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We study the dynamics and thermodynamics of one-dimensional spin-orbital models relevant for transition-
metal oxides. We show that collective spin, orbital, and combined spin-orbital excitations with infinite lifetime
can exist, if the ground state of both sectors is ferromagnetic. Our main focus is the case of effectively
ferromagnetic (antiferromagnetic) exchange for the spin (orbital) sector, and we investigate the renormalization
of spin excitations via spin-orbital fluctuations using a boson-fermion representation. We contrast a mean-field
decoupling approach with results obtained by treating the spin-orbital coupling perturbatively. Within the latter
self-consistent approach we find a significant increase of the linewidth and additional structures in the dynamical
spin structure factor as well as Kohn anomalies in the spin-wave dispersion caused by the scattering of spin
excitations from orbital fluctuations. Finally, we analyze the specific heat c(T ) by comparing a numerical
solution of the model obtained by the density-matrix renormalization group with perturbative results. At low
temperatures T we find numerically c(T ) ∼ T pointing to a low-energy effective theory with dynamical critical
exponent z = 1.
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I. INTRODUCTION

In condensed-matter systems the coupling between differ-
ent degrees of freedom often plays an important role. The
electron-phonon coupling, for example, can lead to the for-
mation of renormalized quasiparticles, so-called polarons,1,2

as well as to phase transitions such as the Peierls instability.3

In recent years, the coupling between fermionic and bosonic
degrees of freedom has also been intensely studied in Bose-
Fermi mixtures of ultracold quantum gases.4–8

Coupled degrees of freedom also seem to be important in
certain transition-metal oxides where the low-lying electronic
states (termed “orbitals”) are not completely quenched so that
temperature or doping can lead to a significant redistribution
of the valence-electron density. In insulating materials with
partly filled degenerate orbitals the superexchange between
the magnetic degrees of freedom then becomes a function
of the orbital occupation. This leads to models of coupled
spin and orbital degrees of freedom as, for example, the
Kugel-Khomskii model where the orbitals are represented
by a pseudospin.9 LaMnO3,10–13 LaTiO3,14–17 and LaVO3 or
YVO3

18–25 are well-known examples of compounds believed
to be described by effective spin-orbital models. They exhibit
a wide range of fascinating effects ranging from colossal
magnetoresistance12 to temperature-induced magnetization
reversals.18,19

Common to all these transition-metal oxides is a lifting of
the fivefold degeneracy of the d orbitals into two eg orbitals
(x2 − y2 and 3z2 − r2) and three t2g orbitals (xy, yz, and
xz). This splitting is due to the perovskite structure where
oxygen ions, O2−, form octahedra around the transition-metal

ions which are therefore exposed to an approximately cubic
crystal field. As a consequence, the orbitals pointing toward
the oxygen ions are energetically unfavorable.

In YVO3 the t2g orbitals are occupied by two electrons
forming an effective spin S = 1 due to large Hund’s rule
coupling. The material is an insulator with an interesting phase
diagram.18–20,22 At temperatures below 77 K the system is in
a G-type antiferromagnetic (AF) phase, i.e., AF in all three
directions. In a range of higher temperatures, 77 K < T <

116 K, the magnetic structure is C type with spins ordering
antiferromagnetically in the (a,b) plane and ferromagnetically
along the c axis. The surprising fact that the ferromagnetic
(FM) exchange integral in this phase is much larger than the
AF exchange interactions in the (a,b) plane22 was explained by
strong orbital fluctuations along the c-axis chains that trigger
ferromagnetism.21 In the C-type phase a neutron-scattering
study revealed that the magnon dispersion along the FM
c-axis chains consists of two branches. This splitting has been
interpreted as due to a periodic modulation of the FM exchange
along these chains caused by an entropy gain of fluctuating
orbital occupations.22,23 Support for an orbital Peierls effect
in this material was given by numerical investigations23,24 and
a mean-field (MF) decoupling approach.26

However, the dynamics in such systems cannot easily
be studied numerically and a MF decoupling is unable to
explain important features of coupled spin-orbital degrees of
freedom27 as can be seen in the following example. Consider
the one-dimensional (1D) spin-orbital Hamiltonian28–30

H = J
∑

j

(Sj · Sj+1 + x)(τ j · τ j+1 + y), (1.1)
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FIG. 1. (a) Ground state of the FM spin-orbital model, Eq. (1.1),
(b) a spin excitation, and (c) a coupled spin-orbital excitation. The
two orbitals per site are assumed to be degenerate (the splitting is
only for clarity of presentation).

where Sj and τ j are spin S and pseudospin τ operators at
site j , respectively, and x and y are constants. In our paper
we will be mainly interested in the case of antiferromagnetic
superexchange, J > 0. However, it is very instructive to study
the case of a ferromagnetic interaction J < 0 first. For general
x, y the model has an SU(2) ⊗ SU(2) symmetry and exhibits
an additional Z2 symmetry, interchanging spin and orbital
sectors, if x = y. For S = τ = 1/2 and x = y = 1/4 the
symmetry is enlarged to SU(4).31,32

In the rest of this section we discuss the case with
ferromagnetic exchange J < 0, and we choose x and y such
that the ground state |FS,Fτ 〉 is given by fully polarized spin
and orbital sectors as illustrated in Fig. 1(a).

For the moment we restrict ourselves to S = τ = 1/2.
Using the equation-of-motion method we find that the state
S−

j |Fs,Fτ 〉 shown in Fig. 1(b) is always an elementary
excitation with dispersion ωS(q) = |J |(1 + 4y)(1 − cos q)/4.
Analogously, the orbital flip is also an elementary excitation
with ωτ (q) = |J |(1 + 4x)(1 − cos q)/4. However, these are
not the only undamped elementary excitations of the Hamil-
tonian, Eq. (1.1). In addition, a coupled spin-orbital excitation
S−

j τ−
j , as shown in Fig. 1(c), may exist. To investigate this issue

we again apply the equation-of-motion method leading to

{[H,S−
j τ−

j ] − |J |[Cj (x,y) + Dj (x,y)]}|FS,Fτ 〉 = 0, (1.2)

where

Cj (x,y) = (x + y)S−
j τ−

j − 1
4 (S−

j−1τ
−
j−1 + S−

j+1τ
−
j+1)

is the coherent part, and

Dj (x,y) = −1

2

[(
x − 1

4

)
(S−

j τ−
j−1 + S−

j τ−
j+1)

+
(

y − 1

4

)
(S−

j−1τ
−
j + S−

j+1τ
−
j )

]
(1.3)

contains terms which lead to a spatial decoherence of the
excitation. Hence in order to have a fully confined spin-orbital
excitation, Dj (x,y) has to vanish, which obviously is the

case if x = y = 1/4. From this we draw the conclusion that
confined spin-orbital excitations are rather the exception than
the rule, relying on the particular value of the constants. If we
introduce the Bloch states

�Sτ (q) = 1

N

∑
j

eijqS−
j τ−

j |FS,Fτ 〉, (1.4)

the dispersion of the coupled spin-orbital excitation for
x = y = 1/4 is given by

ωSτ (q) = |J |(1 − cos q)/2. (1.5)

Thus for x = y = 1/4 we have ωS(q) = ωτ (q) = ωSτ (q);
i.e., the dispersions of all three elementary excitations are
degenerate.33 Interestingly, they all lie within the continuum
of spin-orbital excitations given by γ (q,p) = ωS(q/2 + p) +
ωτ (q/2 − p). The Hamiltonian, however, does not allow
for a decay of these three elementary excitations in the
ferromagnetic case. For the case of the coupled spin-orbital
excitation we see from Eq. (1.3) that such a decay becomes
possible once we move away from the special point x = y =
1/4. Our conclusions partly differ from the ones presented in
Ref. 30, where the coupled spin-orbital excitation is considered
as a bound state below the spin-orbital continuum.34

There are several ways to generalize the S = τ = 1/2 case
to arbitrary spin- and pseudospin quantum numbers. If we
start again from fully polarized spin and orbital sectors and
only demand that S−

j τ−
j |FS,Fτ 〉 stays confined, we find the

condition x = S(1 − S) and y = τ (1 − τ ). Another way of
generalizing the S = τ = 1/2 case to arbitrary S and τ relies
on the fact that the Hamiltonian, Eq. (1.1), with x = y = 1/4
is equivalent to

H = |J |
4

∑
j

DS= 1
2

j,j+1D
τ= 1

2
j,j+1, (1.6)

where Dσ= 1
2

j,l with σ ∈ {S,τ } is Dirac’s exchange operator.35

A generalization of this exchange operator to arbitrary spin
has been discussed by Schrödinger.36 For instance for σ = 1
the spin (pseudospin) exchange operator is given by Dσ=1

j,l =
(σ j · σ l)2 + σ j · σ l − 1.37 The Hamiltonian in Eq. (1.6) with
arbitrary spin (pseudospin) quantum number does not only
keep the single spin-orbital flip confined as in the general-
ization discussed above but rather all spin-orbital excitations
of the type (S−

j )mS (τ−
j )mτ |FS,Fτ 〉 where mS and mτ are the

multiplicities for spin and pseudospin, respectively.
Since a MF decoupling solution treats the spin-orbital chain

as two separate chains with effective exchange parameters
determined self-consistently, the physics of coupled spin-
orbital excitations cannot be captured within this approach.

The purpose of this paper is to study the importance
of coupled spin-orbital excitations in a spin-orbital model
with antiferromagnetic superexchange and anisotropic orbital
exchange. This case is intriguing as spin and orbital degrees
of freedom may be expected to be strongly entangled.27 In
fact, it has been shown that composite spin-orbital excitations
have to be analyzed together with spin waves in systems
with active eg orbitals, such as for instance KCuF3.38,39 This
follows from the nonconservation of the orbital flavor in
hopping processes which implies that spin excitations are not
independent and may occur in general together with an orbital
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flip. Here we will consider an anisotropic generalization of
the spin-orbital model (1.1) with parameters x, y such that
the spins still order ferromagnetically in the ground state.
The orbital sector, however, will no longer be in a fully
polarized state due to the AF superexchange which favors
orbital alternation. Independent spin and orbital and coupled
spin-orbital excitations of collective type, as discussed above,
therefore can no longer exist. We will focus, in particular,
on the question of how spin excitations are modified by the
presence of orbitals in this case.

The paper is organized as follows: In Sec. II we present
a generalization of the spin-orbital model, Eq. (1.1), to a
model with anisotropic orbital exchange. For the extreme
quantum limit of the orbital sector interacting via an XY-type
coupling we then derive an effective boson-fermion (BF)
model which resembles models considered in the context
of ultracold Bose-Fermi gases. By using a density matrix
renormalization group algorithm applied to transfer matrices
(TMRG) we exemplarily investigate numerically the crossover
from AF to FM correlations. In Sec. III we discuss the MF
decoupling approach. We allow for a dimerization in both
sectors and discuss the obtained MF phase diagram. In Sec. IV
we summarize the results for the dynamical spin structure
factor S(q,ω) obtained within the modified spin-wave theory
(MSWT) for the uniform FM spin chain.40,41 In Sec. V we
formulate an approach where the coupling between spins and
orbitals is treated perturbatively. The approach is based on
representing the spins by bosons using the MSWT42,43 and the
orbitals by Jordan-Wigner fermions. Finally, in Sec. VI, we
consider the effects of coupled spin-orbital degrees of freedom
on the thermodynamics of the system. We focus, in particular,
on the specific heat as a function of temperature and compare
perturbative results with numerical data obtained by TMRG. In
Sec. VII we summarize and discuss our results. The Appendix
provides details of the perturbative approach.

II. SPIN-ORBITAL MODEL AND MAPPING ONTO A
BOSON-FERMION MODEL

A. One-dimensional spin-orbital model: Antiferromagnetic case

We will focus here on the physical situation realized in
the vanadium perovskites, such as YVO3, where the superex-
change interactions are antiferromagnetic. In the following,
we will therefore only consider spin-orbital models such as the
one given in Eq. (1.1) with antiferromagnetic superexchange
interactions J > 0.

In YVO3 the two d electrons occupy the lower lying
t2g orbitals while the eg orbitals are empty. From electronic
structure calculations44–46 it is concluded that the t2g orbitals
are split into a lower lying xy orbital level and a higher
lying doublet of xz and yz orbitals. Therefore the xy orbital
will always be occupied by one electron, controlling the AF
correlations in the (a,b) planes. The large Hund’s coupling
JH (normalized to the interatomic Coloumb interaction U )
present in YVO3 will support parallel alignment of electronic
spins at V3+ ions in d2 configurations,47 leading to S = 1
spins. Therefore, the remaining electron will be placed in
one of the two other orbitals {xz,yz} which constitutes the
τ = 1/2 orbital degree of freedom. On this basis, an effective

spin-orbital superexchange model for YVO3 with spins S = 1
has been derived.21 Here we shall study the 1D spin-orbital
model extracted from it for the c axis.26

The simplest Hamiltonian for the c-axis FM chains in YVO3

taking JH into account is given by Eq. (1.1) with J > 0, x = 1,
and y = 1/4 − γH . Here γH is proportional to Hund’s coupling
JH , supporting FM correlations in the spin sector. For S = 1
and realistic values of Hund’s coupling for vanadates, γH ∼
0.1, numerical investigations of this model showed strong but
short-ranged dimer correlations in a certain finite-temperature
range caused by the related entropy gain although the ground
state is uniformly FM.24 The same Hamiltonian was also
studied using a MF decoupling scheme.26 Within this approach
a finite-temperature phase with dimer order in both sectors
was found. However, as discussed in the introduction, the MF
decoupling approach has severe limitations as it does not take
the coupled spin-orbital dynamics into account.

We start from a generalization of Eq. (1.1) which reads

HSτ (�) = J
∑

j

(Sj ·Sj+1 + x)([τ j ·τ j+1]� + y), (2.1)

with

[τ j · τ j+1]� ≡ τ j · τ j+1 − �τz
j τ z

j+1. (2.2)

The calculations presented here are valid for general S and
x, but we will, unless stated otherwise, only address the case
S = 1, x = 1 relevant for YVO3 in the following. For � = 1
the pseudospin sector reduces to an XY model.

In Fig. 2 the nearest-neigbor spin and orbital correlation
functions obtained by TMRG for � = 1 as a function of
temperature for various parameters y are shown. This method
allows us to obtain thermodynamic quantities for 1D quantum
systems directly in the thermodynamic limit.48–50 We remark
that the temperature dependence of spin and orbital corre-
lations determines the optical spectral weights in systems
with orbital degrees of freedom,51 measured for instance in
manganites.13 In the case of the RVO3 perovskites which is
of the main interest in the context of the present spin-orbital
model for S = 1 spins, one finds J � 40 meV,51 so the range
of temperatures shown in Fig. 2 does not exceed 500 K and is
experimentally accessible.

For y � 0.1 the ground state has ferromagnetically aligned
spins. The phase transition between the fully polarized FM
state and a state with AF spin correlations at y ≈ 0.1 is first
order. In the limit y 	 1 the value 〈Sj Sj+1〉 � −1.4015 for a
Haldane S = 1 Heisenberg chain is reached,52 while the orbital
correlations approach 〈τ x

j τ x
j+1 + τ

y

j τ
y

j+1〉 → 1/π . We note
that the FM ground state is lost at y � 0.1 both in the model
with � = 1 investigated here as well as in the model with an
isotropic pseudospin sector (� = 0).24,53 For the model with
� = 1, however, we have a direct phase transition from the FM
to the Haldane phase while for the isotropic model an orbital
valence bond phase is intervening between these two phases.53

The isotropic model (2.1), � = 0, has also been intensely
studied for S = τ = 1/2. Here the phase diagram is more
complex than in the S = 1, τ = 1/2 case.54,55 For x = 1 the
FM spin state is again found to be stable for y � 0.1. However,
now the transition at y ∼ 0.1 is to a gapless “renormalized
SU(4)” phase followed by a further phase transition at larger y

into a dimer phase. The phase with ferromagnetically polarized
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FIG. 2. (Color online) Nearest-neighbor spin and orbital corre-
lation functions for the spin-orbital model (2.1) with � = 1 as a
function of temperature T in units of J (we set kB = 1). In both
panels y = 0.4, 0.3, 0.2, 0.15, 0.1, 0.05, 0.0, −0.1, −0.2, −0.3 in
the arrow direction. The spin correlations switch from AF to FM at
y = 0.1 (dashed lines). The dotted lines in the upper (lower) panel
correspond to the limiting values 1 and −1.4015 (−1/π and 1/π ),
respectively.

orbitals is absent because 〈Sj · Sj+1 + x〉 > 0 for x = 1 but
is again present for large y if x � ln 2 − 1/4.

B. Boson-fermion model

For the 1D spin-orbital model, Eq. (2.1), at the point
� = 1, we will now derive an effective BF model which
will be used as a starting point for the perturbative approach.
First, applying the Jordan-Wigner transformation the orbital
part is mapped onto a free fermion model (for � �= 1 the
pseudospins map onto interacting fermions). The spin part
of the spin-orbital Hamiltonian (2.1) will be represented by
bosons. Concentrating on the case where the spin part is
ferromagnetically polarized in the ground state, we can treat
the spin sector by the MSWT.42,43 To this end, we introduce
bosonic operators by a Dyson-Maleev transformation. If we
retain bosonic operators only up to quadratic order we end up
with

H ≡ HSτ (1) − JN (S2 + x)y � H0 + H1. (2.3)

Here H0 is already diagonal:

H0 =
∑

k

ωB(k)b†kbk +
∑

q

ωF (q)f †
q fq , (2.4)

with f
†
q and fq (b†k and bk) being the fermionic (bosonic)

creation and annihilation operators, respectively. The magnon
dispersion is given by

ωB(k) = 2JS|y|(1 − cos k), (2.5)

and the fermion dispersion reads

ωF (q) = J (S2 + x) cos q. (2.6)

The spinless fermions fill up the Fermi sea between the Fermi
points at kF = ±π/2.

For FM spin chains the usual spin-wave theory has to be
modified by a Lagrange multiplier μ acting as a chemical
potential which enforces the Mermin-Wagner theorem of
vanishing magnetization at finite temperature:42

S = 1

N

∑
k

〈b†kbk〉. (2.7)

Thermodynamic quantities calculated with this method for
the uniform FM chain are in excellent agreement at low
temperatures with the exact Bethe ansatz solution in the
integrable case of S = 1/2.42,43 Excellent agreement with
numerical TMRG data was also found in the nonintegrable
cases of larger spin (S = 1) as well as finite dimerizations for
temperatures up to T ∼ |Jeff|S2, with Jeff being the effective
exchange constant of the model under consideration.26,56

The interacting part couples bosons and fermions and reads

H1 = 1

N

∑
k1,k2,q

ωBF(k1,k2,q)b†k1
bk2

f †
q fk1−k2+q, (2.8)

with the vertex

ωBF(k1,k2,q) ≡ JS[cos(k2 − q) + cos(k1 + q)

− cos(k1 − k2 + q) − cos q]. (2.9)

The Hamiltonian H = H0 + H1 with H0 and H1 given by
Eqs. (2.4) and (2.8), supplemented by the constraint (2.7), is
an effective BF representation valid at low temperatures. We
will investigate this model in Sec. V treating the BF coupling
perturbatively.

III. MEAN-FIELD DECOUPLING

The spin-orbital model (2.1) contains rich and interesting
physics. A first attempt to understand the properties of the
model is to apply a MF decoupling which neglects the coupled
spin-orbital degrees of freedom and treats the spin-orbital
chain as two separate chains with effective coupling constants
which have to be determined self-consistently. Note, however,
that this treatment does not involve site variables as in the
classical Weiss-MF theory but takes the correlations on a bond
as relevant variables. Interestingly, these expectation values
never vanish, which makes them useful particularly in cases
without long-range order.

A. Decoupling into spin and orbital chain

Applying a MF decoupling and allowing for a dimerization
in both sectors26,27 we obtain from Eq. (2.1)

HSτ (�) � H MF
S + H MF

τ (�), (3.1)
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with the spin and orbital Hamiltonians

H MF
S = JS

N∑
j=1

{1 + (−1)j δS}Sj · Sj+1 ,

(3.2)

H MF
τ (�) = Jτ

N∑
j=1

{1 + (−1)j δτ }[τ j · τ j+1]�.

Within this approximation the effective superexchange con-
stants and dimerization parameters are given by

Jτ = J

+

SS + 2x

2
, δτ = 
−

SS


+
SS + 2x

,

(3.3)

JS = J

+

ττ + 2y

2
, δS = 
−

ττ


+
ττ + 2y

,

where we have defined


±
SS = 〈S2j · S2j+1〉 ± 〈S2j · S2j−1〉,

(3.4)

±

ττ = 〈[τ 2j · τ 2j+1]�〉 ± 〈[τ 2j · τ 2j−1]�〉.
Here 
−

σσ with σ = S (σ = τ ) is an order parameter for the
spin (orbital) dimerization, respectively. Thus, the exchange
constants and dimerization parameters for each sector are
determined by the nearest-neighbor correlation functions in the
other sector, making a self-consistent calculation necessary. In
the following we want to solve Eqs. (3.2)–(3.4) for the spin
exchange being effectively FM, i.e., JS < 0.

B. Dimerized orbital correlations

Numerical investigations of the model with isotropic orbital
exchange, HSτ (0), have shown orbital-singlet formation in the
ground state53 for y � 0.1. Moreover, although the ground
state consists of a fully spin-polarized FM state for y � 0.1
with AF orbital correlations, it has been shown that a tendency
toward orbital singlet formation is still present but has to be
activated by thermal fluctuations.24 In Ref. 26 the model (3.1)
was studied in the FM regime with x = 1, y = 1

4 − γH , � = 0,
and γH = 0.1 in order to address the question of whether this
orbital-Peierls effect can be captured within a MF decoupling
approach. A dimerized phase for 0.10 � T/J � 0.49 (we set
kB = h̄ = 1) was found with the dimerization amplitude in the
spin sector being much larger than in the orbital sector.

We now want to compare this result with the case where
we set � = 1 in Eq. (3.1) so that the self-consistent Eqs. (3.3)
can be solved analytically by applying a Jordan-Wigner trans-
formation and MSWT. Introducing fermionic operators f

(†)
j,e if

the index j is even and f
(†)
j,o if j is odd for the pseudospins,

we rewrite H MF
τ ≡ H MF

τ (� = 1) in Fourier representation.
Finally introducing new fermionic operators φ

(†)
q and ϕ

(†)
q

which diagonalize the Hamiltonian H MF
τ , we find

H MF
τ =

∑
q

ωMF
F (q,δτ )(φ†

qφq + ϕ†
qϕq) , (3.5)

with the fermionic dispersion57

ωMF
F (q,δτ ) ≡ Jτ

√
cos2 q + δ2

τ sin2 q . (3.6)

We can now calculate 
±
ττ , as given in Eq. (3.4), straight-

forwardly and obtain


−
ττ = 2δτ

N

∑
q

{
2nF [ωMF

F (q,δτ )] − 1
}

sin2 q√
cos2 q + δ2

τ sin2 q
,

(3.7)


+
ττ = 2

N

∑
q

{
2nF [ωMF

F (q,δτ )] − 1
}

cos2 q√
cos2 q + δ2

τ sin2 q
,

where nF (x) = {exp(βx) + 1}−1 is the Fermi function and
β = 1/T .

C. Dimerized spin correlations

Next we turn to the spin part of Eq. (3.1) to which we apply
the MSWT.42,43 We introduce two bosonic operators b

(†)
j,e [b(†)

j,o]
for j even [odd] by means of a Dyson-Maleev transformation.
Retaining only terms bilinear in the bosonic operators we
can diagonalize the resulting Hamiltonian by a Bogoliubov
transformation leading to

H MF
S =

∑
k

{
ωMF

B,−(k,δS)α†
kαk + ωMF

B,+(k,δS)β†
kβk

} + JSNS2,

(3.8)

with the two magnon branches

ωMF
B,±(k,δS) = 2|JS |S(1 ±

√
cos2 k + δ2

S sin2 k). (3.9)

The constraint of vanishing magnetization at finite temperature
(2.7) now reads

S = 1

N

∑
k

{nB[ζ−(k,δS)] + nB[ζ+(k,δS)]}, (3.10)

where nB(x) = {exp{βx} − 1}−1 is the Bose function and
ζ±(k,δS) = ωMF

B,±(k,δS) − μ(δS).
To calculate the nearest-neighbor correlation functions

B± ≡ 〈
Sj · Sj±1

〉
it is necessary to go beyond linear spin-wave

theory. Taking terms of quartic order into account and using
Eq. (3.10) we obtain26

B± =
(

1

N

∑
k

f±(k,δS)
∑

σ∈{±}
σnB[ζ σ (k,δS)]

)2

. (3.11)

Here we have defined

f±(k,δS) ≡ cos2 k ± δS sin2 k√
cos2 k + δ2

S sin2 k

. (3.12)

From these expressions we can obtain 
±
SS which, combined

with Eq. (3.7), allows us to solve Eqs. (3.1)–(3.4) self-
consistently.

D. Mean-field phase diagram

We first discuss the ground-state phase diagram of the
Hamiltonian (3.1) for � = 1. Depending on the sign of
the effective coupling constant JS we find 〈Sj Sj+1〉 = 1,

− 1.4015 with the latter value being the approximate result
for the S = 1 AF Haldane chain. In the following, we
restrict our discussion to −1 < x < 1.4015 so that 〈Sj Sj+1〉
and Jτ = J (〈Sj Sj+1〉 + x) always have the same sign. For
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FIG. 3. (Color online) (a) Phase diagram of the Hamiltonian (3.1)
with � = 1 and x = 1 in mean-field decoupling. The shaded area
represents the dimerized phase. The phase transition at T2 is first order
whereas the transition at T1 is of second order. The two transition lines
merge at the tricritical point ytp. (b) Dimerization parameters δS and
δτ for x = 1 and y = 0.14. The lines are guides to the eye. The
shaded area marks the temperature range where the dimerization is
nonzero.

the orbital sector we obtain, on the other hand, 〈τ x
j τ x

j+1 +
τ

y

j τ
y

j+1〉 = ±1/π . y > 1/π implies JS > 0 and the ground
state is therefore certainly AF (Haldane phase) whereas
JS < 0 for y < −1/π leading to a FM state. In the regime
−1/π < y < 1/π the self-consistent equations have two
solutions with energies EAF

0 ≈ (1/π + y)(−1.4015 + x) and
EFM

0 = (−1/π + y)(1 + x) and a first order phase transition
between the FM and AF states occurs where the energies cross.
For the case x = 1 we are focusing on here, this happens at
yc ≈ 0.212 and the FM state is stable for y < yc. Compared to
the numerical solution where yc ≈ 0.1 (see Fig. 2) the range
of stability of the FM state is therefore increased in the MF
solution.

Next, we investigate the possibility of a finite-temperature
dimerization for x = 1 in that part of the phase diagram where
the ground state is FM. As shown in Fig. 3(a) we find that
a dimerized phase at finite temperatures does indeed exist in
MF decoupling for ytp ≈ 0.128 � y � yc ≈ 0.212 where ytp

denotes the tricrictal point. At the onset temperature T1 the
phase transition is of second order whereas at the reentrance
temperature T2 it is of first order, see Fig. 3(b). As in the
case � = 0, the dimerization in the spin sector is always much
larger than in the orbital sector.

As pointed out before, the MF decoupling suffers from
severe limitations and it is expected to be an even worse
approximation in the extreme quantum case � = 1 than in
the case � = 0 studied previously.26 In particular the coupling
between spin and orbital degrees of freedom is completely
lost within this approach. In the following sections we will
therefore develop an improved treatment of the spin-orbital
coupling based on perturbation theory.

IV. DYNAMICAL SPIN STRUCTURE FACTOR FOR THE
UNIFORM FERROMAGNETIC CHAIN

In order to investigate coupled spin-orbital degrees of
freedom and, in particular, their implications on the spin
dynamics of the spin-orbital chain, a detailed understanding
of the spin dynamics of a FM chain is useful. We shall avoid
the complications of the dimerized chain and focus our study
on the uniform 1D ferromagnet.58 In doing so we neglect the
coupling between spin and pseudospin operators for a moment
and consider

HS = JS

∑
j

Sj · Sj+1, (4.1)

with JS < 0. It is well-known that MSWT does not respect
the SU(2) symmetry of the FM Heisenberg chain Eq. (4.1).
We therefore directly calculate the full spin correlation
function40,41

G(r,τ ) ≡ −〈T [Sj (0) · Sj+r (τ )]〉. (4.2)

In Fourier space we obtain

G(q,ων,B ) = 1

N

∑
k

(1 + nB[ζ (k)])

× nB[ζ (q − k)]
1 − e−βεq (k)

iων,B − εq(k)
, (4.3)

where we have used the bosonic Matsubara frequencies ων,B

and εq(k) ≡ ζ (k) − ζ (q − k) with k ∈ [−π,π ]. The reduced
magnon dispersion reads

ζ (k) = 2JSS(1 − cos k) − μ. (4.4)

In Fig. 4(a) the dynamical spin structure factor,

S(q,ω) = 2nB(−ω) ImGret(q,ω), (4.5)

is shown for the uniform FM chain at ω > 0, where

ImGret(q,ω) = π

N

∑
k

(1 + nB[ζ (k)])nB[ζ (q − k)]

× (e−βεq (k) − 1)δ(ω − εq(k)) (4.6)

is the imaginary part of the retarded Green’s function obtained
from Eq. (4.3) by analytical continuation. Up to a factor of
2π , as a matter of definition, we obtain the result previously
given by Takahashi.40 The structure factor fulfills detailed
balance, S(q,ω) = eβωS(q, − ω). The symbols in Fig. 4 show
the peak positions projected onto the (q,ω) plane. They follow
the reduced dispersion Eq. (4.4). Also shown in Fig. 4(a) as
a dashed curve is ωmax

q = 4|JS |S sin q

2 corresponding to the
upper boundary of the two magnon continuum εq(k) above
which S(q,ω) is zero in this approximation.
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FIG. 4. (Color online) (a) Dynamical spin structure factor S(q,ω)
as obtained for T/|JS | = 0.1 and 0 � q � π . The dashed line
indicates the upper boundary of the two-magnon continuum. The dots
are projections of the peak positions onto the (q,ω) plane. They are
connected by the dotted line which is a guide to the eye. (b) Dynamical
spin structure factor S(q,ω) for the same parameters at q = 4π/5
(solid line) and the corresponding density of states (dashed line).

At the edge of the two magnon continuum S(q,ω) has a
singularity. In Fig. 4(b) the dynamical spin structure factor
for the same parameters as used in Fig. 4(a) is shown at
q = 4π/5 together with the density of states which is given
by ρq(ω) = 1/

√
(ωmax

q )2 − ω2. Right below the singularity at
ωmax

q the density of states to lowest order reads ρq(ωmax
q − δω)

∼ 1/
√

δω; i.e., S(q,ω) shows a square root divergence at
the upper threshold. If the edge singularity and the magnon
peak are well separated then the spectral weight of the edge
singularity is much smaller than the spectral weight of the
magnon peak. If, on the other hand, the edge singularity is
close to the central peak then the shape of the latter is strongly
affected by the occurrence of the edge singularity. In this case
the edge singularity gives a significant contribution.

It is instructive to analyze S(q,ω) in the limit of small q. In
this case the edge singularity and the peak of the structure
factor are well separated and the line shape of the peak
can be obtained approximately. To this end, for small q but
|JS |S2q/T 	 1 we only retain the leading terms of Eq. (4.3).
Performing a saddle point approximation to lowest order we
find S(q,ω) ∼ nB(−ω)[a(q,ω) − a(q, − ω)], with

a(q,ω) ≈ 2S

|JS |Sq

ξ

(ω − JSSq2)2 + (
JSSq

ξ

)2 . (4.7)

This Lorentzian line shape is only valid for low temperatures.
Here ξ ≈ |JS |S2/T is the correlation length in the low-

temperature limit.40–43 Finally, we want to stress that for
T → 0 the peaks will reduce to δ functions; i.e., only thermal
broadening is included in this approximation.

V. PERTURBATION THEORY

Naively one would expect that the magnon should be able
to couple to the fermionic degrees of freedom if it lies inside
the fermionic two-particle continuum. The upper and lower
boundary of the latter are given by

εmax
F (q) = 2J (S2 + x) sin(q/2),

εmin
F (q) = J (S2 + x) sin q, (5.1)

respectively. The continuum and the magnon dispersion ωB(q)
for y = −1 are shown in Fig. 5. One would therefore expect
that in this case ωB(q) is unaffected by the presence of the
fermions for q < π/2. However, for higher momenta the spin
wave may couple to the fermionic degrees of freedom and thus
a broadening of S(q,ω) should occur. Moreover by choosing
different values for y the point at which the magnon enters
the fermionic two-particle continuum is changed. Thus the
momentum at which the spin wave is affected by the coupling
to the fermionic degrees of freedom should depend directly on
the parameter y.

These arguments give the qualitatively correct picture;
i.e., we find indeed that the coupling of the magnon to
the fermionic degrees of freedom has strong effects on
the dynamical spin structure factor at intermediate and
high momenta and that the onset of these effects can
be well estimated by our simple argument. However,
there are also certain aspects which cannot be captured
within this picture. For instance, for 2S|y| > (S2 + x)
it suggests that the spin wave may leave the fermionic two-
particle continuum at a certain momentum ql and thus should
be unaffected by the BF coupling for q > ql . The detailed
calculation, however, reveals that this is not true because
the spin wave decays into a fermionic particle-hole and a
remaining spin wave as will become clear in the following.

A. General formulation

Here we want to study the Hamiltonian H given by
Eq. (2.3), with its noninteracting part H0 and interacting
part H1 defined by Eqs. (2.4) and (2.8), by treating the BF
interaction perturbatively, i.e., in the limit |x|,|y| 	 1. As

0 0.5 1
q/π

0

1

2

3

4

ω
/J

ω
B
(q)

FIG. 5. (Color online) Magnon dispersion ωB (q) (dashed line)
for y = −1 and fermionic two-particle continuum (shaded area).
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FIG. 6. Self-energy diagrams which contribute to a renormalization of the magnon Green’s function (5.2) in a perturbation theory. (a),
(b) Self-energy diagrams with momentum exchange between the magnon and the fermions, and (c) self-energy diagram without momentum
exchange. All self-energy diagrams are second order. Bare fermionic propagators are shown by solid lines, whereas bare bosonic propagators
G0

B are shown as dashed lines.

explained in the Appendix, we start by performing a MF
decoupling for the interaction H1. Corrections to this solution
are then taken into account perturbatively. Here we address the
bosonic Green’s function at zero temperature:

GB(q,t) = −i〈Tt [bq(t)b†q(0)]〉. (5.2)

In Fig. 6 all distinct, connected diagrams beyond the MF
decoupling up to second order are shown.

We calculate the Green’s function from the Dyson equation

GB(q,ω) = 1{
G(0)

B (q,ω)
}−1 − �(q,ω)

, (5.3)

with {
G(0)

B (q,ω)
}−1 = ω − ζ (q), (5.4)

where ζ (q) is the reduced magnon dispersion defined in
Eq. (4.4) with JS = J (y − 1/π ), and the self-energy �(q,ω)
is approximated by the proper self-energy �2(q,ω) obtained
by summing up the diagrams which can be composed of the
diagrams shown in Fig. 6.

The diagrams shown in Figs. 6(a) and 6(b) are of particular
interest because they are the lowest order diagrams where
bosons and fermions exchange momentum. They describe the
part of spin-orbital dynamics which cannot be captured within
the MF decoupling approach discussed in Sec. III. The diagram
shown in Fig. 6(b) has to be thermally activated, i.e., it does
not give any contribution at zero temperature. The same is true
for the diagram shown in Fig. 6(c). Thus at T = 0 the only
second-order diagram which contributes to the self-energy is
the one shown in Fig. 6(a). We have

�+
BF(q,ω) = − 1

N2

∑
k1,k2

ω2
BF(q,k1,k2)

×�[ωF (q − k1 + k2)]�[−ωF (k2)]

ω − �+
q (k1,k2) + i0+ , (5.5)

where we have abbreviated59

�±
q (k1,k2) ≡ ±ζ (k1) + ωF (q − k1 + k2) − ωF (k2) (5.6)

with k1,k2 ∈ [−π,π ].
For systems of interacting fermions we know that per-

turbation theory in one dimension often leads to infrared
divergencies.60,61 Such divergencies occur, for example, for
the fermionic analogon of the diagram with momentum
exchange, see Fig. 7. These problems can be overcome by the
Dzyaloshinski-Larkin solution or bosonization techniques. For

the model considered here, however, we find no divergencies
within the considered diagrams. One reason for this behavior
is a lack of nesting. While for a fermionic interaction as
shown in Fig. 7 all the dispersions in the denominator of
Eq. (5.5) are approximately linear at low energies here one
of the dispersions is approximately quadratic so that nesting
only occurs for singular points. As a further check, we have
evaluated the sums in Eq. (5.5) for a constant vertex at small
q and ω and did not find any infrared divergencies.

For finite temperatures the Matsubara formalism can be ap-
plied straightforwardly. The self-energy, Eq. (5.5), now reads

�+
BF(q,ων,B ) = − 1

N2

∑
k1,k2

ω2
BF(q,k1,k2)

iων,B − �+
q (k1,k2)

×N+
F,B(k1,k2,ων,B,T )NF,F (q,k1,k2,ων,B,T ),

(5.7)

where we have abbreviated

N±
F,B(k1,k2,ων,B,T ) ≡ nB[ζ (k1)] ± nF [ωF (k2)],

NF,F (q,k1,k2,ων,B,T ) ≡ nF [ωF (q − k1 + k2)]

−nF [ωF (k2) − ζ (k1)]. (5.8)

Note that at finite temperatures both, the reduced spin-wave
dispersion ζ (q) as well as the fermionic dispersion is
renormalized due to the MF decoupling applied to Eqs. (2.8).
The respective expressions are given in the Appendix, see
Eqs. (A1) and (A2).

At finite temperatures also the diagram shown in Fig. 6(b)
contributes and is given by

�−
BF(q,ων,B ) = − 1

N2

∑
k1,k2

ω2
BF(q,k1,k2)

iων,B − �−
q (k1,k2)

× [1 + N−
F,B(k1,k2,ων,B,T )]

×NF,F (q,k1,k2,ων,B,T ). (5.9)

FIG. 7. Second-order diagram for a system of interacting
fermions with momentum exchange.
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FIG. 8. (Color online) Perturbative results for the BF model at zero temperature with x = 1. In the left (right) panel y = −1 (y = −2). (a),
(c) S(q,ω) with the inset showing the region for which Im �+

BF(q,ω) is nonzero as a shaded area and the renormalized spin-wave dispersion as a
dotted line. While S(q,ω) is sharply peaked at low momenta, a significant broadening occurs at higher q. Moreover we find additional structures
which, as explained in the text, are due to coupled spin-orbital excitations. (b), (d) −Im �+

BF(q,ω) as given in Eq. (5.5) for the corresponding
values of q shown in (a) and (c), respectively. The coupled spin-orbital excitations show up as peaks and edges in Im �+

BF(q,ω) (notice the
logarithmic scale).

B. Dynamical spin structure factor

Below we present the results obtained by summing up the
diagrams shown in Fig. 6 in a Dyson series, but replacing
the external legs by the SU(2) symmetric function given in
Eq. (4.3). While the perturbative results can, strictly speaking,
only be valid for |x|,|y| 	 1 we extend the results here to
more physical values |x|,|y| ∼ O(1) where we still expect
perturbation theory to give at least a qualitatively correct
picture. Numerical results obtained for the dynamical spin
structure factor within this perturbative approach are shown
in Fig. 8 for T = 0 with y = −1 and y = −2. In both
cases S(q,ω) is sharply peaked at small momenta whereas
a significant broadening occurs at higher momenta. Within the
MSWT S(q,ω) is always a δ function for the pure spin model
at T = 0; i.e., this broadening is solely due to the coupling to
orbital excitations.

By extracting the central peaks of the dynamical spin struc-
ture factor at various momenta, we obtain the renormalized
spin-wave dispersion ωq within the perturbative approach.
The result of this is shown in the insets of Figs. 8(a) and
8(c) and in more detail in Fig. 9. The magnon dispersion is
renormalized and small kinks are visible close to q = π/2 (see
inset of Fig. 9), which may be interpreted as Kohn anomalies.
For itinerant ferromagnets Kohn anomalies are well known.
Here the interaction between the spins of localized ions is

mediated by an exchange with the conduction electrons.62–68

These Kohn anomalies can thus be used to gain information
about the Fermi surface of the conduction electrons.62–64 As
we will see below, in the present context the Kohn anomaly
arises from the coupling of the spin and orbital degree of
freedom of the electrons, i.e., from the mere properties of the
electrons. To the best of our knowledge such Kohn anomalies
in the spin-wave dispersion of a Mott insulator have not been
addressed so far.

Apart from extracting the effective spin-wave dispersion
from S(q,ω), we also want to discuss the magnon bandwidth
[full width at half maximum (FWHM)] �q of the magnon
peaks. A broadening of the zero-temperature peaks occurs
whenever the imaginary part of the self-energy,

Im �+
BF(q,ω) = − π

N2

∑
k1,k2

ω2
BF(q,k1,k2)�[−ωF (k2)]

×�[ωF (q − k1 + k2)]δ(ω − �+
q (k1,k2)),

(5.10)

is nonzero. The contributions within the sums are now
determined by the argument of the δ function as well as by the
constraints given by the Heaviside functions. This procedure,
for a given set of parameters x,y, and S, effectively yields
a region within which the spin wave may scatter on fermion
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FIG. 9. (Color online) Renormalized magnon dispersions ωq for
x = 1 and selected values of y. Inset: The most pronounced Kohn
anomalies occur at q near π/2.

pairs. Henceforth we call this region the BF continuum. The
BF continuum is shown in the insets of Figs. 8(a) and 8(c)
as shaded areas. The upper boundary of the BF continuum
(solid lines), which is periodic with a period of 2π , is given
by −4JS(y − 1/π ) + 2J (S2 + x) for q = 0, and decreases
monotonously from this value with increasing |q|. The lower
boundary (dashed lines) is periodic with a period of π .

To obtain the FWHM of the structure factor, the magnitude
of the contributions to the sums in Eq. (5.10) are essential.
Here not only the (k1,k2) region, which contributes to the
summation, but also the magnitude of the vertex ωBF is of
importance. We observe that the vertex is small at small
momenta but increases at intermediate and high momenta.
This leads to a strong increase of the magnitude of the
imaginary part of the self-energy as shown in panels (b)
and (d) of Fig. 8. From the insets of Fig. 8 it becomes
clear that the spin-wave dispersion enters the BF continuum
depending on y. For higher values of |y| the spin wave enters
at lower momenta. However, since the vertex gives smaller
contributions at smaller momenta, the broadening of the central
peaks of the dynamical spin structure factor turns out to
be smaller the smaller the momenta are at which the spin
wave enters the BF continuum. This can be seen in Fig. 10
where the magnon linewidth �q is shown. The onset of a
finite �q signals the entrance of the spin-wave dispersion
into the BF continuum and depending on the momentum
at which the entrance occurs the increase of �q is either
smooth (entrance at low momentum) or steep (entrance at high
momentum). In addition, we observe that �q has a maximum
at the boundary of the Brillouin zone for stronger interactions
(y = −0.75 and y = −1 in Fig. 10, respectively), whereas
for smaller interactions we observe the maximum at smaller
momenta followed by a decrease of the FWHM toward the
zone boundary (y = −2 in Fig. 10).

Interestingly, the coupling to the orbital degrees of freedom
does not only give rise to a featureless broadening of S(q,ω)
but produces additional structures. These additional structures
are most obvious in Fig. 8(a). From Fig. 8(b) and Fig. 11(a)
it becomes clear that these structures are dominated by
local extrema as well as edges in the imaginary part of the
self-energy. Eq. (5.10) shows that such extrema can occur
if �+

q (k1,k2), Eq. (5.6), becomes stationary as a function of
the momenta k1,k2 as long as the Heaviside functions in
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FIG. 10. (Color online) Magnon linewidth �q [FWHM of S(q,ω)]
at zero temperature (data points), as obtained for x = 1 and the
representative values of y indicated in the plot. The lines are guides
to the eye.

Eq. (5.10) for these momenta are non-zero. The position of
the local maxima in the imaginary part of the self-energy
is therefore approximately given by the values �+

q (k1,k2) at
these stationary points. These values correspond to the energy
of spin-orbital excitations into which the initial spin wave
can decay, see Fig. 6(a), and which are stable against small
redistributions of momenta.

We conclude that while we do not have completely sharp
spin-orbital excitations any more as in the Hamiltonian,
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FIG. 11. (Color online) (a) −Im �(q,ω) for y = −1 as in
Fig. 8(b) but on a linear scale. The lines are a guide to the eye
connecting the clearly visible features of the continuum of spin-orbital
excitations (see text). (b) Collective spin wave ωq for y = −1 (solid
line) together with the dispersions of the spin-orbital excitation
features (dashed and dashed-dotted lines) extracted from panel (a).
All lie within the Bose-Fermi continuum (shaded area).
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Eq. (1.6), with FM exchange considered in the introduction,
there are still characteristic spin-orbital excitations of finite
width within the spin-orbital continuum. As shown in Fig. 11
we can extract the dispersion of these characteristic excitations
and find that the coupled spin-orbital excitations are gapless
for the parameters considered here. However, as can be clearly
seen in Fig. 8(b) and Fig. 11(a), the weights of the low-energy
excitations are orders of magnitude smaller than the excitations
located at higher energies. Hence the major contribution of the
excitation continuum stems from these higher energies giving
rise to the large damping of the spin waves (Fig. 10). We
therefore expect that these excitations will generate additional
entropy in the corresponding temperature range which should
show up, for example, in the specific heat which will be studied
in the next section.

Moreover, we find that these coupled spin-orbital exci-
tations are responsible for the Kohn anomalies mentioned
above. We observe that the Kohn anomalies at intermediate
momenta occur when the energy of the spin wave coincides
with that of a characteristic spin-orbital excitation. This is
different from the Kohn anomaly in the spin-wave dispersion of
itinerant ferromagnets. In this case the interaction between the
localized spins given by the lattice ions is induced by scattering
with conduction electrons and hence the Kohn anomaly is
determined by the shape of the Fermi surface.62–68 The Kohn
anomalies we find in the present context are also due to
interaction effects and stem from the fermionic description
of orbital degrees of freedom in the BF model. For the case
x = −y = 1 the spin-wave dispersion has a discontinuity of
the order 
ω � 0.01J at the point q � 0.509π (see inset
of Fig. 9). However, for the crossing points of the magnon
and the coupled spin-orbital excitation located at q � 0.37π

and q � 0.76π [see Fig. 11(b)] no Kohn anomaly could be
resolved. We believe that this is a consequence of the weight
of the coupled spin-orbital excitations: Whereas at q � 0.509π

the imaginary part of the self-energy displays a steep increase
of several magnitudes, at the other crossing points the slope
toward the local maxima is far more moderate.

At finite temperatures two effects contribute to the broaden-
ing of the magnon peaks of the dynamical spin structure factor.
First, there is a broadening due to thermally excited magnons
which is already present in the FM Heisenberg chain discussed
in Sec. IV. This is combined with the broadening due to the
interaction with the orbital degrees of freedom. Here the BF
continuum is smeared out by thermal fluctuations compared
to the zero-temperature case. Results for the structure factor at
finite temperatures are shown in Fig. 12.

The broadening at small momenta is dominated by thermal
fluctuations and the line shape is very similar to that of the pure
spin model discussed in Sec. IV. A further strong broadening
in going from q = 0.3π to q = 0.5π signals the relevance of
coupled spin-orbital degrees of freedom on the spin dynamics
at intermediate and high momenta. Again, additional structures
in S(q,ω) are visible related to the spin-orbital excitations
discussed above.

Finally, we analyze the variation of the FWHM with
increasing temperature for a representative value of y = −1,
see Fig. 13. At T > 0 the thermal broadening at small momenta
is clearly visible. As in the zero-temperature case another
strong increase of �q between q = 2π/5 and q = π/2 is

0 2 4 6
ω/J

0

10

20

30

JS
(q

,ω
)

q=3π/10
q=5π/10
q=7π/10
q=9π/10

FIG. 12. (Color online) Dynamical spin structure factor S(q,ω)
calculated perturbatively for the spin-orbital chain at temperature
T/J = 0.1 with y = −1. The structure factor is peaked at the
renormalized magnon frequency ωq .

observed due to coupled spin-orbital degrees of freedom.
For T/J = 0.1 and T/J = 0.2 we observe that �q has a
temperature-dependent maximum from where �q decreases
toward the boundary of the Brillouin zone. This is due to
the fact that the thermal broadening of the magnons in the
dynamic spin structure factor decreases from intermediate to
high momenta (see Fig. 4). Actually without coupling to any
orbital degrees of freedom we expect �q to be very small at
the boundary of the Brillouin zone. Thus a large bandwidth at
q = π makes the spin-orbital model distinct from a pure 1D
Heisenberg ferromagnet.

VI. THERMODYNAMICS

Coupled spin-orbital degrees of freedom will influence
not only the spin dynamics but also the thermodynamics of
the system. We expect, in particular, that the spin-orbital
excitations which were shown to affect the dynamical spin
structure factor in the previous section will also become
observable in thermodynamic quantities when comparing the
MF decoupling and the perturbative solution. In order to
investigate this issue we rewrite Eq. (2.1) as

HSτ (1) = HMF + δH, (6.1)

0 0.2 0.4 0.6 0.8 1
q/π

0

0.1

0.2

0.3

0.4

0.5

Γ q/J

T/J=0.2
T/J=0.1
T/J=0

FIG. 13. (Color online) Magnon linewidth �q [FWHM of S(q,ω)]
as a function of q, as obtained for y = −1 and temperatures T/J = 0,
0.1, and 0.2. The lines are guides to the eye.
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with δH = HSτ (1) − HMF. The MF part reads

HMF =
N∑

j=1

{Jτ [τ j · τ j+1]1 + JS Sj · Sj+1

−〈Sj · Sj+1〉MF〈[τ j · τ j+1]1〉MF}. (6.2)

The exchange constants JS,τ are defined in Eqs. (3.3).69 We
use the Hamiltonian (6.1) to determine the free energy per site
perturbatively, following the expansion

f = f S
MF + f τ

MF + 1

N
〈δH 〉cMF − 1

2NT
〈δH 2〉cMF + · · · ,

(6.3)

where f S
MF (f τ

MF) is the expression for the free energy per site
stemming from the spin (pseudospin) sector within the MF
decoupling solution. The subscript indicates that the respective
correlation functions are calculated with HMF. Moreover the
superscript c means that the above expansion of the free energy
is restricted to connected diagrams. We note that Eq. (6.3)
is a high-temperature expansion valid if |x|T/J 	 1 and
|y|T/J 	 1.

A straightforward calculation shows that the first-order
contribution only shifts the free energy, Eq. (6.3), and will not
show up in thermodynamic observables obtained by taking
derivatives of the free energy. For the second-order contri-
bution we have to evaluate two- and four-point correlation
functions for both the spin and the pseudospin part.

We use the abbreviations

〈(Sj · Sj+1)(Sl · Sl+1)〉 = a + b(j,l) (6.4)

for the spins and

〈[τ j · τ j+1]1[τ l · τ l+1]1〉 = c + d(j,l) (6.5)

for the pseudospins. Here the site-independent quantities a and
c stand for the disconnected parts of the four-point correlation
functions whereas b(j,l) and d(j,l) follow from the connected
ones. One finds that only the product of the connected parts
contributes to the second-order correction, leading to

〈δH 2〉MF = J 2
N∑

j,l=1

b(j,l)d(j,l) . (6.6)

To proceed further, we again apply the MSWT to the spin and
a Jordan-Wigner transformation to the pseudospin part. The
evaluation of d(j,l) is again straightforward and yields

d(j,l) = 1

2N2

∑
k1,k2

nF

[
ωMF

F (k1,0)
]{

1 − nF

[
ωMF

F (k2,0)
]}

×ei(k1−k2)(j−l){1 + cos(k1 + k2)} (6.7)

with ωMF
F (q,δ) as given in Eq. (3.6).

The evaluation of Eq. (6.4) is more involved. We first
apply a Dyson-Maleev transformation and treat the obtained
expressions using Wick’s theorem. In addition, we also have
to account for the constraint of nonzero magnetization at
T > 0 imposed by the MSWT. The corresponding diagrams
are shown in Fig. 14. Within this approximation the specific
heat per site reads

c = cMF + c2 + · · · , (6.8)

FIG. 14. Diagrammatic representations of the second-order con-
tributions to the free energy as given by Eq. (6.6).

with

c2 = J 2T
∂2

∂T 2

∑N
j,l=1 b(j,l)d(j,l)

2NT
. (6.9)

We calculate the first term in Eq. (6.8) within the MF
decoupling, cMF = cS

MF + cτ
MF, from the internal energy which

is determined by the respective nearest-neighbor correlation
functions allowing us to keep terms up to quartic order in
the bosonic operators.56 This strategy makes it possible to
obtain reliable results for cS

MF up to T/(|JS |S2) � 1. The
second-order correction c2 given in Eq. (6.9) is obtained using
the Dyson-Maleev transformation so that quartic terms are
also included and the order of approximation is the same.
Since we are using a high-temperature expansion, Eq. (6.3),
in combination with the MSWT to evaluate the diagrams, our
results are only valid in an intermediate-temperature regime.
If we restrict ourselves to parameters x = −y > 0 then this
temperature range is given by 1/x � T/J � xS2. In the
following we therefore only consider the case x 	 1 and
compare the results from perturbation theory with numerical
data obtained by TMRG.

As shown in Fig. 15, the specific heat c/(Jx)2 exhibits
a broad maximum which corresponds to the characteristic
energies of spin and fermionic particle-hole excitations. In the
temperature range where the perturbative approach is valid
we find excellent agreement with the numerical solution.
In particular, the perturbative correction c2 (see Fig. 16)
correctly captures the weight shift from low to intermediate
temperatures visible when comparing the numerical and the
MF decoupling solution. In spite of this weight shift, the
MF decoupling yields overall a very reasonable description
of the specific heat for both cases shown in Fig. 15. For
x = 10 [Fig. 15(a)] the specific heat c has a broad maximum
at T/(Jx) � 0.4. This maximum results from a distinct
maximum in the orbital contribution cτ

MF, see insets in Fig. 15.
In contrast, the spin contribution cS

MF increases steadily with
increasing temperature, in agreement with the higher energy
scale for spin excitations. As a result, the total specific heat
has only a weaker and broader maximum than suggested by
the orbital part.

The MF decoupling does seem to fail, however, at very
low temperatures. Here the MF solution predicts that spin
excitations give the dominant contribution leading to a
c(T ) ∼ √

T behavior. This is in contrast to an extrapolation
of the numerical data shown as straight lines in Fig. 15 which
suggests an approximately linear dependence on temperature.
This discrepancy comes as a surprise because our perturbative
calculations of the dynamical spin structure factor in Sec. V B
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FIG. 15. (Color online) Specific heat per site c/(Jx)2 as a
function of T/(Jx) for (a) x = 10 and (b) x = 2. The circles denote
the numerical data from TMRG with the solid line obtained by a low-
temperature fit of the TMRG data for the inner energy. The dashed
lines correspond to the MF decoupling solution while the dashed-
dotted lines are the results obtained by perturbation theory. The per-
turbative results are expected to be valid for 1/x2 � T/(Jx) � 1. In-
sets: Specific heat, cMF, within the MF solution with the contributions
from the spin, cS

MF, and the orbital, cτ
MF, sectors shown separately.

lead us to the conclusion that the magnons survive as sharp
quasiparticles at low energies. More generally, one might argue
that the ground state does not show any entanglement between
the two sectors because of the classical nature of the FM
state thus allowing for spin-wave excitations at low energies.
From the point of view of a low-energy effective field theory,
however, the situation is much less clear. While a FM chain
is described by a low-energy effective theory with dynamical
critical exponent z = 2, the fermionic orbital chain has z = 1.
A coupling of spatial spin deviations to time-dependent orbital
fluctuations then seems to require that the low-energy effective
theory for the coupled system has z = 1. As a consequence
the temperature dependence of c(T ) would indeed be linear.
However, such an approach leaves open the role and treatment
of the Berry phase terms.

Within the perturbative approach the open question is
whether or not higher order contributions to the self-energy
might induce a significant broadening of the dynamical spin-
structure factor also at low energies. In this regard we note that

0 0.2 0.4 0.6 0.8 1
T/(Jx)

-0.03

0

0.03

c 2/(
Jx

)2

FIG. 16. (Color online) Perturbative contribution to the specific
heat per site c2/(Jx)2, Eq. (6.9), as a function of T/(Jx) for x = 10
(solid line) and x = 2 (dashed line).

the vertex responsible for the broadening of S(q,ω) studied
in Sec. V B does not play any role for the thermodynamics
of the system. Here the constraint of vanishing magnetization
means that such diagrams do not contribute to static correlation
functions so that the lowest order corrections are caused by the
vertex shown in Fig. 14.

VII. CONCLUSIONS

In summary, we have investigated coupled spin-orbital
degrees of freedom in a one-dimensional model. For ferro-
magnetic exchange we have shown that the considered model
at special points in parameter space can be written in terms
of Dirac exchange operators for spin S and pseudospin τ . As
a consequence, three collective excitations of spin, orbital,
and coupled spin-orbital type do exist.33 In particular, we
discussed the case of Dirac exchange operators for S = τ =
1/2 where the dispersions of all three elementary excitations
are degenerate and lie within the spin-orbital continuum. While
the spin-orbital excitations stay confined in this case, a decay
becomes possible once we move away from this special point.

For antiferromagnetic exchange the one-dimensional spin-
orbital model captures fundamental aspects of physics relevant
for transition-metal oxides and, as we have shown, sharp
excitations do not exist. To address the question of how the spin
dynamics is influenced by fluctuating orbitals we considered
the extreme quantum limit of orbitals interacting via an
XY-type coupling. This allowed us to map the orbital sector
onto free fermions using the Jordan-Wigner transformation. In
spin-wave theory the spin sector is described by bosons so that
our model corresponds to an effective boson-fermion model
which applies for low temperatures. An analytic calculation
of the properties within a mean-field decoupling approach is
then straightforward. Compared to a numerical phase diagram
based on the density-matrix renormalization group we find that
the regime with ferromagnetically polarized spins is stabilized
by the decoupling procedure. Furthermore, the mean-field
decoupling gives rise to a finite-temperature dimerized phase
for certain parameters when starting from the ferromagnetic
ground state. While a phase with long-range dimer order at
finite temperatures is not possible in a purely one-dimensional
model, the mean-field approach also completely ignores any
kind of coupled spin-orbital excitations.
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Thus we developed a self-consistent perturbative scheme
to explore the role played by spin-orbital coupling. In pertur-
bation theory the boson-fermion interaction does not produce
any infrared divergencies in the one-dimensional model due
to the lack of nesting. This makes a perturbative calculation
of the spin structure factor S(q,ω) possible. At large momenta
q, we find that S(q,ω) shows a significant broadening due
to scattering of magnons by orbital excitations. For small
momenta, on the other hand, no broadening in this lowest order
perturbative approach is observed because the magnon cannot
scatter on these excitations. The onset of the broadening occurs
at momenta where the magnon enters the boson-fermion
spectrum. This point, as well as details of the full width at half
maximum, is determined by the strength of interaction. Most
interestingly, S(q,ω) does show additional peaks and shoulders
corresponding to characteristic spin-orbital excitations. At
points where the renormalized spin-wave dispersion and the
dispersion of these excitations cross, Kohn anomalies do occur.

Furthermore, we compared numerical data for the specific
heat of the spin-orbital model with the mean-field decoupling
solution and an approach where we also took the second-order
correction to the mean-field result into account. Overall, we
found that the mean-field decoupling does describe the specific
heat reasonably well. A redistribution of entropic weight from
low to intermediate temperatures—observed when comparing
the numerical data and the mean-field solution—is very well
captured by the second-order perturbative correction. An
interesting open point is the behavior of the specific heat c(T )
at low temperatures. While the mean-field solution predicts
c(T ) ∼ √

T due to spin-wave excitations, the numerical data
suggest instead that c(T ) ∼ T . We have argued that a coupling
of the two sectors might indeed lead to a low-energy effective
theory with dynamical critical exponent z = 1 but details of
such a theory need to be worked out in the future.

In conclusion, we have shown that while collective spin-
orbital excitations with infinite lifetime do not exist for anti-
ferromagnetic superexchange the coupled spin-orbital degrees
of freedom have a strong influence on the spin excitation
spectrum as well as on the thermodynamic properties of the
system. However, the treatment of spin-orbital systems beyond
the range of validity of mean-field decoupling and perturbative
schemes remains an open problem in theory.
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APPENDIX: DETAILS OF THE PERTURBATIVE
APPROACH FOR THE BOSON-FERMION MODEL

We start by a MF decoupling, rewriting the interaction as

H1 = H1,MF + (H1 − H1,MF)︸ ︷︷ ︸
δH

,

with

H1,MF = 1

N2

∑
k

ωBF(k,k,q)2[ñb,kf
†
q fq + ñf,qb

†
kbk].

We treat δH as perturbation. The averages ña,p = 〈a†
pap〉

are determined self-consistently within this MF scheme.
This leads to a renormalization of the magnon and fermion
dispersions. We find

ζ (q) = 2JS

(
|y| − 1

N

∑
k

cos k ñf,k

)
(1 − cos q) − μ (A1)

and

ωF (q) =
(

S2 + x + 2

N

∑
k

(1 − cos k)ñb,k

)
cos q. (A2)

For T = 0 only the magnon dispersion is renormalized to

ζ (q) = 2JS(|y| + 1/π )(1 − cos q).

By virtue of Dyson’s equation we may calculate the bosonic
Green’s function at T = 0.70 Since the MF decoupling already
takes the first-order contributions into account, the lowest
order diagrams we obtain are of second order. The self-energy
is thus approximated by the proper self-energy obtained by
summing up those diagrams which may be composed by
the second-order diagrams. From this we have �(q,ω) ≈
�2(q,ω) ≡ �+

BF(q,ω) + �−
BF(q,ω) + �2,1(q) where the dia-

grams are given by �+
BF(q,ω) [Fig. 6(a)], �−

BF(q,ω) [Fig. 6(b)],
and �2,1(q) [Fig. 6(c)]. A straightforward calculation reveals
that at zero temperature �2,1(q) and �−

BF(q,ω) vanish. For
�+

BF(q,ω) we find the expression given in Eq. (5.5).
For finite temperatures we calculate the imaginary-time

Green’s function. We find

�±
BF(q,ων,B) = − T 2

N2

∑
k1,k2

ω2
BF(q,k1,k2)

×
∑
a,b

G(0)
F (k2,ωa,F )G(0)

F (q − k1 + k2,ωb,F )

×G(0)
B (k1, ± (ων,B − ωb,F + ωa,F )) (A3)

for the diagrams in Fig. 6(a) and 6(b), and

�2,1(q) = − T 2

N2

∑
k1,k2

ωBF(q,q,k1)ωBF(k2,k2,k1)

×
∑
a,b

[
G(0)

F (k1,ωa,F )
]2G(0)

B (k2,ωb,B ) (A4)

for the diagram given in Fig. 6(c). Here we have
used G(0)

F (q,ωμ,F ) = [iωμ,F − ωF (q)]−1 and G(0)
B (q,ων,B ) =

[iων,B − ζ (q)]−1 as the fermionic and bosonic Matsubara
Green’s function for the noninteracting Hamiltonian, respec-
tively. ων,F are the fermionic Matsubara frequencies. After
performing the frequency sums we end up with

�2,1(q) = − 1

T N2

∑
k1,k2

ωBF(q,q,k1)ωBF(k2,k2,k1)

× nB[ζ (k2)](1 − nF [ωF (k1)])nF [ωF (k1)] (A5)

and the self-energies �±
BF(q,ων,B) as given in Eqs. (5.7) and

(5.9).
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