in the thermodynamic limit. We first show that for
one occupied band (we do not particularize to a specific
model), there are two midgap modes at exactly 1/2 if the
inversion eigenvalue at k = 0,7 is opposite. Then we repeat
this procedure for a chain of four sites cut in half. We then
show that for two occupied bands (we do not particularize
to a specific model), there are two midgap modes at exactly
1/2 if there is one inversion eigenvalues at k = 0,77 opposite
(while the other two are the same), whereas there are four
midgap modes at exactly 1/2 if both inversion eigenvalues
at k = 0 are opposite from the ones at k = 7 (i.e., at one
momentum both are negative and at the other momentum
both are positive). We again do this for a chain of two sites
cut in half, then for a chain of four sites cut in half. The
main conclusion to be drawn from this is that in the flat-band
Hamiltonian (entanglement spectrum), these midgap modes
do not experience eigenvalue repulsion. It is physically clear
that, although our proofs are only for two- and four-site flat
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band Hamiltonians (cut in half for the entanglement spectrum),
level repulsion will not set in for larger systems: level repulsion
between edge modes gets weaker as the distance between them
is increased. Finally, at the end, we look at the general case
of N occupied bands for the two-site problem and prove that
the number of 1/2 modes in the entanglement spectrum is
2|n| — n;| where ny,n, are the number of negative eigenvalues
at k = 0,7. As there is no level repulsion when all modes are
spatially on top of each other, we do not expect level repulsion
when the number of sites is increased to the thermodynamic
limit. We check this numerically for several examples with
larger system sizes (e.g., 100 sites). Our exercise shows that
time-reversal invariant insulators with inversion symmetry (or
even the case with 7 slightly broken) are not the only inversion
symmetric topological insulators with protected entanglement
midgap states. These are but one of a whole series of inversion
symmetric insulators with midgap entanglement modes.

2. One occupied band, two-site problem

First we look at a generic case with one occupied band, two
sites, and periodic boundary conditions. In this case, k space
contains only the points kK = 0,7. The wave function of the
occupied band is | (k)),

H(k)yri (k) = e(k)yn k), (33)

with inversion eigenvalues

Plyn(0) = ¢O)y1(0)),  Plyn(m)) = &)y ().

(34)

Since P is a unitary operator which squares to unity, we have
Pt =P(=P~") and by taking scalar products in the above
we have

[£(0) = CE@) (Y1 (O)]Y1 () = 0. (35)

Hence if £(0) = —¢ () (the eigenvalues can never be zero
due to det P = 1) we have (y¥{(0)|¥; (7)) = 0. Notice that the
Hamiltonian A (k) does not impose any restrictions on the wave
functions at different momenta k, i.e., at k = 0 and k = 7w we
are effectively diagonalizing independent Hamiltonians. What
allows us to relate wave functions at k = 0,7 is that they are
both eigenstates of the same matrix P (it is important to recall
that P is k independent).
For the two-site problem (i = 1,2),

. A A U
CL=C11=%ZP,(*=§(P(§‘~|—P;). (36)
k

The eigenstates of the original Hamiltonian have opposite
inversion eigenvalues then per the above:

Pyl ()) = PE1yn(0)) =0, (37)

which means that ¥{(0) and (), the original Hamiltonian
eigenstates, are also the eigenstates of the entanglement
spectrum, with two eigenvalues at 1/2:

CLly1(0) = 31¥1(0));  CLlyn(m)) = 3y (). (38)

We see that the original Hamiltonian can change, leading to
a change of ¥ (k), but as long as the inversion eigenvalues
remain fixed and opposite to each other, and as long as we can
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take the flat band limit (both of which mean no gap closing),
the eigenvalues of the entanglement spectrum will be fixed at
1/2. It does not matter what the actual explicit model for H k)
is. If the inversion eigenvalues at k = 0,7 are not opposite,
there is no reason why (1(0)|v1(;r)) = 0, and the 1/2 modes
might not exist or will not be protected.

3. One Occupied Band, Four-Site Problem

With one occupied band with opposite inversion eigen-
values, the two-site Hamiltonian has exact 1/2 modes in
the entanglement spectrum. This is the first indication that
the modes are stable and experience zero level repulsion.
We now show that the generic four-site Hamiltonian with
one occupied band also has exact 1/2 modes without level
repulsion. This strongly suggests that these modes are stable
in the thermodynamic limit, as long as the entanglement
spectrum is computed for a system cut exactly in half. But,
in the thermodynamic limit we know there can be no physical
difference between a cut in half and any other cut except
for exponentially suppressed finite-size level splittings. Thus
there will be asymptotic zero modes in the thermodynamic
limit regardless of the cut.

For the four-site problem, k space contains four momenta,
kj= %, Jj =0,1,2,3. Call the occupied eigenstate of the
Hamiltonian, as above |y (k)), I:I(k)l//l(k) = e(k)yr (k). For
a system cut in half, the entanglement spectrum is given by
diagonalizing the matrix C;; = C;_; withi,j = 1,2:

Ch Cn
Cp = A A . (39)
Ci, Cx
We have
Ci=Cn= 1P+ P+ P;,+ P =Co  (40)
Coo=3(P; - Pr+iP;,—iP; )=Ci. (41)

The eigenstate of C;. corresponding to the eigenvalue £ takes
the form (¥ 4,V ), which satisfies the equation

Cova+ Civp =&y, Clya+Covp =Eyp. (42)

Due to the presence of inversion symmetry, irrespective of the
inversion eigenvalues, we showed before that PC;;P = Cj; =

¢ ;'j, which renders the second equation of Eq. (42):

CiPYa+ CoPys = §PYs. (43)
We see that this is consistent with the first equation of

Eq. (42) if ¥p =mPy,, with m? =1. The eigenvalue
equation to solve is then

(Co+mC\Pya =Eva. (44)
Also because of inversion symmetry, we have that
Py, =PP;,P. (45)
For the one-band problem, we know that

PP =c(O)B);  PIP =P, (46)
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where ¢(0),¢(w) are the inversion eigenvalues at k = 0,7
of the occupied band (k). Hence to find the entanglement
spectrum we need to diagonalize the following operator:

F = {1+ mZO)]F; +[1 —me ()] P}
+ PEP(P +im) + PP (P —im)}.  (47)
For the half mode, we pick an ansatz,

Va = ay1(0) + by (), (48)

which we show can diagonalize F' for an appropriate choice
of a,b:

a=—[1+ im{(n)](%(%)‘%(n))
(49)

b=1[1+ imc<0>]<w1<%>

I/fl(o)>~

This choice of a and b makes (C’o +mC 1P)¥r4 independent
of both ¥(%), and Pv(%) in general (i.e., [13;/277(77+
im) + Pﬁ:/z(P —im)]ya =0), as it should in order for
our ansatz to be an eigenstate. YVith this choice 9f a,b
we find (by taking g{[1 +m¢O)F; +[1 —m& ()P }a)
that in general the entanglement spectrum eigenvalue is
dependent on (i, (0)|v;(;r)), and hence the mode is not fixed
at 1/2. However, if the inversion eigenvalues at k = 0,7 are
opposite ¢ () = —¢(0) then (Y¥1(0)|¥;(r)) = 0 and we find
the eigenvalue of the entanglement spectrum of our ansatz
to be

£ = 311+ mg(0)]. (50)

Recall that we have the liberty to choose the values of m = +£1,
which is equivalent to saying m = +£(0). If we pick m =
£(0), then our ansatz gives an eigenstate with entanglement
eigenvalue equal to exactly 1/2. The other choice leads to
& =0, so it is of no interest to us. The eigenstate at 1/2 is

(W a,e0PYra), where

Ya = i<w1 (%) ‘wmm}m«» + <1/f1 (%) ’w1(0>>wl(n).
1)

In the pathological case when (Y(5)|¥1(7)) =
(W1(DIY1(0) =0, both ¢1(0),4(r) are 1/2 modes,
but in general only their combination ¥4 gives a robust 1/2
mode.

A second stable 1/2 eigenvalue can be found by picking
m = ¢ () = —¢(0), but using a different ansatz:

L= dyn (%) + b Py, <%> (52)

With this choice for m, the F' matrix to be diagonalized is

HB: PP —ic O]+ PELP +ic O  (53)

After straightforward calculations, we find the exact 1/2 mode
to be

v = (%) + g (OYPY (%) (54)
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Thus for a completely generic Hamiltonian and its eigenstates
we have shown that for one occupied band, if the inversion
eigenvalues at 0,7 in the bulk are the opposite of each other,
there are two exact midgap states at 1/2 in the entanglement
spectrum. These midgap states have linearly independent
cigenstates: [Ya.£(O)PYal, [W}. — (O)PY,] and a7} as
above. The standard intuition about interface or boundary
states is that the eigenvalues repel less as the length of the
system is increased, and the entanglement spectrum for the
case analyzed here will have two exact 1/2 modes in the
thermodynamic limit, when cut exactly in half. Numerical
simulations on specific models agree. In the thermodynamic
limit, there can be no physical difference between a half cut
and a cut away from half, and the levels will asymptote to 1/2
in the infinite size limit if the cut is not exactly in half.

4. Two Occupied bands, Two-Site Problem

On our way to the most general case we now analyze the
two-site, two occupied band problem. This follows in the same
fashion as the previous example, except that we now have an
extra complication. Namely, there are more options for the sets
of occupied-band inversion eigenvalues.

We have the two occupied bands of the original Hamilto-
nian:

H(kyyi(k) = e (kg k), Hk)Wak) = e(k)ynak).  (55)

For k = 0,7 we generically have

(U1 (O)[¥2(0)) = (Y1) [Y2()) = 0. (56)

We denote the inversion eigenvalues for v (0), ¥(0), ¥ (),
Yo(m) by £1(0),82(0),¢1(),s2(m), respectively. The order
of the occupied inversion eigenvalues at each inversion
symmetric momentum can be changed without affecting the
topological structure so we assume that all negative inversion
eigenvalues are listed first. We now calculate the number of
midgap 1/2 eigenvalues in the entanglement spectrum. If the
number of negative inversion eigenvalues at k = 0 is the same
as the number of negative inversion eigenvalues at 7w (which
means the number of positive inversion eigenvalues is also the
same), it is easy to prove that in general there are no protected
1/2 modes because the entanglement eigenvalues depend on
the overlap of bands at the two inversion symmetric momenta
[cf. Eq. (62)]. If the number of negative eigenvalues at the
inversion symmetric points is different, then we distinguish
two cases:

Case 1. The number of negative eigenvalues at k = 0 differs
from the number of negative eigenvalues at k = 7 by +2 (i.e.,
they are both different):

£1(0)¢1(w) = £1(0)52(r) = £2(0)51 (1) = £2(0) 52 () = —1 (57)
implies
(Y1O)|Y1 () = (Y1(0)|P2(7r)) = 0,
(2(0)| 1 (7)) = (Y2(0)[a(r)) = 0.

The one-site entanglement spectrum obtained by cutting the
system in half is obtained by diagonalizing the operator

C = (P§ + P})/2 where Py = Y7, [¥:(0)) (:(0)], P} =
21'2:1 | (7)) (Y;(;r)|. Due to their inversion eigenvalues,

(58)
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eigenstates at w have zero eigenvalue under the projector at
0 (and vice versa) but unit eigenvalue under the projector
at w. We see that the modes at 1/2 in the entanglement
spectrum are given by exactly the occupied eigenstates of the
original Hamiltonian 1 (0), ¥»(0), ¥1(7), ¥»(r). There are
exactly four of them, twice the difference between negative
and positive eigenvalues at the two inversion symmetric points.

Case 2. The number of negative eigenvalues at k = 0 differs
from the number of negative eigenvalues at k = 7 by %1: this
implies that at one k point, both inversion eigenvalues are
identical. Without loss of generality, let this point be k =
and let the eigenvalue products be

21(0)¢1(r) = £1(0)82 () = —1,
$20)¢1(r) = 5005 () =1,

which renders the following inner products to be zero:

(39)

(U1 (0)1¥2(0)) = (Y1 (O)]Y1()) = (Y1 (0)]2(7)) = 0.

Consider the eigenvalue problem:

NP+ BHYa = aya. (60)

We expand the state 14 into the (nonorthogonal) set of

eigenstates ¥/1(0), ¥2(0), ¥ (), Yo (m):

[Va) =a1|¥1(0)) + a2|¥2(0) + b1 |[Y1()) + bz |2 (7).
(61)

As ¥1(0) is orthogonal with all the other eigenstates at
both &k = 0,7 since it has a different inversion eigenvalue,
it is then obvious to see that the first 1/2 mode solution
is (aj,az,by,by) = (1,0,0,0). To find another 1/2 mode, we
must expand in the three remaining eigenstates: |y¥4) =
ay |Y2(0)) + by |1 () + by |Ya()). There is a slight com-
plication with this expansion since nothing guarantees that the
states |¥»(0)) , [¥1()) , [¥2(r)) are orthogonal: in fact, in the
generic case, they are not. Moreover, it is not clear that they
are even linearly independent. We will assume that the states
are linearly independent. This is a perfectly valid procedure
since if the |, (0)) , | (7)) , |2 (7)) are not independent, we
will simply get a nontrivial null space. However, the nonzero
eigenvalues are still good eigenvalues of the entanglement
matrix. The matrix to diagonalize is

3 (nO)Yn()) (Y2 (0) |2 (m))
(2 (O)[Y1())* : 0 (62)
(2 (0)[Y2())* 0 1

2

with an obvious 1/2 eigenvalue for the state (a3,b1,b,) = (0, —
(V2(0)|[Yr2(7)), (Y2(0) |1 (7)) (a1 = 0). In the nongeneric
case when (Y2(0)|y2()) = (¥2(0)[¥1(7r)) = 0, ¥2(0) is the

other 1/2 eigenvalue. We have hence proved the existence of
two exact 1/2 eigenvalues for the two-site problem, cut in half,
when the difference between the number of negative inversion
eigenvalues at 0,7 is 1.

As in the one-band case, this argument can be extended
analytically to a system with four sites as shown in Appendix F,
indicating that the conclusions hold for chains longer than two
sites.

245132-10



INVERSION-SYMMETRIC TOPOLOGICAL INSULATORS

5. N occupied bands, two-site problem

We now show that the two-site problem with n; negative
inversion eigenvalues at k =0 and n, negative inversion
eigenvalues at k = 7 with a total number N of occupied bands
contains 2|n; — n,| zero modes in the entanglement spectrum
when a real-space cut is made on a system with periodic
boundary conditions (i.e., there are two cuts). The simplest
case, which should be obvious from our previous examples, is
that all the N inversion eigenvalues at k = 0 are identical and
are the opposite of the N eigenvalues at k = 7. In this case,
the projector at one of the inversion symmetric k’s annihilates
all the eigenstates at the other inversion symmetric k, and the
2N occupied eigenstates of the original two-site Hamiltonian
are also the eigenstates of the entanglement spectrum at fixed
eigenvalue 1/2. Due to their orthogonality, they are linearly
independent. From here it is clear that our formula is correct
for this case.

Now we will prove the more general formula. Let n; and
n, be the number of eigenvectors for the —1 eigenvalue of
13577166k and ﬁ;‘ Pﬁ;‘, respectively, and assume n; > n,. Recall
that K is the number of orbitals per site, so P is a K x K
matrix acting on CX where CX is a K-dimensional complex
vector space, i.e., a set of K-dimensional complex column
vectors. P has £1 eigenvalues and we denote the invariant
subspaces corresponding to the positive/negative eigenvalue
by Hi (H_ +H, = C¥).

Now the subspaces PyCX and P*C* are invariant under
the inversion operation P, and ﬁgC K'NH_ is precisely the
subspace spanned by the n; eigenvectors of ﬁ;Pﬁ; corre-
sponding to its negative eigenvalue. Similarly, 13;C KnmH_
is precisely the subspace spanned by the n, eigenvectors
of 13;,‘7313;‘ corresponding to its negative eigenvalue. Since
dim[2;C* NH_1=n; and dim[P;CX N'H_]=n,, with
ny > np, we can always find n; — n, vectors ¥, in f’g‘CK N
H_ that are orthogonal to any vector in ﬁ;C K'NH_. Since
these vectors are in 7 _, they are also orthogonal to any vector
in ﬁ;CK N H,. In other words, W,’s are ny — ny vectors in
ﬁg‘ CX perpendicular to all the vectors in 137;“ CX . Consequently,

CLV, = X(B; + PHY, = 1v,, (63)

for all n; — n, vectors V,. Following the same arguments, we
can find n| — n, vectors in ISJ’fC KN H, that are orthogonal to
PJCK , and consequently another set of n; — n, eigenvectors
with eigenvalue % In total, there are 2(n; — n;) robust modes
of Cp at 1/2. We remind the reader that the factor of 2 is
simply coming from the fact that we are cutting a periodic
system and thus there exist two separate cuts. For a more
explicit proof see Appendix B. As mentioned at the end of
Sec. II the number of exact 1/2 modes is equal to 2N [cf.
Eq. (12)]. This connection between the invariant A/ and the
protected modes in the entanglement spectrum is one of the
main results of the paper, namely

number of protected 1/2 modes per cut = N. (64)

6. Extension to higher dimensions

The extension to higher dimensions is just a matter of
reinserting the extra momenta which are conserved in the
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presence of the cut. As an example let us consider two
dimensions with an entanglement cut parallel to the y axis
so that k, is a conserved quantum number. The exact midgap
modes in the entanglement spectrum will exist only at
inversion symmetric points in the momentum parallel to the
cut, i.e., k, = 0,77. However, since bands become continuous
when k, is finely discretized, in the thermodynamic limit the
existence of 1/2 modes at these two discrete k points implies
the existence of midgap bands. The number of bands will be
equal to the number of 1/2 modes. These bands typically
disperse away from 1/2 but do not have to connect with
the “bulk” entanglement bands at entanglement eigenvalues
close to 0,1 (in the special cases of Chern insulators and
time-reversal symmetric nontrivial insulators, they do connect
and have spectral flow, as pointed out previously). However,
since the modes at 1/2 are robust upon changes in the original
Hamiltonian that do not close the band gap, the midgap
bands cannot be entirely pushed to the entanglement bulk
band edges at 0 or 1. This means the system is a nontrivial
insulator (i.e., Sep cannot be made to vanish) if the number
of negative (or positive) inversion eigenvalues is different
between inversion symmetric points. We would like to know
at which inversion symmetric k, the exact 1/2 modes will
occur. The answer is simple: there will be exactly 2|n; — n,|
1/2 modes at k, = 0 when the number of negative inversion
eigenvalues at (ky,ky) = (0,0) differs by |n; — ny| from the
number of negative inversion eigenvalues at (k,,k,) = (77,0).
Additionally there will be exactly 2|n} — n5| 1/2 modes at
ky = 7 when the number of negative inversion eigenvalues
at (ky,ky) = (0,7) differs by |n} —n}| from the number
of negative inversion eigenvalues at (ky,ky) = (7r,7). The
generalization to higher dimensions is the trivial extension
of this. We can think of this procedure in terms of a set of A/
invariants, one for each inversion invariant momentum. This
procedure is straightforward and we will not detail it here.

D. Spectral flow in the entanglement spectrum

As mentioned earlier in this section, the two important
features of the entanglement spectra of inversion symmetric
insulators are protected midgap modes, and spectral flow.
What we mean by spectral flow is a continuous connection
between the valence and conduction bulk entanglement bands
through the entanglement edge states [an example is seen
in Figs. 8(h) and 8(i)]. For a TRI topological insulator in
two and three dimensions, or for a Chern insulator in two
dimensions, the entanglement spectrum mirrors the energy
spectrum of the open-boundary Hamiltonian. In fact, we have
already shown an explicit map between the entanglement
spectrum and the energy spectrum of the open boundary
spectrally flattened Hamiltonian.?® This implies that if there is
spectral flow between the conduction and valence bands in the
energy spectrum then such a flow exists in the entanglement
spectrum. In fact, this is the only case where there is true
spectral flow in the entanglement spectrum. Out of the entire
set of inversion invariant topological insulators only a small
subset have spectral flow. Instead most nontrivial systems
simply exhibit protected midgap states (or bands) but these do
not continuously interpolate between the bulk entanglement
bands.
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There is a nice example that illustrates this dichotomy. Let
us consider the 3D strong topological insulator with both
inversion and time-reversal symmetries. If we preserve P
but break 7', spectral flow generically disappears from the
energy spectrum because gaps are opened in the surface-state
spectrum. The degeneracies that existed in the entanglement
spectrum at the time-reversal invariant momenta when T is
preserved are almost all broken, with the exception of the
protected degeneracy for states at £ = 1/2. This degeneracy
splitting breaks the spectral flow in the entanglement spectrum,
and opens gaps at the TRI momenta as shown for a specific
model in Figs. 9(h) and 9(i). As such, the entanglement
spectrum is capable of distinguishing the subtle difference
between topological insulators with 7" and P symmetry from
topological insulators with only P symmetry.

IV. LINEAR RESPONSE

To date, some of the most spectacular features of topologi-
cal insulators are their responses to external fields. The Chern
insulators exhibit a quantized Hall effect and the 3D TRI topo-
logical insulators exhibit a topological magnetoelectric effect.
The topological invariants which distinguish these states from
trivial insulators are directly connected with the corresponding
response coefficient. In fact, a whole ladder of topological
responses was uncovered in Ref. 9. With this precedent one
would hope that the inversion invariant topological insulators
would also exhibit some type of defining physical response.
However, this turns out to be true in only a limited set of
the inversion invariant topological insulators. The situation is
quite varied (remember that we only have generic access to the
information held in the inversion eigenvalues): Some insulators
have unique well defined topological responses, some systems
can exhibit one of several allowed topological responses, and
for others it is unclear if there is any topological response at all.
We will see examples of all three cases in Sec. V. In this section
though we focus on the first case where insulators do exhibit
a unique response which is the most interesting physical case.
We discuss responses in one, two, and three dimensions and
then we briefly mention how the general pattern might be
extended to higher dimensions to make contact with Refs. 9
and 11 in Appendix J.

A. 1D inversion symmetric insulators

The following discussion applies to a generic one-
dimensional K-band insulator with N occupied bands, and
with a generic inversion symmetry, i.e.,

PHK)P™ = A(—k), (65)

where the inversion matrix P is unitary and squares to the
identity

PiPp=1, PP=1. (66)

As explicitly shown in Appendix D, the charge polarization
P; of a 1D insulator behaves as

P, — —P + je (67)

under inversion, where j is a gauge-dependent integer. This
shows that the polarization of 1D systems with inversion
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symmetry can take only two values, 0 and e/2, modulo a
gauge-dependent integer multiple of ¢.> We will prove that
if the yp invariant, defined as the product of all inversion
eigenvalues of the occupied bands, takes the value 1, then
P; =0, and if yp = —1, then P; = e/2. More precisely, we
will establish that

. N
P = %ln |:,l] Gi(0)gi () | . (68)

The integer ambiguity of the logarithm is identical to the
integer ambiguity of the polarization.

. For this, we define the k-dependent N x N unitary matrix
B(k),

Bij(k) = (ui—x|Pluji), (69)

where the indices i and j run only over the occupied bands.
The inversion eigenvalues ¢;(0) and ¢;(;r) coincide with the
eigenvalues of the matrix B(k), when evaluated at the special
inversion k points k = 0 and . It is then obvious that the
determinant of l?(k) at these k;,y points is the product of the
inversion eigenvalues at that inversion invariant point:

N
det{ B(kin)] = [ ] &i(Kiny). (70)
i=1

We now turn to the calculation of the polarization,

g

P=-"| akAw). 1)
2

-7

where A(k) is the adiabatic connection:

Alk)y = —i ) (i | Vel ). (72)

ieocc

We will use the following important relation, which is proven
in Appendix E:

A(—k) = —A(k) + iTr[B(k)V, BT (k)]. (73)
The last term can be written in the equivalent form:
Tr[B(k)Vi BT (k)] = —ViIn(det[ B(k))). (74)

We can now proceed as follows:

p =5 / dK[A(K) + A(—K)]
2 0
= |7k Vanet By, (75)
2mi 0

with the final answer:
P = %[ln(det[%)]) — In(det[ BOO)])]. (76)
Tl

This, together with Eq. (70) and the fact that the determinants
can take only the values %1, so that det[lg’] =1/ det[I?], prove
the statement of Eq. (68).

We mention that similar arguments were used in Ref. 9
to classify 1D particle-hole symmetric insulators via a Z;
invariant. In fact, the Z, invariant found there is exactly the
value of the charge polarization modulo an integer. For a
1D model with both inversion and particle-hole symmetry,
such as the 1D lattice Dirac model, the invariants coincide.
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In the nontrivial phase, the 1D Dirac model exhibits midgap
energy modes bound to the ends of an open chain. The
requirement of particle-hole symmetry restricts these modes
to lie at zero energy if there are an odd number of them. An
even number on each end is not stable and the degeneracy can
be lifted, which is another manifestation of the Z, nature. The
minimal case is one mode on each end and with particle-hole
symmetry at half filling one mode is filled and one is empty.
This leads to an excess charge of +e/2 on the side with
the filled state and —e/2 on the empty side. If we break
particle-hole symmetry but keep inversion symmetry then
both modes can be empty or filled, but they are empty or
filled together because inversion symmetry connects the two
modes. This means that the excess charge is either +e/2 on
both ends or —e/2 on both ends. However, because of the
gauge variance of the polarization this is equivalent to the
polarization in the particle-hole symmetric case. Thus both
insulators have the same topological electric response. One
can form a complimentary argument by using the effective
response action for particle-hole symmetric insulators given
in Refs. 9 and 37:

1
Sert = 5 / dxdtPie""F,,, 7

where F),, is the field-strength tensor of the externally applied
electromagnetic field. The argument for the quantization of P,
is as follows. In the partition function the phase due to this term
is ¢/% and under particle-hole symmetry P; — — P;. Thus if
our system is to be particle-hole symmetric we must have
%St = 1. For constant P; the integral gives 27rn for integer
n and we have e*"" =1 and thus P, =0,1/2 mod Z
in dimensionless units. Since P; — —P; under inversion
symmetry the same argument holds and P, is quantized there
as well. A similar argument for magnetoelectric polarizability
of 3D insulators with inversion symmetry was given in Ref. 29.
As an aside, we recall that in one dimension we also had an
invariant X7(>2 ) which helped classify the four-band insulator
example. We do not know of any response related to this
invariant in 1D inversion invariant insulators.

Additionally, Eq. (68) can be derived using an alternative
approach based on a monodromy argument. The effect of a
magnetic flux & through a large one-dimensional ring can
always be gauged away by a transformation W—se '®W,
which is equivalent to a translation in k space by &. The
evolution of the states in response to an adiabatically slowly
varying magnetic flux can be understood from the evolution
of the Bloch states in response to an adiabatic translation of k
space.’® The monodromy U (k,ko) describes the evolution of
the occupied Bloch states when the & of the Bloch Hamiltonian
H (k) is adiabatically varied, and it is the unique solution of
the equation

d - N A A
iﬂU(k,ko) =[P, 0 Pr]U (k ko), (78)

with the initial condition U (ko,ko) = Isko, assuming that we
start the evolution from k.

The monodromy U (ko,ky) maps the space of occupied
Bloch states f’kOCK at ko into the space of occupied Bloch
states ﬁkCK at k. Since k = +m are the same, U(n, — )
takes the space P_,C¥ into itself, and is a unitary operator
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FIG. 3. (Color online) The adiabatic transport is carried over y,y .

that we call U, , where y is one of the paths shown in Fig. 3. U,
gives the change occurring after a full quantum of magnetic
flux has been pumped through the system. If bases {v;(k)}
were prechosen for all P,C¥X spaces, the matrix U; (k) =

(Y (k)| U (k,ko)|vr; (ko)) satisfies the parallel transport equation
d . A
K Uk) =i A(k)U (k), (79

where A(k) is the full non-Abelian adiabatic connection
discussed by Wilczek and Zee in Ref. 39. For a more detailed
discussion one can consult Ref. 40.

There is a direct relation between the determinant of the
monodromy and the line integral of the Abelian connection
(the trace of the full connection):

ks
det[U (ks ,k;)] = exp (i f ' Tr[A(k)]dk) ) (80)
ki

Indeed, working with predefined basis sets for P,CX and
breaking the interval ky,k; in small subintervals ky, k,, ...,
k;, we have, up to second-order corrections,
O(ks ki) = Uk kU (kskn—1) - - Ukt ki)
= [ +ilks — k) AK)] - U + ik — k)A(K))].
(81)
Taking the determinant on both sides and using some elemen-
tary identities, we obtain
det[U (k 7,k;)]
= (1 +itky — k)Tl AK)D - - (1 +iCkr — k) Tr{ Ak)])
= itk TrLAGT | gitki—k) TrIAG)] (82)
from which the identity of Eq. (80) follows. The identity is
valid in higher dimensions too.

Assuming kg = —m, a conjugation of Eq. (78) with the
inversion operator P gives

W(PUk, — )P~} = i[ Py, 8 P JPU(k, — m)P~!,

with the initial condition PU(—m, — 7)P~' = P(x). This is
just the equation for U(—k,7), which shows that PU (k, —
7)YP~! coincides with U(—k, 7). Equivalently we can think
that P sends y into ' in Fig. 3. Now obviously UV LA/yr equals
the identity, therefore

det(U, PO, P~ = 1. (83)

Using the elementary properties of the determinant, we
conclude that det[U},]2 = 1, hence det[U, | can take only two
values:

det[U,] = +1. (84)
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The following calculation will show that the cases
det[U, ] = %1 correspond to P; =0 and P; = % (mod Z),
respectively. Indeed,

det[U, ] = det[U (7r,0)0(0, — )] = det[U (z,0)PU (0, 7)P~']
= det[U (,0)PyP Py U(0,7) P, P P, ]. (85)

In the last line we have inserted the projectors f’oyﬂ to see

explicitly the spaces on which P is acting. Using again the

elementary properties of the determinant and the fact that
U@@,0)U(0,7) = 1, we obtain

det[U, ] = det[ PyP Pyl det[ P, P~ P, ] (86)
or
N
det(T, 1 = [ [ 6:(0)zi () (87)
i=1
and thus
e N
P] = %lndet[Uy] (88)

[cf. Eq. (80)].

For a topological insulator, no matter what definition one
uses, it is always the case that, when the hopping terms between
the neighbors are adiabatically turned off, that is, when one
takes the atomic limit, the insulating gap of the system closes at
some point in the process. One can investigate this issue using
the inversion eigenvalues directly, as we have focused on, but
here we see how the physical response enters into the picture.
Note that the inversion eigenvalues can be easily computed
for simple models, but may not always be available, especially
for complex materials. Py or U, are physically measurable, so
they can provide physical signatures of the nontrivial state. In
the atomic limit, the bands have no dispersion, so in this limit
UV is just the identity matrix. If Det[Uy] = —1, it is obvious
that U,, cannot be smoothly connected to the identity and the
insulator is topological. However, we also must note that if
det[Uy] = 1, it is not necessary that the insulator is trivial.

We can refine the investigation by asking when can Uy be
smoothly connected to the identity? For this, let us look again
at Eq. (85):

U, = U(z,0)PyPPyU(0,7) P, PP, (89)

The first term, U (7r,0)PyP PoU(0,7), is just PyPP, parallel
transported from k = 0 to k = . The parallel transport does
not alter the eigenvalues of P(0)P P(0), which are pinned at +1
(recall that P% = 1). The eigenvalues of P ()P P(xr) are also
pinned at 1. So what we have in Eq. (89) is a product of two
operators with eigenvalues pinned at +1 and because of that
the eigenvalues cannot change under any smooth deformation
of the Hamiltonian that keeps the insulating gap open and
preserves inversion symmetry. Now, if Uy can be deformed
into the identity, then U (7r,0) ﬁOP ﬁOU (0,7) can be turned into
the inverse of P, P P, and this requires that PyPPyand P, PP,
have identical eigenvalues, counting the degeneracy too. The
conclusion is this: if the set of inversion eigenvalues of
and P, PP,

PP P, (90)
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are not identical, then ij cannot be connected to the identity.
Since the eigenvalues are restricted to just =1 values, then the
following integer:

N = Te{ PP Py — P PP, 1)

tells how many eigenvalues are different for the two matrices
in Eq. (90). To reach the atomic limit, we need to flip N
inversion eigenvalues, and that will require a minimum of
N gap closings. This definition of A exactly matches the
definition in Eq. (12). Unfortunately, we were not able to
find an expression of the topological invariant A solely
in terms of the monodromy Uy, but we know there are
precisely A topological obstructions when trying to connect
the monodromy to the identity. The topological invariant N
also gives the number of robust edge modes seen in the
entanglement spectrum on a single cut as shown in Sec. III C 5.

B. 2D inversion symmetric insulators

The physical response of 2D inversion symmetric insulators
is much richer than those in one dimension. Based solely on
the inversion eigenvalues, one can define several invariants,
the first of which is the isotropic extension of xp to two
dimensions, i.e.,

XP = 1_[ &i (kinv),

kinysi €0CC.

92)

where ki, runs over all four inversion invariant k£ points. We
show that

xp = (=D,

where C is the first Chern number of the ground state. Thus
if xp is negative the system must be in a quantum Hall state,
and if it is positive it is in a state with an even Chern number,
which can be zero. Thus only if it is negative are we sure it is
in a topological insulator state.

We will prove the statement of Eq. (93) in two ways,
first using a band crossing argument and then a monodromy
argument. Let us begin by assuming we are in a trivial insulator
state in an atomic limit with N occupied bands and that we have
inversion symmetry. We can reach any nontrivial topological
insulator state from this limit through a series of Hamiltonian
deformations that will lead us through band crossings. Our
assumption of an atomic limit implies that xp = 41 initially.
If we want to generate xp = —1 we need to have an odd
number of band crossings between bands with opposite
inversion eigenvalues. Assume we have an odd number of
such crossings. This implies that there must be an odd number
of crossings at the inversion invariant points. This is true since
crossings occurring at noninvariant k are accompanied by a
crossing at —k always giving an even number of eigenvalue
switches, which will not affect the value of xp. Thus we
only need to consider the odd number of crossings occurring
at the invariant momenta. The generic Hamiltonian of each
crossing between opposite inversion eigenvalue states near an
inversion invariant momentumis H = p1o! + pr0y + mego>
where (pj,p2) is the momentum away from the inversion
invariant point, meg is a term parametrizing the distance to
the band crossing, and o is the inversion operator projected
onto the two crossing bands. Exactly at the inversion invariant

93)
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momentum the Hamiltonian reduces to mego> as it must in

order to commute with P there. As the crossing occurs megs
switches sign and an inversion eigenvalue of the occupied band
is changed. We note that this Hamiltonian is a 2D massive
Dirac Hamiltonian, which is switching the sign of the mass.
At such a crossing, the Chern number changes by £1 and thus
we see that going through an odd number of crossings changes
the parity of the Chern number. Thus if xp = —1 the parity of
the Chern number is odd since the parity is even in the initial
atomic limit, i.e., C; = 0. The inversion eigenvalues thus give
us a rough way to characterize the quantum Hall effect in an
insulator.

The corresponding monodromy argument proceeds as
follows. We consider the monodromy corresponding to the
path 012345610 in Fig. 4, starting from the middle of
the Brillouin zone and continuing on its rim. This path
can be also be viewed as the composition y + yp’ of the
paths y = 012340 and y’ = 045610, and the monodromy
corresponding to ¥ + Y’ can be written as a product of partial
monodromies:

Uysy = UpU16U65Uss Uy U3y U U %94

Since the products 010001 s ﬁlﬁ 054, 065 032, and 043 021 are all
equal to the identity, taking the determinant of Eq. (94) leads
us to conclude that det[Uyﬂ,r] = 1. This is not surprising and
is related to the fact that det[U,,/] = *7C [see Eq. (80)]
and the first Chern number is an integer.

The next observation is that inversion sends y into y’ and
consequently

det[U, 4, = det[U, PUyP] = det[U, |*. (95)

The conclusion is that the determinant of Uy can only take
the values £1. Since the path y encircles half of the Brillouin
zone, and the adiabaticAcurvature is symmetric when k — —k,
it is also true that det[U, ] = ¢’ [see Eq. (80)].
We now take a closer look at UV. Since inversion sends 10
into 40 and 20’ into 30°, we have
Uy = UnsUs3030 U201 U
= PUyPULPUxPUy:Us Us. (96)
Inserting the appropriate projectors to specify explicitly on
which spaces are the P operators acting, taking the determi-
nant, and using its elementary properties together with the fact
that U;; U ; equals the identity, we obtain
(=D = det[U, ] = detl Po,oP Po,o] detl Py P Py ]
x[det Py PPy 1det[ Py oP Py o], 97)
5 4 3

v v

b

6 1 2

FIG. 4. (Color online) The two paths y and y used in the
monodromy argument in two dimensions.
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which completes monodromy argument for Eq. (93).

We will briefly mention two other interesting inversion
invariants one can define in two dimensions. The first is
an anisotropic invariant defined by taking the product of
the inversion eigenvalues at only two invariant momenta
in the 2D Brillouin zone. We provide an example in Sec.
V with xp = 41 but where this anisotropic invariant is
nontrivial. This invariant has interesting implications for the
charge polarization, but there are some subtleties that we will
illustrate. To begin, assume we have an inversion invariant,
insulator Hamiltonian H (ky,ky) with N occupied bands such
that [TV, £(0,0)5;(0,7) = —1. This implies that the 1D
Hamiltonian ﬁ(O,ky) has a charge polarization P; = e/2
since this restricted Hamiltonian is inversion invariant. Now
we want to know if this nontrivial anisotropic invariant is
enough to specify the full polarization of the entire 2D system.
The answer is no. To see why, we slightly deform A (0,ky)
away from the k, axis. The 1D Hamiltonian A (8ky,ky) is
not generically invariant under inversion symmetry because
it gets mapped onto the Hamiltonian H (—08ky,ky) and thus
the polarization does not have to remain quantized with value
¢/2.% In fact, by the time we have deformed all the way to
the Hamiltonian H (7r,ky) the polarization, which must again
be quantized since this Hamiltonian does have inversion, can
be completely different. So while we can think of A (ky,ky)
as a gapped interpolation between ﬁ(O,ky) and H (7r,ky),
inversion symmetry, and thus the value of the polarization,
is not preserved along the interpolation. Intuitively this makes
sense because it is exactly when the polarization changes its
quantized value that the system has an odd Chern number. An
odd Chern number is allowed because a quantum Hall effect is
not forbidden by the requirement of inversion symmetry. Thus
if we have 2D inversion symmetry the anisotropic invariant
does not determine the 2D charge polarization.

As an aside, since we clearly know why inversion symmetry
fails, we immediately know how to fix the problem. We fix it by
requiring a reflection symmetry (i.e., parity symmetry) about
an axis, instead of inversion. Without loss of generality we can
have a reflection symmetry M such that MH (ky,ky) M -1 =
H (ky, — ky). We will see that the reflection eigenvalues will
specify the polarization in the y direction (for this choice
of reflection symmetry). First, we see that the inversion
invariant momenta are also reflection invariant momenta.
Thus [H (kiny),M] = 0, and we can label the states at these
points by their reflection eigenvalues which we will also call
i(kiny). Now let us assume the same setup as the previous
paragraph with ]_[lN:1 £(0,0)¢;(0,t) = —1. The point is that
now when we adiabatically deform away from the k, axis
the 1D Hamiltonian H (8ky,ky) is invariant under reflection.
Additionally, the y component of the polarization is quantized
as long as reflection is a good symmetry. Thus H (ky,ky) is
a gapped interpolation along which reflection symmetry is
preserved and thus the y component of the polarization is fixed
and quantized to e/2 for each 1D Hamiltonian. This argument
immediately implies that ]_[lNz 1 &i(,0)8(wr,m) = —1. Thus the
parity of the Chern number is always even when reflection
symmetry is required. In fact, it always vanishes because the
quantum Hall effect is incompatible with reflection symmetry.
Notice that the reflection eigenvalues do not uniquely specify
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the polarization in the x direction since the two eigenvalue
conditions can be satisfied by choosing ]_[IN=1 £i(0,0)¢;(,0) =
]_[fV=1 £;i(0,m)¢;(mw,m) = £1. Thus the anisotropic invariants in
the x direction can take either value.

The other invariant one can define is the isotropic extension
of X7(:2 ) to two dimensions. If xp = +1 and the product over
the inversion eigenvalues at every invariant momentum is
separately trivial then X7(:2 ) is well defined because there are
an even number of negative inversion eigenvalues at each
invariant momentum and by definition X;)z ) is the product over
half of those negative eigenvalues. This is the Z, topological
invariant, which indicates a quantum spin Hall effect’” when
an insulator has both inversion and time-reversal symmetry.
Unfortunately this topological invariant does not yield a unique
topological response. We can understand this in several ways.
By explicit construction take two decoupled copies of the
quantum anomalous Hall effect (QAHE) state each with C; =
1 to give an IQHE with C; = 2 or take two decoupled copies
of QAHE, one with C; = 1 and the other with C; = —1. The
first system breaks time reversal and still gives an IQHE while
the second preserves time reversal and will not give a quantum
Hall effect. These systems both have xy» = +1 but X;,z )= 1.
We can immediately see why this invariant does yield a
unique response in the presence of an additional time-reversal
symmetry because this requires the total Chern number to
vanish which only leaves the possibility of a quantum spin
Hall state. Thus it is time-reversal symmetry which restricts the
allowed physical response. We can understand this by a simple
symmetry argument as well. The quantum spin Hall effect is
even under both inversion symmetry (x,y) — (—x, — y) and
parity (x,y) — (x, — y). We see that in even space dimensions
inversion symmetry acting on the coordinates is a rotation.
The quantum Hall effect is even under inversion but odd under
parity. Thus having a quantum Hall effect is compatible with
inversion symmetry but not parity (and not time reversal). This
is why the inversion classification does not distinguish between
the doubled quantum Hall state and a quantum spin Hall state.
This type of ambiguity exists in every dimension where one
can define a Chern number invariant. However, as we saw with
the polarization, if we consider the eigenvalues of a reflection
symmetric Hamiltonian we can eliminate the possibility of a
nonzero Chern number thus leaving a quantum spin Hall state
as the alternative.

C. 3D inversion symmetric insulators

We show that the isotropic extension of xp in three
dimensions,

=[] &) (98)

kinysi €0cC.

where the product runs over all eight inversion symmetric k
points, is always trivial. We can first see this by using a band
crossing argument. Start from the atomic limit in which bands
have identical inversion eigenvalues at all inversion symmetric
points. For yp to be nontrivial (equal to —1) there has to be
an odd number of band crossings between bands of opposite
inversion eigenvalues at the inversion invariant momenta when
beginning from this trivial limit. Without loss of generality let
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us consider one crossing between two bands with opposite
inversion eigenvalues everywhere in the Brillouin zone. The
crossing can happen at either an inversion symmetric point (by
tuning one parameter) or at a noninversion symmetric point k
in the Brillouin zone. In the latter case, there are actually
two crossings at k and —k because of inversion symmetry.
To initially close the gap between the two bands one needs a
quadratic touching in at least one of the directions, otherwise
we would be creating a nonzero Chern number Fermi surface
(after gap closing) out of a zero Chern number surface (before
the closing, in the trivial limit). If the crossing starts at an
inversion symmetric point, the quadratic touching and the gap
reopening at the inversion symmetric point will switch the
inversion eigenvalues of the bands at that point and make
xp = —1. However, the system will no longer be an insulator:
it will have two crossings somewhere else in the Brillouin zone.
That s, although the gap has opened at the inversion symmetric
point, the gapless points have been moved away. The quadratic
touching effectively splits into multiple 3D Dirac points. In the
generic situation, there are two gapless points in the Brillouin
zone (BZ), with relative position fixed by inversion, and in
order to gap the system, we need to annihilate the two Dirac
points. Note that a 3D Dirac point is locally stable even if
inversion is not preserved. On a 2D surface surrounding a
3D Dirac point [ﬁlocal(k) =k;jAjjo;,(i,j = 1,2,3)], the Chern
numberis C = sgn[det(A;;)]. The degeneracy points are stable
unless two Dirac points of opposite Chern numbers annihilate.
Inversion symmetry forces the points at k, — k to have opposite
Chern numbers. So, by inversion, annihilation can only happen
at another inversion symmetric point, in which case inversion
eigenvalues are switched again to give xp = 1 for an insulator.
If the gap first closes at a nonsymmetric point k, we find
the same end result: Generically two Dirac points are created
close to k and two close to —k. They can annihilate in pairs,
always switching an even (possibly zero in this case, since the
four dirac points can annihilate two by two at noninversion
symmetric points in the BZ) number of inversion eigenvalues.

Another similar way of understanding the 3D band cross-
ings is the following: Since we are considering a two-band
crossing in three dimensions there are three varying parameters
and we cannot find a gapped phase with yp = —1, though it
is possible to find a gapless phase. If we have an even number
of band crossings then we can open a gap but this means
that two inversion eigenvalues are switched leaving xp = +1.
There is also a deeper reason why this cannot be done. Let
us look at the simplest case of a single two-band crossing at
the I" point. The effective Hamiltonian can be put in the form
H. = pio! + pyo? 4+ p3o® whichis a (chiral) Weyl-fermion
Hamiltonian. From the Nielsen-Ninomiya no-go theorem this
type of Hamiltonian cannot arise without a partner fermion
with the opposite chirality.*! Thus all two-band crossings
must generically occur in pairs and there cannot be an odd
number of negative parity eigenvalues in an insulating system.
Conversely, if no states at the inversion invariant momenta
cross the Fermi level and xp = —1 we immediately know
that the system contains a gapless point(s) somewhere in the
Brillouin zone.

We now provide an alternate proof that the product of all
the inversion eigenvalues of all the occupied bands must be
positive in three dimensions. This will prove useful when
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considering possible 3D QHE states. Assume a gapped
insulator Hamiltonian A (ky,ky,k;) which has N occupied
bands and is invariant under inversion symmetry. We can
take the plane k, =0, and think of Jai (ky,ky,0) as a 2D
inversion symmetric Hamiltonian. We have already proved
that the inversion eigenvalues of a 2D inversion symmetric
Hamiltonian are related to the Chern number, i.e.,

N
[ (0.0,006(7,0,0)6:(0,77,0)¢; Gr.,7,0) = (— 1)1l Athekr0
i=1

99)
The same thing is true for the inversion symmetric 2D

Hamiltonian A (ky,ky,mr):

N
[ ]4:0,0,7)¢:(x,0,7)¢:0, 7, 70)¢: (e, 7)

i=1

— (_1)C1[1‘7(/<x,ky,ﬂ)]. (100)
Hence
N
[ ]41(0,0,0¢:(,0,0)¢:(0,7,0)¢: (. 7,0)
i=1
x £;(0,0,7)¢;(m,0,7)¢;: (0,7, 7w) ¢ (7w, 7, 77)
_ (_1)C1[I:I(kx,ky,O)]+C1[H(kA,k},,n)]. (101)

Since H (ky,ky,k;) is gapped due to our assumption of an
insulator, we can think of it as an adiabatic interpolation
between H (ky,ky,0) and H (ky,ky,m) by varying the parameter
k.. Since this interpolation preserves the U (1) charge conser-
vation symmetry, i.e., there is no superconductivity, it means
that the Chern number cannot change from k, = 0 to k, = 7.
Thus

Ci[H (ky,ky,00] = Ci[H (ks ky, )] = Cy.  (102)

Hence

[] &tkm) =1 =1

kinysi €0cCC.

(103)

1. Anisotropic invariants and the 3D quantum Hall effect

We have seen that the isotropic invariant in three di-
mensions, which is constructed by multiplying the inversion
eigenvalues at all invariant momenta, is always trivial for an
insulator. However, we can form anisotropic invariants by
considering the products of inversion eigenvalues over planes
or lines of the Brillouin zone that are mapped onto themselves
under inversion.

First consider a plane in the 3D Brillouin zone that is
mapped onto itself under inversion. To be explicit, take the
plane k, = m. If the product of inversion eigenvalues of all the
occupied bands in that plane is

N
l—[ ¢i(0,0,m)¢i(7,0,m)¢; (0,7, m)¢i (., ) = —1, (104)

i=1
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we have a 3D QHE,*?> with 3D Hall conductance

. 2

oy = odd integer x - (105)
where c is lattice constant in the z direction. From our above
proof in Sec. IVB we know that the product of eigenvalues
in the k, = 0 plane must also be —1. The proof of the 3D
QHE is simple: H (ky,ky,k;) can be thought of as an adiabatic
continuation of H (ky,ky,m) (since we assumed it to be an
insulator). As such, each k, plane H (ky,ky,k, = const) has an
odd integer QHE. Multiplying by the momentum, we get the
above 3D Hall conductance. It is important to note that this
argument depends crucially on the fact that the Chern number
remains unchanged when performing adiabatic deformations
as long as charge conservation symmetry is preserved (i.e., we
do not allow superconducting perturbations).

In general, the 3D quantum Hall effect directions can be
inferred from the eigenvalue formulas. The general formula
for the 3D Hall conductance in terms of the inversion
eigenvalues is

1
Oaply = GV (2}1 + 1/2 - 5 l_[ 1_[ é‘i(kinu)>~

ieocc. kinyeplane LG,

(106)

This expression above gives the 3D Hall conductance as a
product of the inversion eigenvalues in a plane o perpendic-
ular to the y(= x,y,z) direction. G,, is the reciprocal-lattice
vector in the y direction and we have left out the units of %/ /.
If the product over all the bands of the inversion symmetric
eigenvalues in the «f plane is —1 we can see that the Hall
conductance is an odd integer in that plane and hence cannot
be zero. If the product is 41 then the 3D Hall conductance is
even and can be zero.

Just as in two dimensions we can consider the product of
inversion eigenvalues along a single inversion invariant line
in the 3D Brillouin zone. Again inversion symmetry does
not allow us to determine the polarization but a reflection
symmetry about a plane allows us to specify the polarization
perpendicular to that reflection plane. The argument is basi-
cally the same is in two dimensions so we do not include it
here. The result, however, is explicitly illustrated with the 3D
dimer model shown in Sec. V.

2. Topological metal state

As a corollary to the above proof of the 3D QHE, when the
product over the inversion eigenvalues of several bands at all
points in the Brillouin zone is negative,

XP = 1—[ Cilkiny) = —1,

kiny3i €0CC.

the system is a metal protected from opening a gap from
infinitesimal perturbations. We can gain some intuition about
why this metal state exists by looking at the effective
Hamiltonian near a band crossing between states with opposite
inversion eigenvalues at an inversion invariant momentum.
In the most generic case, in which we do not have any
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extra point-group symmetries, the effective Bloch Hamiltonian
expanded for small k near kiyy is

H(k) = (M + Ajjkik;)o, + ki Bijq 0y, 107)

where i, j = 1,2,3 while @« = 1,2. Notice that since the bands
have opposite parity, the mixing elements between them have
to be odd in k. The Hamiltonian reduces to Mo* at k;,, and
thus the sign of M dictates the occupied inversion eigenvalue.
When M is tuned through zero, we have a phase transition
with an eigenvalue switch between + and —. For a given A;;
matrix, notice that on at least one side of the switch, we must
have a gapless phase: if M > 0 and Det(A;;) < 0 we have a
metallic phase, orif M < 0 and Det(A;;) > 0 we have gapless
Dirac points away from kj,y. There are of course two Dirac
points, which can then annihilate at another kj,, point with
=+ eigenvalues and can reopen the gap and give xp = +1.
Because of the different eigenvalues under inversion, we only
need to tune one parameter to get a band crossing in this case.

3. Magnetoelectric polarization and inversion symmetry

Although the first 3D isotropic invariant we mentioned is
always trivial, Ref. 29 argues that inversion invariant insulators
in three dimensions, which come from strong topological
insulators with softly broken time-reversal invariance, can
support an isotropic topological magnetoelectric response
( i.e.,, a @ = vacuum). Their argument uses the transfor-
mation properties of the effective response action, which
we recount here. The topological response action in three
dimensions for an insulator coupled to an electromagnetic field
is

SulAy] = = [ a*xoE B 108

eff[ ;L] - h / X ) ( )

where E,B are external applied electric and magnetic fields,

and 6 is an intrinsic quantity proportional to the magneto-

electric polarizability.” For translationally invariant systems

the magnetoelectric polarizability for time-reversal invariant
insulators is

0 1

P:—:—
T2 T 323

3 clik A4A4._§AAA4A
Phe*Tr | A By — ZAA A,
3
(109)

where Ai(k) is the non-Abelian adiabatic connection, and
2 j(k) is the non-Abelian adiabatic curvature. Under time-
reversal symmetry P; — —P3; and thus for time-reversal
invariant insulators P; = 0,1/2 (in units of 27). P3 is not a
gauge invariant quantity and only defined modulo an integer.’
Note that under time reversal B does not change in the effective
action since it is an externally applied field. Only intrinsic
quantities such as P; get acted upon with time reversal. Using
these two values of P; we can physically define a time-reversal
invariant topological insulator as one with P; = 1/2. It has
been shown that this definition is equivalent to the band-
structure definition of strong topological insulators,”%13:1443.44
In the presence of time-reversal and inversion symmetries there
is an elegant topological invariant one can define,

= T] [] etk

ieocc./2 ko €{kiny}

(110)
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which is the product of the inversion eigenvalues at every
invariant momenta in the 3D Brillouin zone for half the
occupied bands. Since we have time reversal, half the bands
just means one band out of each Kramers pair. We provide a
physical proof of this equation in Appendix G.

The additional insight of Ref. 29 is that P; is also odd
under inversion symmetry. This means that the values of
P5 are still quantized to be 0,1/2 even when the system
does not have time-reversal symmetry but only inversion.
We find that this argument holds for topological responses
in all even space-time dimensions (see Appendix J). Thus
there are inversion symmetric topological insulators in three
dimensions where P; = 1/2, analogous to the case in one
dimension where P; = e¢/2. This argument is an indicator
that inversion symmetric insulators can support nontrivial
topological states with interesting response properties. Now
we can ask the question, is Eq. (110) still valid when only
inversion symmetry is preserved? If we only have inversion
symmetry and no time-reversal symmetry, then this formula
continues to apply if we can adiabatically connect the system
to the 7 and P invariant limit without breaking inversion
symmetry. However, this is not the only case, and we will prove
exactly when the inversion eigenvalues in three dimensions
indicate a nontrivial magnetoelectric polarizability protected
by inversion symmetry in the following section. Our arguments
use many of the results discovered in the previous sections.

4. Magnetoelectric polarizability for inversion invariant insulators

We begin by reintroducing the unitary matrix

Bjj(k) = (ui—k| Pluji), (111)

where u; ; is a Bloch function with i, j labeling which occupied
band and k is the Bloch momentum. An important property of
the matrix B is

B(—k) = Bi(k), (112)

which is true because P is unitary and squares to the identity
matrix. This means that at the inversion symmetric points,
the matrix is real and symmetric. For inversion symmetric
insulators, we prove in Appendix F that the non-Abelian

adiabatic connection satisfies
A;(—k) = —BA;(k)B" + i B(k)V; B (k), (113)

which implies that the adiabatic curvature is gauge covariant

via
Fij(—k) = B(k) Ey; (k)BT (k). (114)

From this the magnetoelectric polarizability is easy, but tedious
(see Appendix F), to obtain

2P =

~ 347 f d*keV*Tr{[B(k)9; B

x (k)] - [B(k)d; B ()(B()d BT (K)]}.  (115)

This proves that Pj; is either integer or half integer depending
on whether the right-hand side (which is an integer winding
number) is even or odd. Since P; is itself defined mod 1
it means that P; defines a Z, classification that indicates a
nontrivial topological response.
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With time-reversal symmetry, states pair up in Kramers
doublets and are degenerate at time-reversal invariant points
(the same as inversion symmetric points). If we break all
accidental degeneracies, in a time-reversal invariant system,
we are still left with an even number of occupied bands—they
are degenerate in pairs at time-reversal symmetric points. The
B matrix then is a U(2) matrix, and the B(k) matrix function
maps the 3D torus into the unitary group of two by two
matrices. These maps can be nontrivial, and w3 [U(2)] = Z (the
mod 2 appears because P; is defined as a winding number mod
2, but the winding number itself can be integer. Once we lose
time-reversal symmetry we do not have required degeneracies
at the time-reversal (inversion) symmetric points. In fact, once
time reversal is softly broken, the bands at inversion symmetric
points experience eigenvalue repulsion: before TR was broken,
the inversion eigenvalues of the Kramers’ doublets had to be
identical. Once Kramers’ degeneracy is not required, these
points exhibit strong eigenvalue repulsion. As such, it would
naively seem that once TR is broken we can completely
separate the occupied bands and isolate them from each other
at all points in the Brillouin zone. We could then treat the
system of N occupied bands as N systems of one band, which
would imply that the matrix B could be reduced toan N x N
diagonal matrix with U(1) phases on the diagonal. We can
view the matrix B(k) as matrix mapping from 3D momentum
space into U(1)®V. Since m3[U(1)®V] = 0 this implies that
the winding number in Eq. (115) always vanishes (note that by
making this statement we are implicitly assuming that all of
the mappings are smooth, which we will come back to later).
This trivial reasoning would seem to imply that we cannot get
a topological insulator with inversion symmetry. Fortunately,
this line of reasoning fails because of the nontrivial global
constraint that the product of all the inversion eigenvalues must
be positive. Before we deal with the effects of the constraint
we draw several conclusions about a Hamiltonian with only
one occupied band. The non-Abelian form of the winding
number implies that with only one occupied band P; = 0.
Thus no matter what the inversion eigenvalue content, there is
no contribution to P; from a system with a single occupied
band. This also holds for a band that can be completely
separated and untangled from all other bands at all points
in the Brillouin zone. Such isolated bands do not contribute
to a nontrivial P5. This is in contrast to the statement at the
end of Ref. 45 which seems to state that a nontrivial P; only
requires an odd number of pairs of inversion eigenvalues. As a
counterexample, a single occupied band can have a single pair
of negative parity eigenvalues (which occur at different ki)
and it has vanishing P;. We give such a Hamiltonian in Eq.
(141). We will see that the important thing to consider is pairs
of negative parity eigenvalues at the same kiyy .

The global constraint on the inversion eigenvalues is crucial
for our discussion. We first give an explicit example to gain
intuition about its importance. Let us assume that N = 2 and
that the occupied bands have ¢;(0,0,0) = ¢£,(0,0,0) = —1 and
all other inversion eigenvalues at all other inversion symmetric
momenta positive. The naive reasoning from above implies
that by perturbing this Hamiltonian while preserving inversion
symmetry we should be able to separate these bands so that
they are isolated with no intermingling degeneracies. However,
if we could make the two bands nondegenerate everywhere
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we would contradict the constraint yp = +1. This is easy
to see because if we could separate the two bands we could
consider a different insulating ground state with only one of
the previous two bands occupied and then the product of the
inversion eigenvalues of the single occupied band would be
negative. We have proved this is not possible, so we cannot
make the bands fully nondegenerate over the entire Brillouin
zone. Alternatively, if we could separate the bands, we would
have a single band that has eigenvalues — + ++ in the k, = 0
plane and + + ++ on the k, = 7 plane. If we consider the
3D Hamiltonian as a gapped interpolation between these two
planes then we have adiabatically connected 2D Hamiltonians
with odd and even Chern number, respectively. This cannot
happen and is thus another contradiction. Hence we know
that the two occupied bands are degenerate at at least two
points in the Brillouin zone (by inversion symmetry). These
two points are exactly enough to transfer an even Chern
number from one plane to the other, which fixes the Chern
number issue. Due to this required degeneracy between the two
bands, B(k) restricted to these two bands does not reduce to
a U(1) ® U(1) matrix, but instead the restricted B(k) € U(2).
Since 73[U(2)] = Z this shows that a 3D inversion symmetric
insulator can have a nontrivial contribution to P;. Any other
degeneracies that bands might have that are not required by
the constraint can be removed. As such, for the case with many
occupied bands, B(k) can be put into the form, by removing
all the accidental degeneracies, of a matrix of decoupled U(2)
and U(1) blocks. The winding comes from the U(2) parts of
the matrix, and is additive in the block diagonal terms due to
the trace in the winding number.

We first discuss the winding number in the continuum
(sphere) and then focus on the lattice (torus). We know
from Ref. 11 that when considering the isotropic topological
invariants such as Ps it is sufficient to think of momentum
space as a sphere S° instead of the Brillouin zone torus
T3. Allowing for the full torus structure gives a rich set of
anisotropic states which we will consider later, but for now we
assume that the momentum space topology is spherical. This
effectively reduces the number of invariant momenta we need
to consider to just two: the origin and the “point at infinity.”
Equivalently we could think of the torus with unrestricted
inversion eigenvalues at ki,, = (0,0,0) but with the inversion
eigenvalues at all the other k;,, constrained to be equal band
by band. Now consider a Hamiltonian with N occupied bands
(again N does not have to be even, a crucial difference with the
time-reversal case). Since we are in three dimensions we know
that the product of all the inversion eigenvalues must be +1.
This means that there can only be an even number of inversion
eigenvalues that are different between k = 0 and k = co. For
example, the number of negative eigenvalues at k = co must
have the same parity (i.e., even or odd) as the number of
negative eigenvalues at k = 0. It is clear that, by exchanging
parity eigenvalues between bands, either at k = 0,00, we can
split the bands into two classes: (i) bands with yp = +1 and
(i) pairs of bands with xp = —1 for each band. We see case
(i) when the eigenvalues match at k = 0 and oo and case (ii)
when they are opposite. For case (i) the bands can be isolated
from each other, but in case (ii) they must generically be in
tangled pairs where the xp = +1 for the pair. Thus we can
understand both cases by considering just two occupied bands.
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For example, a trivial case is that of two bands with no negative
inversion eigenvalues. This is a realization of case (i) where
the inversion eigenvalues of each band separately multiply to
+1. The global constraint does not prevent us from isolating
all the occupied bands and thus, with all eigenvalues positive,
P; = 0. All realizations of case (i) are trivial for the same
reason.

The first interesting case is that of two bands with a single
pair of negative inversion eigenvalues at the same point (say
k = 0) but positive inversion eigenvalues at the other point.
We consider that case now. The important consequence of the
global constraint, as we just saw, is that the two bands with the
negative eigenvalues can never be completely separated from
each other—the (generically) two degeneracy points between
them cannot be lifted or annihilated. B(k) restricted to these
two bands is a U(2) matrix and generically takes the form

B(k) = O f()] + iga(k)oy] (116)

where

[fUO1 + ga(k)ga(k) = 1. (117)

There is a global £ sign ambiguity in the choice of f(k)
but once the sign is chosen at one point, smoothness assures
the signs at the other points. This ambiguity does not have
implications for the final result. If we substitute this form into
Eq. (115) all of the dependence on ¢(k) [i.e., the U(1) part]
drops out as long as e/¢® is smooth. Since all loops in $3
are contractible we can gauge transform B(k) to remove the
k-dependent phase so the assumption of smoothness is not an
issue. What remains is the winding of the SU(2) part, which
must be an integer. Now, with only the SU(2) part we know
that, due to B(k) = BT (—k),

fk) = f(=k),  ga(k) = —ga(=k).

If we think of S® = R3U {oo} then it is easy to consider
the general form of B. The function f(k): $3 — R and its
derivative vanishes at k = 0 (and k = o0). This is a Morse
function for the sphere are we can expand it around the origin
to find

(118)

fk) = N(K)M + kaCapkp + - - ),

where C,, is a 3 x 3 constant matrix with three nonzero
eigenvalues of the same sign,*® and N(k) is a normalization
factor, which is even in k and constrains the matrix B to have
unit determinant.

Without loss of generality we choose the case when
the eigenvalues of C,, are all positive (another reason the
eigenvalues have to have the same sign is to fix the boundary
condition at k = oo so that it is independent of the path taken
to get there). This choice determines which sign of M will lead
to the nontrivial phase. Similarly we can expand the function

(119)

8a(k) = N(k)(Dapkp + - - -)

for a 3 x 3 constant matrix D,, with no restriction on the
eigenvalues. Generically, D,;, will have nonzero determinant
(i.e., it will have rank 3). In cases where the determinant of
D,;, is tuned to zero, we have to look use a higher-order Taylor
expansion in both f(k) and g,(k)—maintaining even terms
in f(k) and odd terms in g,(k). As long as the boundary

(120)
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conditions are fixed, which requires us to keep terms in f(k)
with higher order than g,(k), this will not change the result.
Without loss of generality we take the case det D # 0, and by
rescaling and rotating we transform to the momentum space
basis (ky,k2,k3) with C,;, = D, = 8,,. For this choice we
have

1
VM k22 k2

with k> = k7 + k3 + k3. For this B(k) we have

Nk) = (121)

B(0) = sgn(M)Irx2, B(00) = brxa. (122)

By explicit calculation, we find that

1 [* (M —k?) ) sgn(M) — 1
Py =— k‘dk = ————.
’ nl (M + k2?2 + k2] 4

(123)

We notice that when there is an eigenvalue switch when passing
from zero to infinity, we have P; = 1/2, whereas when there
is no eigenvalue switch, we have P; = 0. Although more terms
can be kept in the expansion around the origin this does not
influence the result of the winding number, as long as the
eigenvalues of B(0) and B(co) are not changed.

‘We have seen from this simple argument that for two bands
which cannot be separated, the contribution to P; depends only
on the change in inversion eigenvalues. If there is only a single
pair of bands, which is in case (ii), i.e., cannot be untangled
from its partner, then the other N — 2 occupied bands are not
constrained and may each be isolated away from all other
bands. Each of these isolated bands does not contribute to
P5 and thus the nontrivial value of P; only comes from the
two tangled bands. To finish the proof we must consider the
case when there is more than one set of tangled occupied
bands. If, for example, there are four bands that have negative
eigenvalues at k = 0 (for simplicity we fix all the eigenvalues
at k = oo to be positive) we can generically isolate the four
bands into two pairs. The two pairs can be separated from each
other and all other bands, but the bands making up a single
pair must share degeneracies from the arguments above. Once
we have decoupled the inversion eigenvalues of the two pairs,
we can remove all the accidental degeneracies and isolate the
pairs from each other because a combined pair of bands with
negative inversion eigenvalues by itself does not contradict
the global constraint. Since the pairs can be isolated, they
contribute independently to P5. Each pair will contribute a half
integer giving P3 = n = 0 mod Z. We see there is an even-odd
effect so that an odd number of pairs of bands with negative
inversion eigenvalues is nontrivial while an even number of
pairs is trivial.

To complete the picture we will discuss how these argu-
ments carry over to the lattice case when momentum space
is a torus 7°. We now have eight invariant momenta to
consider, which can lead to many more different combinations
of inversion eigenvalues. We will not enumerate all the possible
phases but instead construct the necessary general principles
to classify such states. We again consider a set of N occupied
bands, which does not have to be an even number. In general
the only restriction is that the product of all the inversion
eigenvalues of all the occupied bands is equal to 1. We can
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generically perform band crossings only between the occupied
bands to split the bands into three possible classes: (i) a set of
n4 bands with positive inversion eigenvalues at all ki, (ii) a
set of n° bands with an even number of negative eigenvalues
on each band, and a set of n’ bands where the product of
eigenvalues on each band is —1 and the product cannot be
made equal to +1 via band crossings among the other bands
in n? . From the arguments above, the sets of n and n° bands
contribute nothing to P, because they can be isolated one
by one from all of the occupied bands. Note that the n¢ can
contribute to nontrivial 3D QHE states in the same manner
shown above. The number of bands in the third class n° must
be an even number to satisfy the global constraint. We will
now show that the value of P; = (1/2)n° mod Z. We call
this process the band decoupling process and we give explicit
examples of this band decoupling picture for lattice models
shown in Appendix I.

We know that the only bands which can contribute to Ps
are those in n?. We can consider these bands as a set of
n? /2 decoupled pairs. Each one of them contributes a U(2)
block to the B(k) matrix. We show in Appendix H that once
the band decoupling process is finished then the U(1) phase
in each of the n? /2 U(2) blocks is smooth and can thus be
completely eliminated from consideration. Thus each U(2)
block can be contracted to SU(2). Since this implies that we
are really considering maps from 73 — SU(2), which have the
same dimension, we can connect the winding number of each
SU(2) block of B(k) to the degree of the map. This argument
follows along the same lines shown in Ref. 44 so we will not
include all the details. To calculate the degree of the map from
T3 toan SU(2) block of B(k) we can choose any point in SU(2).
For example, we could choose —I,5. Since B(k) = Bi(=k),
any k that is not inversion symmetric contributes to the degree
of the map twice, i.e., if —I,4» occurs at k it will occur at
—k, thereby leaving the P; invariant. The only contributions
therefore come from the inversion symmetric points, and hence
the winding number counts the number of inversion symmetric
points that have —I,4, as their inversion eigenvalues. This
implies that we can simply apply the Kane-Fu formula’ to the
bands in n° to determine the value of Ps.

V. SIMPLE EXAMPLE MODELS

In this section we provide a set of explicit models that
illustrate the majority of the technical details discussed in
the previous sections. For each model we list the interesting
phases, inversion eigenvalue structure, and describe what
the entanglement spectra should look like. Additionally we
provide figures showing the entanglement spectra for each
model, which confirms our analytic formulas. The models
we choose are similar to ones used in many contexts
especially in the field of topological insulators. Combined
with the models introduced in Sec. II these examples pro-
vide valuable intuition about inversion invariant topological
insulators and the similarities and differences between the
states protected by inversion symmetry and those protected by
other discrete symmetries, e.g., charge-conjugation, or time
reversal.
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A. 1D models

We have already introduced two illustrative 1D models for
which we will analyze the entanglement spectrum. Addition-
ally we will introduce a 1D model of a dimerized chain.*’

1. Simple two-band model

Here we focus on the Hamiltonian given in Eq. (2) and
reproduced it here,

A, (k) = a cosk + sin(k)é1 + (1 + m — cos k)és.

This model has one occupied band, and in one dimension
there are two inversion symmetric momenta k = 0,7. There is
a phase transition in this model between two insulating phases
as a function of the parameter m and we have previously
characterized the two phases of this model by examining the
inversion eigenvalues of the occupied band. For m > 0 the
occupied band has two negative inversion eigenvalues. This
implies that this system can be adiabatically continued to an
atomic limit where the occupied atomic orbital has a negative
inversion eigenvalue. In the atomic limit the entanglement en-
tropy is identically zero and so we expect on physical grounds
that there should be no stable entanglement eigenvalues at
1/2. Using our inversion criterion we see that this is the
case since the inversion eigenvalues do not change between 0
and . This same characterization applies for m < —2 where
the two occupied bands have positive inversion eigenvalues.
The final case is for —2 < m < 0 where £(0) = —¢ () = +.
This cannot be adiabatically connected to an atomic limit.
Here the inversion criterion implies that we should see a
pair of entanglement modes at 1/2 (cf. Sec. III C5), which is
shown in Fig. 1(c). Thus the entanglement spectrum is a good
indicator for a nontrivial topological insulator. The trivial case
is shown in Fig. 1(d), which has no 1/2 mode. We can compare
these results to the values of the topological invariant A/ [see
Eq. (12)], which takes on values A/ = 0 when m < —2 or
m > 0and N' = 1 when —2 < m < 0. The number of required
1/2 modes in the entanglement spectrum is 0, 0, and 2,

respectively, which is exactly what we found numerically.
To illustrate the protection due to inversion symmetry we
also consider H, with an on-site disorder term added,
H=H+) Wda, (124)

1

where the W; are randomly chosen from a uniform distribution
[-W/2,W/2]. If it is purely random, uncorrelated disorder
the midgap entanglement modes are no longer protected, as
shown in Fig. 5(a). Next we mirror the disorder around the
center of the chain to make a system with inversion symmetric
disorder. Although unphysical, this helps illustrate the fact that
only inversion symmetry is required for the protected midgap
entanglement states, as we show in Fig. 5(b) where the cut is
along the remaining inversion center.

2. Simple four-band model

The Hamiltonian for the simple four-band model was given
in Eq. (5) and the set of inversion eigenvalues for the different
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FIG. 5. (Color online) Entanglement spectrum for the two-band
1D model with (a) random site disorder, (b) random site disorder
that is inversion symmetric around the center of the 1D chain. We
show the entanglement spectra for many different random disorder
configurations.

phases were listed in Egs. (5). For convenience we reproduce
the Hamiltonian here,

Hy(k) = sin(k)["; + sin(k)[, + (1 — m — cos k[

+ 814 + € cos(k)(1 + I). (125)
From the inversion criterion we see that case 2 and case
3 should have entanglement modes at 1/2. In fact, case 2
should have a pair of modes localized on each cut, one
for each occupied band that flips the sign of the inversion
eigenvalue. The entanglement spectra for the five cases are
shown in Figs. 2(f)-2(h) and they agree with the analytic
prediction. For cases 1-5 the invariant A = 0,2,1,0,0 yielding
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0,4,2,0,0 entanglement modes at 1/2, which is what we found
numerically.

3. Dimerized chain

As a final 1D test case we will look at spinless fermions
hopping on a dimerized chain. This model is the familiar
Su-Schrieffer-Heeger model for electrons in a polyacetylene
chain.*’ Later we will extend this model into two and three
dimensions to illustrate anisotropic systems with nontrivial
entanglement spectra. The layout of the chain is shown in
Fig. 6(a) along with the choice of two-atom unit cell. The
Hamiltonian is given by

H = Z A(CLAC,,,A — cjnchB)
m

(=t = 8)c) ycmp + (=1 +8)c! gemriaHcl,
(126)

where A, B indicate sublattice A or B and ¢ > 0. For our
purposes we will set the on-site energy A = 0. With this choice
the Hamiltonian has an inversion symmetry with respect to the
middle of a bond with P = o*, i.e., P exchanges sublattices
A and B.

The Hamiltonian can be Fourier transformed and becomes

H =Y Wl([—(+8—(t —8cosklo*
k
+(t — &) sinko”?)W,

W = (cea cxp)’

(127)

This model has two insulating phases: ()§ < 0; (ii) 6 > 0. At
the two inversion invariant points we have the Bloch Hamilto-
nians H(0) = —2¢t0* and H(w) = —280*. As expected they
both commute with P. For fixed t = 1 we see that the inversion
eigenvalue of the occupied band at kK = 0 is fixed to be +.
For k =  the eigenvalue depends on the sign of §. So for
8 <0 (>0) we have ¢(wr) =—1 (4+1). We see that the
nontrivial phase occurs when § < 0. In this case the Wannier
center of the electrons is shifted to the midbond center berween
unit cells. Thus if we cut the system between unit cells there
will be a charge polarization. If § > O the Wannier center is
on the midbond center within a unit cell. Thus our definition

FIG. 6. (a) 1D dimerized chain; (b) 2D dimerized square lat-
tice model. Solid and dotted lines represent different hopping
amplitudes.
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FIG. 7. (Color online) Entanglement spectra for (a) dimerized
chain; (b) dimerized square lattice.

of unit cells is important and simply reflects the fact that the
polarization is not well defined absolutely but is gauge variant.

The entanglement spectra for this model for § <0 is
shown in Fig. 7(a). We expect that because the inversion
eigenvalues change from positive to negative between k = 0
and 7 that there should be 1/2 modes in the spectrum and this
is confirmed numerically, as seen in the figure. The topological
invariant ' =0, 1 for § > 0 and § < 0, respectively. The
number of the entanglement modes in the spectrum matches
the value of 2N\ as expected for a system with periodic
boundary conditions and thus two entanglement cuts.

There is a subtlety in the entanglement characterization
of this model, which we will now discuss. The real-space
Hamiltonian as written in Eq. (126) has broken translational
symmetry. As stated earlier, our classification method only
applies to translationally invariant Hamiltonians since we
need to evaluate inversion eigenvalues in momentum space.
However, by construction, the Hamiltonian for the dimerized
chain only has a very mild breaking of translational symmetry.
In fact, as implicitly assumed in the analysis, we can just
define a unit cell encapsulating two sites, and in terms of the
larger unit cell the Hamiltonian is translationally invariant and
our method applies. Our choice for a unit cell has already been
implicitly assumed by the time we write the Bloch Hamiltonian
in Eq. (127). The choice made here is that sites connected by
the hopping term —(¢# + &) form a single unit cell and the
hopping between unit cells is (—¢ + §). After making this
choice we are free to carry out the entanglement analysis
by cutting the system between unit cells. Cutting the system
within a unit cell is not a position-space cut of a translationally
invariant Hamiltonian.

Now, the important outstanding question is, is the analysis
invariant under the choice of unit cell? It is, and we explicitly
show it for this model. Suppose that we take the unit cell to
be sites connected by the hopping (—¢ + §). Then the Bloch
Hamiltonian becomes

A=Y WH{[—(t — 8) — (t +8) cos k]o™ +(t +8) sin k & } W,
k

H() = —2tc* H(w)=28c". (128)

If we fix t > 0O then the inversion eigenvalue for the occupied
band at k = 0 is always positive. Thus we see that for § > 0
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the system is in a nontrivial phase with opposite inversion
eigenvalues at 0 and 7, and for § < O the system is trivial. The
sign of § that exhibits the nontrivial phase has changed when
compared with the choice of the other unit cell. The physics,
however, remains identical. Now when § > 0 the Wannier
centers are shifted to the bonds between the new unit cells.
This would lie within the unit cell for our previous choice and
explains why the sign of § has changed. For the choice of unit
cell in H the entanglement spectrum will have midgap modes
when § > 0, i.e., when the inversion eigenvalues are opposite
at the two invariant momenta. Thus we see that for the new
choice of unit cell the physics and entanglement analysis yields
the same results.

B. 2D models
1. Dimerized square lattice model

The first 2D model we consider is a trivial extension of the
dimerized chain, as illustrated in Fig. 6(b). This extension has
a Hamiltonian that is simply constructed from Eq. (127):

H =Y W{[—(t+8) - (t —8)cosk,] o*
k

+ (1 — 8) sinkyo” — 21, cos k, W, (129)

This model has an inversion symmetry with P = o*. At the
inversion invariant points we have

H(0,0) = —2t, — 2to*, H(w,0) = —2t, — 280",
H(O,7) =2t, — 2to*, H(w,m)="2t, — 280"

We see that although this is more complicated than the 1D case
everything still commutes with P. For simplicity we pick t =
2t, = 1 and focus on the two gapped phases § < 0 and § > 0.
In these two phases we have the following set of eigenvalues:

£(00) = + £(00) = +
@0 =+ L) i@0) = —
§>0: £0m) = + §<0: £Om) = + °
{(mm) =+ {(nm) = —

The product of all the eigenvalues in each case is +1 so the
parity of the first Chern number for these two cases is even.
In fact, it is exactly zero for this model. Just as in the 1D
case we see that the § < O phase is interesting. Here the
Wannier center for each electron is moved along the x axis
to the midbond center between each unit cell. If we cut an
edge that is perpendicular to the x direction there will be a
finite charge density on the boundary. Although the inversion
symmetry is not enough to determine the polarization, we
see that this Hamiltonian also has a reflection symmetry,
MAH (ky k)M~ = H(—k,,k,) with M = ¢* = P. Thus the
charge polarization in the x direction is quantized and equal to
P) = e/2a where a is the lattice constant in the y direction.
Finally we can consider the entanglement spectra of these
two phases. We outlined this procedure for higher dimensional
systems in Sec. [IIC 6. For § > 0 the phase is adiabatically
connected to the atomic limit and thus will not require the
existence of 1/2 modes. For § < 0 we must first specify a cut
direction to locate the 1/2 modes. Let us first pick the cut to
be parallel to the x direction. Thus k, remains a good quantum
number and we can ask whether or not there are 1/2 modes at
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ky =0ork, = m. For k, = 0 we look at ¢£(0,0)¢(0,7) = +1
and for k, = 7 we consider ¢ (77,0)¢ (7r,7t) = +1. Thus for this
cut there are no 1/2 modes. Next we look at a cut parallel to the
y direction such that k, is a conserved quantum number. For
ky = 0 we have ¢(0,0)¢(r,0) = —1 and for k, = 7 we have
¢(0,m)¢ (mr,m) = —1 which implies there will be 1/2 modes
at both k, = 0 and 7. The entanglement spectrum for a cut
parallel to the y direction is shown in Fig. 7(b). In this figure
there are clear 1/2 modes at k, = 0,7. In fact, for this simple
model there are 1/2 modes for all values of k, though our
criterion only constrains the modes at the inversion invariant
points.

2. Chern insulator

Next we move on to study the well-known 2D topolog-
ical insulators beginning with the Chern insulator (quantum
anomalous Hall effect).! This is a 2D topological insulator
which exhibits a quantum Hall effect and is classified by an
integer invariant, the Chern number.*® Instead of studying the
initially proposed honeycomb lattice model we will use the
square lattice version, which is Dirac fermions on a lattice
with a Wilson mass term. The Hamiltonian is

1 Ly .
H = Z {E[an_,'_l’n(ltj — o)Wy,

F U G0Y — o)W, +Hel
+Q—mW) 0%V, }. (130)
We can Fourier transform to get the Bloch Hamiltonian,
H(k) = sink, o™ + sinkyo” + M(k)o®,
M(k) = —m — cosk, — cosk,.

(131)
(132)

This model exhibits several different phases as a function
of m. For m < 0,m > 4 the system is in a trivial insulator
phase and for 0 < m < 2,2 < m < 4 the system is in Chern
insulator (quantum Hall) phases with Chern number —1 and
+1, respectively. This Hamiltonian has an inversion symmetry
with P = % and at the four inversion invariant momenta we
have

I:I(JT,O) =2 —mo?,

H(r,7) =4 —mo*.

I:I(0,0) = —mo?,
I:I(O,n) =2 —mo?,

For m < 0,m > 4 the inversion eigenvalues are all posi-

tive/negative, respectively. For 0 <m < 2 ¢(0,0) = —1 and
¢(@m,0) =¢(0,7) = ¢(r,m) = +1 and the system must have
a Chern number with odd parity. It does since C; = —1. For

2 < m < 4 all the eigenvalues except ¢ (;r,7r) are negative and
again the Chern number must have odd parity (C; = +1).
The location of the 1 /2 modes in the entanglement spectrum
is also clear. If we choose to cut along the x or y directions
the picture remains the same. This indicates that we are not
dealing with an (weak) anisotropic insulator as in the dimerized
case but a fully 2D topological insulator state. This is similar
to saying that for the quantum Hall effect, no matter what
edge we cut in the system, there will be edge states. For
definiteness assume that we cut parallel to y so that &, is a
good quantum number. For 0 < m < 2 there will be a 1/2
entanglement mode at k, = 0 and for 2 < m < 4 there will
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be a 1/2 mode at k, = 7. In addition to these modes there
is actually a dispersing set of modes that are localized on
the cut. To clearly see the dispersing modes we look at the
entanglement “energies” which are defined to be

(133)

where &,, are the eigenvalues of the reduced correlation matrix
Cy. The entanglement energies show the full structure of
the entanglement spectrum because they clearly separate the
eigenvalues of Cp, which are clustered near 0 and 1. The
energy, entanglement eigenvalues, and entanglement energies
for the Cherninsulatorinthem < 0,0 <m < 2,and2 <m <
4 phases are shown in Fig. 8. In the two nontrivial phases
the location of the 1/2 mode is different. For 0 < m < 2
it is at k, =0 and for 2 <m <4 it is at k, =m. For
the entanglement energies these become zero modes. These
entanglement spectra were cut from a torus geometry so that
there are two entanglement cuts. This is the reason why there
are entanglement modes dispersing in both directions in the
C1 # 0 phases.

3. Quantum spin Hall insulator

The quantum spin Hall insulator (QSH) is a time-reversal
invariant topological insulator,>*> which is most easily
thought of as two copies of the Chern insulator, one for
each spin, with opposite chiralities. The realistic material in
which this state is realized, HgTe/CdTe quantum wells, is best
modeled by exactly this type of Hamiltonian. The effective
HgTe Hamiltonian is a four-band model on the square lattice
with a Hamiltonian given by

H (k) = sink, [, + sink, [ + M(k)[o, (134)

M(k) =2 —m — cosk, — cosky, (135)

where f] =0*'Q® t",l% =1® ry,fo = 1® 1% where o¢ is
spin and ¢ is the orbital degree of freedom. For this system the
time-reversal operator is 7 = (ic” ® 1)K and the inversion
operator is P = I'y. This Hamiltonian is invariant under both
symmetries. It exhibits phases directly analogous to the Chern
insulator, i.e., it is a trivial insulator for m < O,m > 4 and a
topological quantum spin Hall insulator for 0 < m < 2 and
2 < m < 4. The only difference with the Chern insulator is
that now there are two occupied bands that are related by
time-reversal symmetry. The total Chern number of the ground
state vanishes but there is a Z, invariant given (in the presence
of time reversal and inversion’) by

Xz, = 1_[ 10,008, (7,008, (0,7) s (r,77),  (136)

neocc./2

where the product runs over half the occupied bands. This
invariant has the same formula as X7(>2 ) defined in Eq. (11), but
we distinguish it here to prevent confusion since this invariant
only implies a nontrivial physical response when time reversal
is preserved. To specify which half of the occupied bands
you just take one from every Kramers pair of bands. If we
focus on the transition when m ~ 0 we see that for m < 0 the
inversion eigenvalues of both occupied bands are all positive.
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FIG. 8. (Color online) Energy spectrum with an open boundary, entanglement spectrum with a cut parallel to the y direction, and
entanglement energies for [left panel, (a),(d),(g)] a trivial insulator; [middle panel, (b),(e),(h)] nontrivial Chern insulator with negative inversion
eigenvalue at (k,,k,) = (0,0) implying entanglement midgap modes at k, = O [right panel, (c),(f),(i)]. Chern insulator with negative inversion
eigenvalues at (k,,k,) = (0,0),(7,0), and (0,7). This implies entanglement midgap modes at k, = 7.

For2 > m > 0 the inversion eigenvalues at (k. ,k,) = (0,0) for
both occupied bands are negative while all others are positive.
The product over inversion eigenvalues of all the occupied
bands is trivial, but if we only multiply over half the Kramers
pairs we find that xz, = —1 and is nontrivial. Since the product
over all the bands is trivial this means that the parity of the
first Chern number is even, in fact it is zero for this case.
The energies, entanglement eigenvalues, and entanglement
energies for these two phases are shown in the left and middle
panels of Fig. 9. Without time-reversal symmetry this type of
inversion invariant (product over half the occupied states) does
not uniquely specify a topological response in two dimensions
since a C; = 2 quantum anomalous Hall state could have the
same inversion eigenvalue structure.

4. Quantum spin Hall insulator without time-reversal symmetry

So far the studies of the Chern insulator and QSH insulator
have just been reconfirmed by recognizing the importance of
inversion eigenvalues when there is an inversion symmetry.
The most interesting prospect is when we take the QSH effect
and break time reversal but keep inversion. The importance of
inversion symmetry for this type of case in three dimensions
was emphasized in Ref. 29. To break time-reversal symmetry
we will consider an additional Zeeman term in the QSH

Hamiltonian:*
H(k) = sink, [y + sink, [, + M(k)Ty, + B,['s
0010
. 00 00
Fe=11 0 0 o0 (137)
00 00

For small values of B, this term lifts the Kramers’ degeneracy
of the occupied bands but does not cause any crossings at the
Fermi level. Although time reversal is broken, inversion is still
preserved and we can still see that xz, = —1. This is still well
defined because the product of all inversion eigenvalues at a
particular ki, is still trivial for all kj,,. Thus this system is an
inversion invariant topological insulator. It was first noted that
such states could exist in Ref. 29 where it was suggested that as
long as inversion symmetry was not broken the entanglement
spectra for the time-reversal preserved and broken cases were
the same. However, there is an important difference between
the two. For the time-reversal broken QSH state we show the
entanglement eigenvalues and entanglement energies in the
right panel of Fig. 9. Comparing with the middle panel we see
that the entanglement eigenvalues seemingly show very little
difference due to the fact that most are exponentially close to
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FIG. 9. (Color online) Energy spectrum with an open boundary, entanglement spectrum with a cut parallel to the y direction, and
entanglement energies for [left panel, (a),(d),(g)] a trivial insulator, [middle panel, (b),(e),(h)] nontrivial quantum spin Hall insulator with
time-reversal symmetry, [right panel, (c),(f),(i)] quantum spin Hall insulator with mildly broken time-reversal symmetry. Comparing (h) and
(i) one can see that all Kramers degeneracies are lifted when time reversal is broken except the ones at € = 0. By just looking at (e) and (f) it is
difficult to tell the difference in the two cases, i.e., that spectral flow is broken.

0 or 1, but the entanglement energies are quite different. The
mode at 1/2 is protected by inversion symmetry but all of the
other “Kramers” degeneracies are lifted, e.g., all the crossings
at ky = —m and k, = 7 are lifted. This occurs because the
spectral flow between the bulk valence and conduction bands
is cut off when time reversal is broken. The edge states no
longer tie together both bands and there is no “anomaly”-type
structure. Thus states on the left and right half of the system
are no longer tied together through the bulk in a topological
way.

We ask now if there is anything interesting in this system
once time reversal is broken. As long as inversion is preserved
we cannot connect this state to a trivial atomic limit while
preserving inversion symmetry and there must always be a
finite entanglement entropy. The finite entanglement entropy
is due to the fact that the mode at 1/2 is protected and
cannot be removed. Thus the system is not trivial in the
sense that it cannot ever be continuously deformed to a trivial
atomic insulator; the entanglement spectrum clearly shows
this. Now we can also ask if there is any nontrivial physical
response. The robust electromagnetic response discussed in
Refs. 9,50 and 51 comes from coupling the quantum spin
Hall state to varying adiabatic parameters. For example,
applying a magnetic domain wall to the edge of a QSH system
induces a midgap state and fractional charge localized on the

domain wall. This response requires time-reversal symmetry
to be broken and thus could still exist in the presence of a
Zeeman term. The Zeeman term is an external time-reversal
breaking field and it opens a gap in the edge states. If we
are able to create a magnetic domain wall on the edge, i.e.,
a field strong enough to reverse the direction of the Zeeman
field in some region of the edge, then there will be trapped
domain-wall states. Thus the state is a topological insulator
in a very physical sense as well. Unfortunately the inversion
invariant ()(7(32 )) in two dimensions does not imply that this
must be the physical response. As mentioned above, a C; = 2
quantum anomalous Hall effect can have the same value of
the Z, invariant. However, for this model Hamiltonian we
are saved because there is an additional mirror symmetry
MAH (ky k)M = H(ky, — k,) with M = o* ® t°. Note
that [M,P] = [M,I'] = 0. Thus the inversion eigenvalues
are still valid labels and the Zeeman term does not break the
mirror symmetry. This symmetry forbids a nonzero C; and
thus the QSH response is the unique result.

5. 2D eight-band model

Here we consider a more complicated case of a model with
eight bands total and four occupied bands. The model we
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choose is simply two copies of the QSH model. The Bloch
Hamiltonian is given by

H(k) = sink,y* + sink,y” + M(k)y* (138)

with M (k) given in Eq. (135) and y* = 154, ® I'“. This model
preserves time-reversal symmetry with 7 = (1 ® io” ® 1)K
and inversion symmetry with P = y*. In the presence of time-
reversal symmetry this model does not yield any nontrivial
topological insulators since you always get an even number
of pairs of edge states. If one adds perturbations which
break time-reversal symmetry then it is possible to generate
nontrivial states such as Chern insulator states. At half filling
this model will have four occupied bands, and will exhibit
edge states for the same range of parameters as the quantum
spin Hall model above in Eq. (134). These edge states are
not protected generically, i.e., one can add a time reversal
and inversion preserving perturbation to the model, which will
open a gap in the edge states. We use this model to illustrate
three points: (i) Even though there is no topological invariant
in the system associated with time-reversal symmetry, the
presence of inversion symmetry predicts that there will
be nontrivial midgap states in the entanglement spectrum.
(ii)) These midgap states are completely stable as long as
you do not break inversion symmetry. (iii) The number of
midgap states is proportional to the difference in negative
parity eigenvalues at the invariant momenta.

In Fig. 10 we show the energy and entanglement spectra
for two different cases. In Figs. 10(a) and 10(c) we simply
diagonalize Eq. (138) with m = 1.0 on an open boundary.
One can clearly see the (unstable) edge states lying in the

-7 0 i
ky

FIG. 10. (Color online) Energy spectrum with open boundary
conditions for (a) eight-band model with 7 symmetry, (b) eight-band
model with random inversion preserving perturbation. Entanglement
spectrum for (c) eight-band model with T, (d) eight-band model with
random inversion preserving perturbation.
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midgap region. The entanglement spectrum is shown for a
system with periodic boundary conditions cut parallel to the y
axis. The difference between the number of negative inversion
eigenvalues at (ky,k,) = (0,0) and (;7,0) is 4 giving a total
number of 2 x 4 = 8 modes at 1/2. If we leave out the identity
matrix, and P itself, there are 30 matrices which commute
with P. To illustrate the stability of the 1/2 modes in the
entanglement spectrum we add a perturbation, which includes
all 30 matrices with random couplings chosen from a uniform
distribution [—§/2,6/2] where § > 0 is chosen small enough
not to close the bulk gap. This perturbation will break all
of the “accidental” symmetries in the problem but preserves
inversion symmetry. We see in Fig. 10 where § = 0.20 that
the energy spectrum still has states in the gap but the crossing
points have been lifted. The entanglement spectrum, however,
still has eight exact 1/2 modes.

Finally we take a very small anisotropic sized system with
L, =20and L, = 2. We cut the system in the middle between
x = 10and x = 11 and plot the entanglement spectrum vs k.
There are only two allowed values for k, = 0,7. The energy
spectrum for such a system (with the random perturbation
included but chosen from a uniform distribution [0,5], which
is no longer symmetric about zero) is gapped and has an
entanglement spectrum with six midgap 1/2 modes when § =
0.19. Counting the occupied states we find numerically that
there is a difference of three negative inversion eigenvalues,
which agrees with the entanglement spectrum. The energy and
entanglement spectra are shown in Fig. 11.

C. 3D models
1. Dimerized Cubic Lattice

The 3D dimerized model on a cubic lattice is a trivial
extension of the 2D dimerized case into three dimensions.
The Hamiltonian is given by

[—(+68)—(t —6)cosk,]o*
+(t — 8)sink,0” — 2t cos k, — 2t, cos k } Wy.
(139)

Fort = 2t, = 2t, = 1 there are two different phases § < 0 and
S > 0. Asbefore, for§ > 0the Wannier center of the electron is
located within a unit cell and all inversion eigenvalues are +1.
For 6 < 0 the Wannier center is shifted along the x axis to the
midbond site between unit cells. The inversion eigenvalues are
£(000) = ¢(00r) = ¢(00) = ¢(Owrr) = +1 and ¢(w00) =
L(@0r) = ¢(rm0) = ¢ (wwrmw) = —1. Again this system has a
nontrivial charge polarization on a surface with £ as a normal
vector. However, this is protected by the reflection symmetry
about the yz plane, i.e., M H (k, ,ky, k)M~ = H(—k, .k,.k;)
with M = o* = P. Thus since the product of the reflection
eigenvalues is —1 for each reflection invariant line in the
Brillouin zone, the polarization on a surface perpendicular to
the x axis is P = e/2a* where a? is the area of a plaquette in
the yz plane. The product of all the parity eigenvalues is trivial
as it must be in three dimensions, and additionally the product
of the eigenvalues in every plane is trivial. For an entanglement
cut such that ky and k, are good quantum numbers it is clear
that there will be 1/2 modes at (k,,k;) = (0,0),(r,0),(0,7),
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FIG. 11. (Color online) (a) Energy spectrum for the small
anisotropic eight-band Hamiltonian with periodic boundary condi-
tions. The difference in negative parity eigenvalues at k, = 0,7 is
3. (b) Entanglement spectrum for the same. At k, = O there are six
modes at £ = 1/2. The lines are only filled in as guides to the eye.
The only allowed k values are k, = 0 and k, = 7. This is why the
spectra appear to have kinks.

and (7r,7). On the other translationally invariant cuts parallel
to the xz or xy planes there will be no 1/2 modes.

2. 3D Quantum Hall Effect

The 3D quantum Hall effect state can be thought of as stacks
of 2D quantum Hall states that are connected together. We will
use a very simple model for the 3D quantum (anomalous) Hall
effect, which is a trivial extension of the 2D Chern insulator.
The Hamiltonian is

H(k) = sink,o* + sinkyo¥ + M(k)o®,
M) =2—m —cosk, —cosk, —t| cosk,.

(140)
(141)

This system has an inversion symmetry with P = o*. This
model exhibits several different phase transitions but we will
only focus on one, namely the phase transition that occurs
with a gapless point at (ky,ky,k;) = (0,0,0). For m < —t;
the system is in a trivial insulating phase with all inversion
eigenvalues positive. Atm = —¢, the system becomes gapless
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FIG. 12. (Color online) Entanglement spectra for (a) 3D QHE,
(b) 3D weak topological insulator (WTI) with a cut parallel to the
z-x plane plotted along a line in the Brillouin zone. The states in (b)
are all doubly degenerate compared to (a). The coordinates are in the
form k = (k;,k.).

and stays gapless until m > t,. For m > t; the system is
in a 3D quantum Hall effect phase*’ with effectively 2D
quantum Hall states stacked up in the z direction. The Bloch
Hamiltonians at the inversion invariant points which switch
eigenvalues are

H(0,0,0) = —(m +1,)0%, H(0,0,7) = (—m +1,)0".

At m = —t, the eigenvalue around the I' point switches
from positive to negative but the system is still gapless.
Then at m = +t, the eigenvalue at (0,0,7) switches and the
system becomes a gapped insulator. The product over all the
eigenvalues is trivial as expected but if we restrict the product to
the k, = 0 or k, = 7 planes the product is negative. We proved
earlier that this indicates a nontrivial 3D QHE response.

For this arrangement of eigenvalues we can calculate the
location of the 1/2 modes in the entanglement spectrum. For
a cut parallel to the xy plane there will be no 1/2 modes at the
inversion invariant points. If we take the cut, e.g., parallel to the
zx plane then there will be 1/2 modes at (k;,k,) = (0,0) and
(7r,0). These nodes are shown in Fig. 12(a). The figure shows,
in addition to the 1/2 modes at the two invariant momenta, a
line of 1/2 modes between (k,,k,) = (0,0) and (7r,0).

3. 3D Weak Topological Insulator

There are several different classes of the recently pro-
posed 3D time-reversal invariant topological insulators. The
anisotropic classes, the so-called weak topological insulators,
are effectively 2D quantum spin Hall states stacked into three
dimensions. This is similar to the 3D quantum Hall effect and
is essentially just two copies of that system, one for each spin.
We use the following model:

H(k) = sink, [y + sink, [ + M(k)[,
M(k)=2—m —cosk, —cosk, — 1, cosk,,

(142)
(143)

where the I, matrices are the same as in the quantum spin Hall
state. This system is time reversal and inversion invariant with
an inversion operator P = ['y. It exhibits phase transitions at
the same values of m as the 3D quantum Hall effect and the only
difference is that there are two occupied bands instead of one.
For 2 —t, > m > t,. The system has two pairs of negative
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inversion eigenvalues, one pair at (0,0,0) and one at (0,0,7).
The rest of the eigenvalues are all positive. The total product of
inversion eigenvalues is trivial, and unlike the 3D quantum Hall
case the product of the eigenvalues when restricted to the k, =
0,7 planes is also trivial. However, there is still something
nontrivial here that arises from taking the eigenvalues from
only one of the Kramers pairs at each invariant momentum. We
see that this product is nontrivial and indicates an anisotropic
inversion invariant topological insulator. In this case, since
time-reversal symmetry is preserved, it is a weak topological
insulator state.” However, without time-reversal symmetry the
inversion invariant being nontrivial does not require that it is a
weak topological insulator. As a counterexample it could be a
3D quantum Hall effect with a Chern number “per layer” that
is an odd multiple of 2 (unless there is a reflection symmetry
that requires the Chern number to vanish in each plane). The
interesting thing about this model is that even when time
reversal is softly broken (i.e., broken without causing a phase
transition) the system still is not in a trivial topological state
and even though the surface states are no longer protected
it can exhibit nontrivial behavior in the entanglement. The
entanglement spectrum for the T-invariant case is shown in
Fig. 12(b) and exhibits the same 1/2 mode structure as the 3D
quantum Hall effect model but with twice as many modes.

4. 3D Strong Topological Insulator

The last class of models we will consider is the 3D lattice
Dirac model, which is the minimal model for time-reversal
invariant strong topological insulators in three dimensions.
The Bloch Hamiltonian is given by

H(k) = sink, [y + sink, [ 4 sink "5 + M(k)[, (14
M(k) =3 —m — cosk, — cosk, — cosk,

where ['s = 0¥ @ t*. As a function of m this model exhibits
many phase transitions. We will focus on the range m < 0
and 0 < m < 3. There is a phase transition at m = 0 with a
band crossing at the I" point in k& space. Four bands meet at
this point and a pair of inversion eigenvalues is exchanged. For
m < 0 the inversion eigenvalues are positive for both occupied
bands at all the invariant momenta. The Bloch Hamiltonian at
k=0is H0) = —ml, and thus when m switches sign the
inversion eigenvalues at k = 0 are exchanged. For0 <m < 3
both inversion eigenvalues at k = 0 are negative. In this phase
the product over all inversion eigenvalues is trivial, but if
we only keep one of the Kramers pairs, then the product of
all the eigenvalues of half the occupied bands is nontrivial.
In the presence of inversion and time reversal, which is the
case here, this invariant is the strong topological Z, index.’
Physically this index has two implications: (1) the presence of
an odd number of massless Dirac cones on any surface, (2)
a topological magnetoelectric effect. To see the topological
response one must apply a time-reversal breaking field on the
surface to open a gap in the gapless Dirac fermions. This
induces a quantum Hall effect confined to the surface which
leads to the magnetoelectric response. For the topological
phase we picked (0 < m < 3), the surface states are located
around the surface I' point and the (pair of) entanglement
modes will be located at the I" point of the conserved momenta
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FIG. 13. (Color online) Left column: Strong topological insula-
tor. (a) Energy spectrum plotted along a line in the Brillouin zone
for open boundary conditions along the z direction; (c) entanglement
spectrum with a cut parallel to the x-y plane with periodic boundary
conditions; (e) entanglement energies. Right column: Strong topo-
logical insulator with time-reversal breaking (b) energy spectrum,
(d) entanglement spectrum, (f) entanglement energies. In (a) and (b)
the midgap states are localized on the surfaces. In (b) there is a gap in
the surface states due to time-reversal symmetry breaking. In (f) all
Kramers degeneracies are lifted except the one at € = 0.

parallel to the entanglement cut. The energy spectrum, entan-
glement eigenvalues, and entanglement energies are shown in
Figs. 13(a), 13(c), and 13(e), respectively. The energy spectrum
is shown with periodic boundary conditions along x and y
and open boundary conditions along z. The surface states are
shown in red and the spectrum is plotted along a 1D path in
the Brillouin zone.

5. 3D strong topological insulator without time-reversal symmetry

Now we can consider the more interesting question of the
properties of the system when we break time reversal but keep
inversion. We add the same Zeeman term shown in Eq. (138)
to the bulk of the insulator. We only break time reversal
softly which opens a gap in the surface states but does not
close the bulk gap. Thus while we can no longer consider
the Z, invariant protected by time reversal, this system will
still exhibit a magnetoelectric effect since the Zeeman field
simply establishes a quantum Hall effect on the surface.
This distinction was first considered in Ref. 29. Additionally,
although we can add surface potentials to push the surface
states into the bulk bands we still cannot adiabatically connect
this insulator with an atomic limit. This is clearly shown in the
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entanglement spectrum where there are still modes protected
at 1/2, which cannot be removed without breaking inversion
or passing through a phase transition. Thus, it is impossible
to continuously connect this to a system with vanishing
entanglement entropy. Figures 13(b), 13(d), and 13(f) show the
energy, entanglement eigenvalues, and entanglement energies,
respectively. For the energies the red surface states are now
clearly gapped, but the entanglement eigenvalues are hard to
distinguish between the time-reversal invariant and breaking
cases. The distinction, we see, comes when we look at the
entanglement energies, which show that while there is still a
pair of zero modes, all of the other degeneracies at the inversion
invariant momenta (which arose from Kramers degeneracies)
are lifted generically. This shows that the spectral flow
between the valence and conduction bands of the entanglement
spectrum has been cut off.

Now we will prove that P; # 0 for this model. To be explicit
we take

H(k) = sink; [} + sink, [ + sinks[
+(5/2 — cosk; —cosk, — cosk3)lg + }tf‘B.
(145)

This Hamiltonian can be connected through a gapped interpo-
lation with the trivial Hamiltonian:

Hy(k) = sink; "} + sinky [y + sink3['3 +5/20  (146)

using the inversion symmetric homotopy

H(k,0) = 1(1 4 cos0)H (k) + 3(1 — cos 0) Ho(k) + sin6T's,
(147)

where ['s = [o['; [, I'5. The second Chern number generated
by ﬁ(k,@) is C; = 1 (odd) and consequently P; = % mod(Z)
for H (k) since we specifically chose the form of I:Io(k) to be
trivial. Note that as with the cases shown in Appendix I we
calculated C, numerically using the standard gauge invariant
formula in terms of ground-state projection operators.

D. Continuum models
So far we have exclusively used tight-binding models but
the discussion can be carried out for continuum models as well.
Let us consider a periodic crystal described by a Hamiltonian

H=-V>4+V({) (148)

acting on two-component spinors. The 2 x 2 matrix potential
V(r) is assumed periodic in r: V(r + R) = V(r), where R is
a lattice vector of the crystal. We also assume that V(r) has
an inversion symmetry P, where P is a unitary operation
implementing the transformation r — —r on the space of
spinors. The unitary P can be more complicated than just
(PW¥)(r) = V(—r).

We now consider the Bloch decomposition, given by the
isometry:

U:H— ®Hr, UV = & Vg,

Wi (r) = Z e KRy r 4+ R), (149)
R
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where H is the original Hilbert space and Hj represents the
space of square integrable spinors defined over only one unit
cell, and satisfying the Bloch boundary conditions (the prime
indicates the derivative):

Wi(r + R) = * Ry (r), W, (r + R) = ¢* R (r)

(150)

whenever r and r + R are on the boundaries of the unit cell.
Under this isometry, we have

UHU™' = &y Hy, (151)

where Hy is given by —V? + V(r) but this time defined only
over one unit cell and with the Bloch boundary conditions.
The inversion operation P becomes UPU ~l an operator from
@ Hy, into itself, taking each H, into its counterpart H_j. We
will denote this operation by the same symbol P : Hy — H_y.
At this point, the situation is very similar to that presented
for the tight-binding models; the only difference is that the
Bloch Hamiltonians Hj and the inversion operation act on
more complex Hilbert spaces. Therefore one will be able to
apply the conclusions of the last sections once we show how
to compute the inversion eigenvalues ¢; (kj,y) at the TRI points.

The following discussion is independent of how one
represents the continuum Hilbert space. Both Hy and P can be
explicitly computed with existing electronic structure codes.
Now, at the TRI points k;i,,, P becomes a unitary matrix
sending ‘Hy,, into itself. One can diagonalize the explicit
Bloch Hamiltonian Hj,_ and form the projector P onto
the spectrum below the given Fermi level Ep. At last, one
can compute the inversion eigenvalues ¢;(ki,y) at each ki,
by diagonalizing Iskmvpﬁk . With this machinery one can
apply our formulas presented in Secs. III and IV to classify
continuum models.

inv

VI. CONCLUSIONS

The question of what makes an insulator “topological” has
many answers. In this paper we presented an answer which
encompasses all of the known topological insulators. The
fundamental distinction between an ordinary band insulator
and a topological insulator is the inability to adiabatically
connect a topological insulator to the atomic limit. This
distinction can have many manifestations including nontrivial
topological responses to external fields and robust boundary
states, however, these properties are not necessary conditions
for a topological insulator. In fact, we have seen examples in
this paper without protected boundary states, and examples
with no topological response. At first sight these insulators
seem to have no characteristics that distinguish them from
trivial band insulators. Admittedly these are not the most
interesting systems to consider experimentally, but they still
show a striking signature in the entanglement spectrum. In
fact, all known topological insulators show a signature in the
entanglement spectrum when the bipartition is a position-space
cut. Instead of taking the whole spectrum, one can calculate
just the entanglement entropy, which for all topological
insulators cannot be adiabatically deformed to zero. This fact
is what serves as the basis for our definition and unifies the
inversion symmetric insulators with the ones that are invariant
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under other discrete symmetries. Our procedure for analyzing
inversion symmetric crystals stems from the calculation and
application of the set of discrete inversion eigenvalues for the
occupied bands. Given a set of eigenvalues one can determine
the topological nature of the insulating state by comparison
with atomic band insulators, and in certain special cases
predict the existence of nontrivial topological responses to
electromagnetic fields.

The experimental relevance of inversion symmetric topo-
logical insulators is unclear, but not out of the question.*
Although in principle disorder immediately destroys any
stability of the topological state (unlike the typical topological
insulators'?), the robustness of the insulator state is ultimately a
question to be answered in practice. Many of the well-known
topological insulators simplify when inversion symmetry is
required along with the discrete symmetry that stabilizes the
topological state. Thus it seems like the most interesting
inversion symmetric insulators are ones which are derived from
parent topological insulator states with weakly broken T or C
symmetries. These types of materials would be the first place to
search for signatures of topological protection due to inversion
symmetry. Recently, we became aware of a paper by Turner,
Zhang, Mong, and Vishwanath dealing with similar issues.>?
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APPENDIX A: PROOF THAT THE ONE-BODY
CORRELATION FUNCTION IS A PROJECTION
OPERATOR

Here we prove that the one-body correlation function over
the full system (not only over part of the system) is a projector.
This can easily be proved: C;; (which is a matrix at each i, j,

ie., Cf‘j’s ) has the property

1 A 1 A
D Ciitk)Cialky) = D =D 7D P hesky) - 3 L e MU PRk k)
i J ky K,

1w j ikl D ik.k p ’ 1 ikyi p* —iklk p* 7/
=y > me’("f"‘”e’kﬂP*(kx,ky)e”kka*(kx,ky) =Y T A (RO )

kesky 7

N m

Note that we have used the notation P (k, ,ky) to represent the
k-dependent projector onto the occupied states instead of P
to make the momentum dependence easier to see.

APPENDIX B: ENTANGLEMENT EIGENVALUES FOR
TWO OCCUPIED BANDS AND FOUR SITES

We will analyze only one case of inversion eigenvalues,
i.e., when both inversion eigenvalues at k = 0 differ from the
inversion eigenvalues at k = . For simplicity and without loss
of generality, we particularize to {1(0) = £ (0) =1, §1(r) =
() = —1, where the orthogonality relations between the
wave functions at the same k and at different inversion
symmetric k’s hold due to the opposite inversion eigenvalues.
Let the wave functions of the two occupied bands be 1/, (k) and
Yo(k). Similar to the above the arguments in Sec. I[II C 3, the
entanglement wave functions take the form (14 ,m P 4) where
¥4 diagonalizes the operator Co + mC‘IP = %[(1 + m)(f’(;“ +
PY)+ P}, P(P +im)+ PP} ,(P —im)]. We expand the
wave function yr4:

Va = ary1(0) + a292(0) + b1 Y1 () + baypa(w).  (BI)

1 Sy A A 1 T
= 2 TP ek P (ki ky) = - 3 e P eoky) = Cinly).

ke k.

(AD)
ke

With this expansion, we have to look at the solutions ¥4 which
are in the null space of 13;/277(77 + im) —I—PIS;‘/Z(P —im).
Once we have found such solutions, we know they have
1/2 eigenvalues for m = 1 since (Co+ C'{P)WA = %(Pg‘ +
ﬁ;)lﬁA = %W 4 due to the fact that wave functions at different
inversion symmetric momenta are orthogonal if their inversion
eigenvalues are different. We denote the overlaps:

e
0 0
<W2<%)‘1ﬂ1(0)> = f1. <¢2(%) wz<0>> = fa.
<1ﬂ2(%>‘1ﬁ1(ﬂ)> = ps. <1/f2(%) 1/f2(77)> = fu.

These are the only unknown overlaps, as the wave function at
37 /2 is related to the one at 77 /2 by inversion symmetry. Thus
its overlaps with eigenstates of P are, up to a sign, identical to
the ones above. We find the following two exact half modes of

(B2)
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the entanglement spectrum:

(ar,az,a3,a4)
= (B34 — P403),0,Bs01 — Bras, Baoy — Braz);
(Braz — Bzan, Bz — Bras, I (Brar — Braz),0).

(B3)
The other two midgap entanglement eigenvalues are obtained
when m = —1, in which case we have to diagonalize the

operator i[ﬁ;/ZP(P —i)+ 7713;‘/2(73 + 1)]. In this case, we
expand the eigenstate:
Vg T
Wa) = 1+ esP) | () + @+ eP) v (3)):
(B4)
we find 1/2 modes if, just like in the previous section,
(1,0,i,0). (BS)

We then see that we have four robust modes at exactly 1/2 in
the entanglement spectrum, or exactly twice the difference of
negative inversion eigenvalues at the two inversion symmetric
momenta.

(c1,62,¢3,¢4) = (0,1,0,7),

APPENDIX C: EXPLICIT PROOF FOR THE GENERIC
TWO-SITE PROBLEM WITH N OCCUPIED BANDS

We now show that the two-site problem with n; negative
inversion eigenvalues at k =0 and n, negative inversion
eigenvalues at k = 7 out of a number N of occupied bands
contains 2|n; — ny| zero modes in the entanglement spectrum.
Without loss of generality denote the eigenstates of the
original Hamiltonian [y1(0)) - - - [,,(0)) as the ones with
negative inversion eigenvalue at k = 0, [, +1(0)) - - - [Yn(0))
as the ones with positive inversion eigenvalue at k =0,
[Y1(T)) - - - [¥n, (7)) as the ones with negative inversion
eigenvalue at k =m, [Yy,4+1(7)) - |¢¥n(m)) as the ones
with positive inversion eigenvalue at k = w. Bands at the
same momentum are al/ orthogonal, while bands at different
momenta are orthogonal if they have opposite inversion
eigenvalues. The simplest case of the above, which should
be obvious from our previous examples, is that of all the N
inversion eigenvalues at k = 0 are identical and negative of the
N eigenvalues at k = . In this case, the projector at one of the
inversion symmetric k’s annihilates all the eigenstates at the
other inversion symmetric k, and the 2N occupied eigenstates
of the original two-site Hamiltonian are also the eigenstates
of the entanglement spectrum at fixed eigenvalue 1/2. Due to
their orthogonality, they are linearly independent. From here
it is clear that our formula is physically correct: adding the
same eigenvalues to both k = 0,7 cannot change the result.

We again expand the eigenstates |1/4) of the correlation
function Cy = (136* + ﬁ,’:) /2 as a sum over all the occupied
eigenstates, even though these might not be (and in general are
not) orthogonal,

ny N
IlfA = Zamwm(o) + Z am Ipm(o)
m=1 m=n+1

n» N
+ 3 bt @)+ Y buu(m). (€D

m=1 m=n,+1
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In the generic case, we assume that the norms that are not
fixed to vanish by symmetry (such as different inversion
eigenvalues) are all nonzero. In general, it might be the
case that not all the eigenstates in the expansion above
are linearly independent, i.e., ¥,,(0) might not be linearly
independent from a sum of the eigenvalues ,,(r), which
have identical inversion eigenvalues. In building the matrix
to be diagonalized, we take this into consideration, but
when writing the eigenvalue equation, we assume they
are linearly independent—generically, they will be, because
there are 2N wave vectors of 2N components. The vec-

tor (ay,... N7 7 P P ,ayn,by, ... vbnz,banrl» ...,by) has
to diagonalize the matrix:
1
2y xn, 0 B’“XM 0
1
0 EN—nIXN—nl 0 AN—nIXN—nZ
T 1 ()
anxn] 0 2 nyxny 0
1 1
0 Aanszfnl 0 2N—nyxN—ny

where Bjj = (¥ (0)|y;(m)) withi =1,...,n1, j=1,...,m
and A;; = (Yi(O)|Y;(m)) withi =n; +1,... N, j=ny+
1,...,N. It is easy to see that this matrix has 2|n; — n,|
eigenvalues at exactly % irrespective of the A,B matrices.
We show it for n, = 0, the generalization to n, # 0 being
straightforward. For n, = 0, the matrix reads

1
inlxnl 0 O
1
O INmnem  AN-mxN (€3)
i 1
0 ANXN—VH 2NxN

Half of the entanglement eigenvalues at 1/2 are obvious—they
are the eigenvalues of the ¥;(0),i = 1, ... ,n; eigenstates. The
remaining eigenvalues must then be part of the eigenvalues of
the matrix:

1 A
RN_n] [ 2N-nixN-m N—nixN
N - AT 1 )
NxN-—ny 2NxN

where we have indexed the matrix by the dimension N — n; of
the upper block-diagonal square matrix and by the dimension
N of the lower block diagonal square matrix. We need to
compute the determinant of
AN —ny xN )
. (©S

Rx,nl _ ((% - )‘)anlfonl
(% - )L)NXN

AJIIVXN —ny

We can prove that this matrix has n; eigenvalues at 1/2,
independent of what the matrices A are; as such, we denote
by Mg a matrix of the form above, but with any random
numbers instead of the matrix made out of norms matrix
Aij = (¥i(0)|¥;(r)). We want to compute the determinant
of Mll\\,]_”1 . By expanding first on the last column of the matrix,
then immediately after, expanding on the last row of all the
matrices obtained, we find the recurrence relation:

()

det (My ™) = (§ —a)det My " +x - det (My_}" "),

(Co)
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which, applied successively, leads to

det (M) ") = (% —)\) deth::I

(C7)

where r < N — 1 and x, are numbers. We choose r = N — 1.
Notice we have so far applied the recursion relation only to the
lower index of the matrix. We now apply it to the det(M, _ N e b
to obtain

1

det (My~""') = (5
p—i 1 qg—1
+qu-(§—x> det (M

p—i
- x) det My !

),

(C8)

where p > i is an integer and the x, are complex numbers
not necessarily equal to the x;’s in the previous recursion.
We again choose p = N — 1, which means i < N — 2 in the
above formula. By plugging in det(MN:i"‘*l) into Eq. (C7),
and separating the sum to take into account the restriction
i < N — 2 for which Eq. (C8) is valid, we find

det( MY~ "')

N—1N—-1—go

| N—2
_ 0[(5 _A) } £
q=1 qi=1
1 qotai=2 N 2
i —
x (1 — 840,1\1_1)(5 - )~> det (MN*(‘IIO+¢II))’

where 0[(% — A)] means terms proportional to at least the

(% — A)N=2. By applying the recursion relation successively,
we obtain

det (My MY~ M)

)

—1 N—1—go N—1—(qo+q1) N—1—(qo++qi-1)

535 D ST »

Q=1 q=1 =1 q=1
X (1 =8¢y n—1)(1 = 8go4g,.n-1) -+ (1

1 (qo+--+q—U+1)
x (— —~ A) det (My - *D (C9)

- 8‘]o+-~'+q:71,N—1)

2 N—(qo+---+q1)

when N —n; — (I 4+ 1) = 0, the matrix MN &104_(111;[) is fully

diagonal and has determinant (1 — 2)N~@*+4), Hence the
term in the sum is

(l _ A)f/o+---+q/—1—l (%

! _ )L)N—qo—---—qz _ (% _ )L)nl

(C10)

while the lowest-order term in O[(3 — 1)"~(+D]is again (§ —

A)"'. We hence see that the determinant of det(M ,IVV My~ (% —
A)", and these are the remaining n; eigenvalues. Combined
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with the first n; eigenvalues, we see we have a total of 2n;
eigenvalues in the entanglement spectrum at 1/2, just as the
formula predicts.

APPENDIX D: PROPERTIES OF THE 1D ADIABATIC
CONNECTION UNDER INVERSION SYMMETRY

We begin by recalling some basic facts of inversion
symmetric Hamiltonians. Assume that |u;(k)) is an eigenstate
of the Hamiltonian at energy

H (k) |ui (k)) = Ei (k) |u; (k) - (D)

Then P |u;(k)) is necessarily an eigenstate at —k of the same

energy:

H(=K)P |u;(k)) P = HE)P™'P |u; (k) = PHK) |u; (k)
= PE;(k) lu;(k)) = E;(k)P |u;(k)) .

We assumed no degeneracies in the spectrum, which means

lui(—k)) =

P |u; (k)) . (D2)

Thus we have
lui (k) = ™" P |u,y(—k))

with E;(k) = E;(—k).
We assume that we are in an insulating state where the
charge polarization is

dk
/ Z (up,i|Ox |k, i)

E (k)<0

(D3)

(D4)

Using Eq. (D3) we get

dk
P = / Z (Pui(—k)| €% dpe " P |u;(—k))

ieocc.

:—ze/ S (Pui(—k)| 8P luy(—h))

i€occ.
—ief

D (=)

i€occ.
The last term is an integer because it depends only on o, —
a_z, which can at most be 277, so we will drop it and be left

with
dk
f D (i (—k)| B |ui (k)

i€occ.

:,e/ N ik D i (k)

ieocc.

_lef S w0 9 s ()

i€occ.

le/ Z (w; ()| 3 |u; (k) = —Py.

ieocc.

(D5)

P

(D6)

Since P is defined only mod m the two values consistent with
inversion symmetry are

P =0, D7)

e
2.
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We define the trivial insulator as P; = 0, while the topological
oneis P, = % The e¢/2 value means that when the system is
cut in two, there exists half a charge on each end.

APPENDIX E: RELATION BETWEEN ADIABATIC
CONNECTION AND B(k) IN ONE DIMENSION

We now prove that the matrix
Bij = (ui —x|Plujr)
is unitary and that
A(—=k) = —A(k) + i Te[B(k)Vi BT (k)].

We define the matrix B;; as the matrix connecting the bands

at k with the ones at —k:
lui(—k)) = BJ;(k)Plu,;(k)), (ED)

where 7, j run over the occupied bands 1, ...,N.
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That B;; has to be unitary can be easily seen by extending
the matrix to belong to all bands, occupied and unoccupied.
Since we have a full gap in the system none of the occupied
bands at k can transform to unoccupied bands at —k and
vice versa (otherwise we would not have an insulator). This
means that the full matrix B = diag(BOCC“pied, Bunoceupied) jq
block diagonal. One can prove the full B is unitary by using
completeness:

D k) i)l = 1 (E2)

i€all bands

we have (double index means summation)
(B'B)ij = (BN)inBuj = (i | P lttyn, 1) (1t | Pl 1)
= (i PIPlu;r) = (wigllujr) = 8ij.

Hence since the full matrix B is unitary, so are the B(moccupied,
We now want to express a connection between A(—k) and
A(k). We have

A(—k) = =i (i, | V_ilui k) = i[ui(—k)] %o Vilti(=k)la = i Bii(k)Pyg (1 i) Vil B} (k) Pag (1 .1)e]
= i By (k) [V B} (k)1P5 (1.1 Peo (U j 1o + i Bir(k) B (k)P (u1.1) 5 Vi Pao (1 .1 o
= i By (k) [ Vi B (k)1 (w110 8p0 (u j k)o + i Bi(k) B} (k)30 (ur k)5 Vi j i )o
= i By (k)[ Vi B} (k)18 1 + i Biy(k) B} (k) (w1 1) Vi ji)p = i Bir(k)[ Vi Bjj (k)] + 81 (i )5 Vi i)p

= i By(LViB; (k)] + i (i) Viuji)p = i THLBR)ViB' ()] — Ak, (E3)
where repeated indices are summed over.
APPENDIX F: MAGNETOELECTRIC POLARIZATION AS WINDING NUMBER OF THE B(k) MATRIX
The Abelian A(k) in the previous section obeys a special case of the more general non-Abelian transformation,
A(=k) = —BA®)B' +iB(k)VB'(k), (F1)
where the non-Abelian adiabatic connection is A?ﬁ (k) = —i(ua k| Vi lug,r). The above implies that the Berry gauge fields at k
and —k are non-Abelian gauge transformed of each other. The field strength gauge transformation is
Fij(—k) = B Fyj (k) B (k). (F2)

From here the magnetoelectric polarizability is easy but tedious to obtain:

Py =

1672
1
1672

/ d3ke,»jkTr{ [F,-,-(k) - %iAi(k)A j(k)}/ik(k)} =

N 2. . A A
167‘[2 /dSkGijkTrH:Fij(_k) — glA,(—k)Aj(_k)]Ak(_k)}

= / d3ke,»jkTr({B(k)ﬁi,(k)BT - %i[B(k)A,-(k)A j()BY(k) — i B(k)A;(k)d,; BT (k)]

—i[3; B(k)]A ; (k)BT (k) + 8; Bd; B } [—B(k)A (k)BT (k) + i B(k)3, B (k)])

1

= /d%e,-,ﬂr”ﬁ,-(k) — %iﬁi(k)ﬁj(k)]fik(k)} —

1672

+ 8m2

3 A M =
d’ke;jx0;[B(k)A (k)0 Bl = —P3 — Y

which proves the formula in the text.

/ d*ke; x Tr{[ B(k)d; B'1[B(k)d; B[ B(k)& B'1},

A7 / d*keijx Tr{[B(k)d; B'1[B(k)d; B'I[B(k)9; B'1}

(F3)
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APPENDIX G: PROOF OF FU-KANE FORMULA

In this Appendix we provide an alternative proof for the
Fu-Kane formula’ for the Z, invariant of 3D 7 and P
invariant insulators. Consider the Bloch Hamiltonian H (k) of
an insulator with both inversion P and time-reversal symmetry
T. We have

P2=1, T?>=—1, [P.,T]1=0, THKT ' = H(—k),
PHK)P" = H(—k) (G1)

and hence
PTHK)PT) ' = Ak), (PT)*=—1, (G2)

which proves that the insulator has doubly degenerate bands at
each momentum k. This does not depend on the dimensionality
of the space. The two ingredients we will use to prove Eq. (110)
are (i) band crossing arguments between a 3D insulator in the
trivial atomic limit and a topologically nontrivial insulator,
and (ii) the fact that a 4 4+ 1 — d Dirac Hamiltonian changes
its 4D “Hall conductance” by 1 if there is a band crossing of
four bands—these are actually two doubly degenerate bands.
Without loss of generality we consider a topological insulator
with four bands—two occupied bands and two unoccupied.
As we take a generic T and P invariant insulator through a
phase transition, four (i.e., two doubly degenerate) bands are
generically needed.

Assume we have two T and P symmetric Hamiltonians in
3D hy(k) and h,(k) with

Thi2()T™" = hya(=k), Phia(k)P~" = hyo(—k).

We choose ﬁ](k) to be trivial (in the atomic limit with all
hoppings taken to vanish). We now construct a time-reversal
and inversion invariant interpolation between these two Hamil-
tonians. We first prove that such a gapped interpolation
exists. To see this, it is easiest to remain with our reduced
Hamiltonian with four bands, which represents the generic
effective Hamiltonian of the two doubly degenerate bands
immediately above and below the Fermi level, out of the total N
bands in the insulator. In this basis, the 3D effective insulating
Hamiltonian with inversion and time-reversal symmetry has
co-dimension 2 (there are three momenta k,,ky,k, and five
Clifford generator I' matrices in which a four-band insulating
Hamiltonian with doubly degenerate bands can be expanded).
In four dimensions, a topological insulator with inversion and
time-reversal symmetry has co-dimension 1 (there are four
momenta and five ['* matrices), so there is still always a way
to make it gapped. This shows that generically, a 3D or 4D
insulator with inversion and time reversal is always gapped.
It can be made gapless by tuning two and one parameter(s),
respectively. Now, let the gapped interpolation between /, (k)
and £, (k) be h(k,0) which satisfies the properties

hik,m) = ha(k),

Phk,0)P~" = h(—k, —0).
(G3)

The interpolation between the 3D Hamiltonians is chosen this

way so that if one interprets 6 as a fourth momentum then the

resulting 4D Hamiltonian would respect inversion and time
reversal. It was shown in Ref. 9 that 2{ P;[h,(k)] — P3[1(k)]} =

h(k,0) = hy(k):
Thk,O)T™" = h(—k, — 0),
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Cz[fl(k,e)] wpere C, is the second Qhem number of the 4D
Hamiltonian A(k,0). Since we chose /1(k) to be trivial,

Py(h))=0 modn € Z. (G4)

Hence if the second Chern number of the 4D A(k,0) is odd,
we have

Py(h) =1/2 modn € Z, (G5)

giving rise to the result that if C, of the 4D Hamiltonian is odd,
then either A, (k) or fzz(k) is a nontrivial topological insulator.
Since we pick h1(k) to be our reference trivial Hamiltonian
then this would imply that /1,(k) is nontrivial.

To understand how to classify the 3D insulators we first
need to understand how to get a 4D insulator with an odd
second Chern number. The 4D trivial Hamiltonian is simply
a momentum-independent interpolation between h;(k) and
itself. This clearly has vanishing C,. Since C is a topological
invariant, we must have a gap-closing phase transition to
change it. As the system is inversion and TR invariant, we
have to analyze the crossings between two doubly degenerate
bands. This is the generic case, even for insulators with
an arbitrary number of bands N, because we can build an
“effective” Hamiltonian close to the transition which will
be a four-band model. With time reversal and inversion, the
Bloch Hamiltonian has to be of the form A (k) = d,(k)I'?.
We first consider transitions which occur away from the
invariant momenta. Because of inversion (or time reversal)
a gap closing at k must be matched by one at —k. Such
transitions can be tuned by a single parameter. Since the
gap closing and re-opening happens away from an invariant
momentum, the inversion eigenvalues of the occupied bands
remain unmodified. The non-Abelian adiabatic field strengths
at the two k points are equal (up to a gauge transformation,
and a minus sign in case of time reversal). Thus a gap closing
at two points k and —k makes the total change in second
Chern number, which is even. Thus a 4D Chern insulator with
inversion and time reversal has an even second Chern number
if the inversion eigenvalues of the occupied bands are the same
as in the atomic limit.

We now look at the case where the gap closing and
reopening happens at an inversion symmetric point. In this
case, the Hamiltonian is still 4 x 4 but the co-dimension of
any two doubly degenerate bands is 5 because we have five
Clifford matrices and no tunable momenta—the momenta are
fixed at the inversion symmetric points. If the bands involved
in the phase transition at the inversion symmetric points have
the same inversion eigenvalues (e.g., all positive) then, up to a
gauge choice, the inversion matrix is the identity operator. This
means that [P, A (0)] is trivially satisfied and does not provide
an additional constraint and so the crossing is always avoided
with such a large co-dimension. However, if the bands have
different inversion eigenvalues (e.g., bonding and antibonding
bands), so that the inversion matrix in a specific choice of basis
is P = 1,42 ® 7, then we find that the effective Hamiltonian
matrix at the inversion symmetric points G;/2 is

H(G:/2) = M, P, (G6)

where M; is the mass at the inversion symmetric point
G, /25335 As such, a gap closing transition whereby the M;
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changes sign is accompanied by two effects: (i) the second
Chern number will change by =£1 if only one mass goes
through zero, or more generally, it will change by the number of
masses that go through zero (multiplied by a sign), and (ii) the
inversion eigenvalues of a pair of occupied bands change sign
as a result of every M; that switches sign. This is the crucial
difference between phase transitions which change the first and
second Chern numbers. In two dimensions a change in the first
Chern number is accompanied by a single inversion eigenvalue
switch since the minimal crossing is between two bands. In
four dimensions, changes in the second Chern number require
a four-band crossing and thus two inversion eigenvalues are
exchanged. This carries over to three dimensions where we are
interested in the Z, valued parity of the second Chern number.
A change of the parity is effected when a four-band crossing
switches two inversion eigenvalues. We hence proved that a
4D Chern insulator with inversion and time-reversal symmetry
has odd second Chern number if the product of half of the
inversion eigenvalues (half meaning each Kramers pair is only
counted once) at all TR invariant points is —1. By keeping
h(k) constant and changing only /i, (k) through a gap closing
and reopening we can make /(k,0) a 4D insulator with an odd
second Chern number. Thus /,(k) is a nontrivial Z, insulator
when Eq. (110) is negative and we have proved the Fu and
Kane formula.

APPENDIX H: PROOF THAT PHASE IS SMOOTH FOR 3D
LATTICE CASE

We show in this appendix that after band decoupling process
the U(1) phases in all the decoupled U(2) blocks are all
smooth. It is important to consider the generic form the
inversion eigenvalues can take for a single pair of bands in
n? . The definition of bands in this set is that the product of
inversion eigenvalues for a single band is negative, and cannot
be made positive by performing band crossings with other
occupied bands in the set n? . We note that for a given pair, the
eigenvalues for one member of the pair at a kj,, must be the
same as the eigenvalues for the other member of the pair. If
this is not true then we could perform a band crossing within
this pair to make the product of inversion eigenvalues on the
individual bands within the pair equal to +1, which contradicts
the definition of bands in the set n° . We will now prove that
the U(1) phase for a U(2) block of B(k) is only nonsmooth if
there are ki,, where the eigenvalues are opposite. This result
implies that for all pairs of bands that make up the set n° the
phase is smooth since we just showed that there can be no such
kiny points.

A simple example of a U(2) matrix with a nonsmooth phase
to keep in mind for intuition is

) k k ;
B(k) = e(l/z)’k<cos 3 + i sin 3 O’Z) = 'OUk), HI1)

where U(k) € SU(2). Note that this B(k) satisfies all the
required constraints and we can see that in Eq. (H1) everything
is smooth as k is continuously varied, except when we are
close to the end of the 27 cycle. If we start, for example, from
k = —m, one can see that the phase and the SU(2) factor take
different values when k approaches m, but as a whole B(k)
reaches the same value as the one we started with at k = 7.
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In the following we argue that such a discontinuity in the
phase immediately implies the existence of a (—-) pattern of
inversion eigenvalues at some kji,, point. Let us start from a
kL, and continuously vary k until it advances by 27, along
one of the k; directions. At the ki, points, 6 can take only
integer or half integer values (in units of ), and an important
observation is that, if 6 is half integer at a ki,, point, then
B(kiny) necessarily takes the form Ac (A= unit vector), which
has £1 inversion eigenvalues. So let us assume that 6 = 0 at

k! .In general we can have

2nmw (a)
2n+ Dm (b)’

In case (a) the phase factor is smooth, in which case there is
no problem removing it from the winding number calculation.
In case (b), the phase factor changes sign. Now let usconsider
the inversion properties of B(k) relative to the k2, =kl + 7
point. We have

Okl +2r = Ok, + { (H2)

inv

0,5 = N —i6, = N
et (fio g+ ik 116) =€ it (fie _j—ige _«G).
(H3)

Since f; and g; take only real values, we can see that if Oz +x
is half integer then necessarily 6y2 _ is also half integer. In
other words, the half integer values of 6; come in pairs, unless
k is the k2, invariant point itself. Since 6 varies from 0 to (2n +
1) as we vary k by 27, there will be an odd number of times
when 6; assumes a half integer value. It is then evident that
one such half integer value must occur at k2, and consequently
the (—+) inversion eigenvalue pattern will show up at k7,,..

APPENDIX I: INVERSION EIGENVALUE PATTERNS AND
THE CORRESPONDING MAGNETOELECTRIC
POLARIZABILITY

In this Appendix we provide some explicit examples of
our proof of the connection between inversion eigenvalues
and the magnetoelectric polarization for inversion invariant
insulators. We focus on four-band, gapped Hamiltonians H (k)
in three dimensions displaying various patterns of inversion
eigenvalues. Assuming two occupied bands, we will write
these inversion eigenvalue patterns as

++++++++

——— =+, a

for example, where one should understand that the two nonzero
eigenvalues of Py, PPy, are +1and —1 at four k;,, points and
+1 and +1 at the remaining ki, points. The order of the ki,
is not important for the magnetoelectric polarizability, but to
be precise we will order them as

{(0,0,0), (7,0,0),(0,7,0),(0,0,7),(w,7,0),(,0,7),
O,m,m), (w,m,m)}.

For each case, to compute the magnetoelectric polarizability
P5, we will begin with a trivial reference Hamiltonian (P; = 0)
and find a gapped and inversion symmetric interpolation
A (k,0) between this and our example Hamiltonians. We can
compute P; as half the second Chern number C; generated by
the interpolation Ja i (k,0), which is considered as a4+ 1 —d
inversion symmetric Hamiltonian. An odd C; corresponds
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to a nontrivial insulator with half integer magnetoelectric
polarizability, while an even C, indicates a trivial insulator.
This method of calculation is convenient because C, can be
computed using a gauge-invariant projector method, so we can
bypass the task of finding a smooth gauge. All of our numerical
observations are in agreement with our mathematical proofs
above.
(1) The pattern

++++++++

——++++++ @)

is seen with the following gapped Hamiltonian:

Hk) = sink; [} + sinko["5 + sinks[3
+(—2.5 + cosk; + cosk, + cos kg)fo
+0.75(cos k; + cos kz)(f‘ls + f‘25 — ﬁ35 — f‘12)~
I3)
This Hamiltonian can be connected through a gapped interpo-
lation with the Hamiltonian:
ﬁo(k) = sink; [} + sink, [ + (—2.5 + cosky + cos kz)f‘o
+0.75(cos ki + coskr) (s + s — I35 — T'12)
(14)

using the inversion symmetric homotopy
H(k,0) = 1(1 4 cos 0)H (k) + $(1 — cos 0) Hy(k). (I5)

The second Chern number generated by H(k,0) is C =0
(even) and the P; of I:Io(k) is zero because it depends only on
ki and k,. Consequently, the P; of A (k) is 0 mod(Z).

(2) The pattern

++++++++
————++++ (16)

is seen using the following gapped Hamiltonian:

H(k) = sink, Iy + sinko["y + sinks['s
+(=2.5 4 cosk; + cos ky + cos k3)[g
— (2 — cosksz)(cosk; + cosky)
x (15 + Fos = T35 = ') (a7
This Hamiltonian can be connected through a gapped interpo-
lation with the Hamiltonian:
Hy(k) = sink T} + sink,["5 + (—2.5 + cos ky + cos k[
—2(cosky + coska) (s + a5 — I35 — T'yp)  (18)

using the inversion symmetric homotopy
H(k,0) = (1 4 cosO)H (k) + 1(1 — cos ) Ho(k). (19)

The second Chern number generated by H (k,0)is C, =0
(even) and the P;5 of I:Io(k) is zero because it depends only on
ki and k,. Consequently, the P5 of H (k) is 0 mod(2).

(3) The pattern

——— =t

————++++ (110)
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is seen with the following gapped Hamiltonian:

Hk) = sink; [} + sinky [ + sin ks
+(— 1 4+ cosk; +cosk + cosks) Ty + 117s.
I11)

This Hamiltonian can be connected through a gapped interpo-

lation with the trivial Hamiltonian:
Hy(k) = sink, Ty + sink>T + sinksT3 — 41, (112)

using the inversion symmetric homotopy of Eq. (147). The
second Chern number generated by HA(k,0) is C, = 2 (even)
and consequently P;s = 0 mod(Z).

(4) The pattern

++++++++

(I13)
is seen using the following gapped Hamiltonian:
H(k) = sink; Ty + sink, T + sinks T3 — 417
+ (2 + cosk; + cos ky + cos k3)f‘15
+ (=2 + cosk; + cos k, + cos k3)f25. I114)

This Hamiltonian can be connected through a gapped interpo-
lation with the trivial Hamiltonian:

Hy(k) = sink I'y + sinko [ + sinks [ — 10 (115)
using the inversion symmetric homotopy
H(k,0) = sink; Ty + sink, [y + sinks[3 — 117
+ %(1 + cos0)(2 + cosk; + cos ky + cos k3)f‘15
+ %(1 + cos8)(—2 + cos k; + cos k, + cos k3)f‘25
{16)

The second Chern number generated by H(k,0) is C, = 0
(even) and consequently P; = 0 mod(Z).

+ sin6 f‘s.

(5) The pattern
——++++++
——++++++ (117)
is seen using the following gapped Hamiltonian:
H(k) = sink; ", + sink, I
+ (= 2 + cosky + cos k)T
+[— 1 +0.1(cosk; — cosky)][Hs.  (118)

This Hamiltonian can be connected through a gapped interpo-
lation with the trivial Hamiltonian:

Hy(k) = sink Iy + sinko I + sinks['s — 2% (119)
using the inversion symmetric homotopy
H(k) = sink; Ty + sink> T + $(1 — cos 0) sin k3T
+[ =2 + (1 + cosO)(cos k; + cos k)|
+1(1 +cos@)[ — 1 + 0.1(cos ky — cos k)] I"as

+ sin6 [s. (120)
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The second Chern number generated by H(k,0) is C, = 0
(even) and consequently P; = 0 mod(Z).

APPENDIX J: RESPONSE THEORY ARGUMENT IN
HIGHER DIMENSIONS

Although we do not rigorously prove anything in higher
dimensions we note that the physical response arguments
presented in this work and Refs. 9,29 and 29 continue to
apply in higher dimensions. This gives us a hint that there
are interesting inversion symmetric topological insulators
in higher dimensions. For even space-time dimensions the
topological response actions all take a standard form

2n ajax--ax,—1axy
Sef‘f[Alt] = /d X P,etfrimt Fdlaz T Fa’lu—]“anZ’

where P, is a response coefficient and F,;, is the electro-
magnetic field-strength tensor. If these were all dynamical
fields then the entire action must transform like a scalar,
which means that the intrinsic response coefficients P, must
transform the same way as the product of the electromagnetic
fields. Thus P, must be odd under inversion symmetry for all n.
Additionally for even (odd) n, P, is odd under time-reversal
T (charge conjugation C) symmetry. Since we are talking
about external electromagnetic fields we do not transform
them under the symmetry operation and hence only the P,
are changed. Thus in alternating even space-time dimensions
topological insulators are protected by either T or C symmetry.
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However, in every even space-time dimension there is a
topological insulator protected by inversion symmetry, which
has a topological response. In all of these cases P, is not
gauge invariant under transformations of the occupied wave
functions and the oddness under the different symmetries
quantizes P, to take only two independent values. This yields
a Z, classification for the response coefficient in line with the
arguments presented in Ref. 9.

In odd space-time dimensions the generalized Chern-
Simons terms describing the electromagnetic responses in
topological insulators are compatible with inversion symmetry.
The general action is

Cy
(n+ DIQry

2n+1 _ajay---a
X /d €N ZHIAal Fa2a3 e FaZna2n+] .

Ser [Au] =

The quantity C, is the nth Chern number and is even under
inversion symmetry and thus not restricted by the requirement
of preserving inversion symmetry. If n is even (odd) then the
action is also compatible with 7 (C) symmetry. We have not
proven it, but our intuition suggests that the parity of C, can
be characterized by the inversion topological invariants given
by the ng ) defined in Egs. (4) and (11) when calculated in
(2n + 1) — d, where by Xgl ) we mean we only take the product

of inversion eigenvalues over a set of % of the occupied
bands.
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