
PHYSICAL REVIEW B 83, 245129 (2011)

Weakly incoherent regime of interlayer conductivity in a magnetic field
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We investigate the electronic conductivity in layered metals in magnetic field in the “weakly incoherent” limit,
when the interlayer transfer integral is smaller than the Landau-level separation and broadening by impurities,
but the interlayer electron tunneling conserves the intralayer momentum. It is shown that the impurity potential
has much stronger effect in this regime, than in the quasi-two-dimensional metals in the coherent limit. The
weakly incoherent regime has several unique qualitative features, missed in the previous theoretical approaches.
The background interlayer magnetoresistance in this regime monotonically grows with the increase of magnetic
field perpendicular to the conducting layers. The Dingle temperature increases with magnetic field, which
damps the magnetic quantum oscillations and changes the field dependence of their amplitudes. The angular
magnetoresistance oscillations become much smoother, and the positions of magnetoresistance maxima at the
Yamaji angles slightly shift. The monotonic part of the angular dependence of magnetoresistance also considerably
changes in the weakly incoherent regime.
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I. INTRODUCTION

The crossover between coherent and incoherent elec-
tron transport in layered metals attracts great attention,
both theoretical1–8 and experimental,8–14 for its influence on
the properties of high-temperature cuprate superconductors,
organic metals, heterostructures, and many other layered
materials. This crossover can be driven by temperature T ,
volume impurity concentration ni , and external magnetic
field B = (Bx,By,Bz). In the magnetic field this crossover
in conductivity is very pronounced because it qualitatively
changes the magnetoresistance behavior.

The electronic conductivity in the magnetic field is widely
used to investigate the electronic structure of various metals.
In strongly anisotropic quasi-two-dimensional (quasi-2D)
layered metals, when the interlayer transfer integral tz is
much smaller than the Fermi energy EF , the influence of
magnetic field on conductivity has many specific features.
One has to separate several different regimes of interlayer
magnetotransport, depending on the ratios of three energy
parameters: the interlayer transfer integral tz, the inverse mean
free time �0 = h̄/2τ0 due to the impurity scattering, and the
Landau-level (LL) separation h̄ωc, where ωc = eBz/m∗c is
the cyclotron frequency.

When the interlayer transfer integral is larger than the LL
separation and �0, tz > max{h̄ωc,�0} , the three-dimensional
(3D) electronic dispersion is well defined and given in the
tight-binding approximation by

ε3D(k) ≈ ε(kx,ky) − 2tz cos(kzd), (1)

where ε(kx,ky) is the in-plane electron dispersion and d is
the interlayer spacing. Then the classical magnetoresistance
shows the angular Yamaji oscillations,15,16 which are used
to determine the in-plane Fermi momentum. The magnetic
quantum oscillations (MQO) of interlayer conductivity in this
case have beats of amplitude,17 and these beats are shifted
with respect to the beats of MQO of magnetization or of
the other thermodynamic quantities.18–20 The slow oscillations
also appear in the interlayer conductivity, which can be used to

separate the contributions of different scattering mechanisms
to the electron mean free time.20,21

When the interlayer transfer integral is smaller than the
LL separation, tz < h̄ωc, the beats of MQO disappear. This
limit happens in strong fields in very anisotropic metals. If the
interlayer transfer integral is still larger than the LL broadening
�, tz > �, the dispersion (1) survives, and the MQO can be
described by the “coherent” theory in Refs. 18–24. Note that
the LL broadening � is larger than �0 in strongly anisotropic
metals [see Eq. (20) below].

In the very anisotropic limit, when the interlayer transfer
integral is the smallest parameter, tz < h̄ωc,�, the traditional
3D approach fails to describe the interlayer magnetoresistance.
For example, in this limit, the experimentally observed
interlayer magnetoresistance grows with the increase of
the out-of-plane magnetic field not only in the maxima,
but also in the minima of MQO (see, e.g., Refs. 9, 25,
and 26). The angular dependence of magnetoresistance also
has many unusual features in this regime.8,12 This change
of the magnetoresistance behavior when the magnetic-field
strength or the impurity concentration increase was called
the “coherence-to-incoherence crossover.” It was observed
in various compounds8–14 and has attracted considerable
theoretical attention.1,6,8 The term “weakly incoherent” has
been introduced1 to separate this regime from the coherent 3D
limit tz > h̄ωc,�0, and from the completely incoherent regime,
where the electron tunneling to the adjacent layers does not
conserve the in-plane electron momentum. The completely
incoherent interlayer electron tunneling happens when it goes
via the resonance impurities,2,7,8 due to the interaction with
phonons3,5 and in some other models.

The theory of weakly incoherent magnetoresistance in
Ref. 1 is based on the phenomenological Green’s function
[see Eq. (53) of Ref. 1], which is equivalent to

G0
R(r1,r2,j,ε) =

∑
n,ky

�0∗
n,ky ,j

(x2,y2)�0
n,ky ,j

(x1,y1)

ε − εn − i�0
. (2)

Here j is the number of conducting layer, related to the
z coordinate as z = jd. The LL number n and the momentum
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component ky form the complete set of quantum numbers of
the 2D electrons in magnetic field with free-electron dispersion

εn = h̄ωc(n + 1/2). (3)

In magnetic field B = (Bx,0,Bz) (we may choose By = 0
without loss of generality because the in-plane dispersion is
uniform) the electromagnetic potential in the Landau gauge is
A = (zBy,xBz − zBx,0). Then the 2D electron wave functions
are

�n,ky,j (x,y) = �n

(
x − l2

Hz

[
ky + jd/l2

Hx

])
eikyy, (4)

where

�n(x) = exp
( − x2/2l2

Hz

)
Hn(x/lHz)(

πl2
Hz

)1/4
2n/2

√
n!

, (5)

Hn(x/lHz) is the Hermite polynomial and, for brevity, we
introduced the notation of magnetic length components lHx =√

h̄c/eBx and lHz = √
h̄c/eBz.

In the Green’s function in Eq. (2) the impurity scattering
produces only the imaginary part of the self-energy i�0, which
is independent of the quantum numbers {n,ky,j} and of the
magnetic-field strength B. This approximation is incorrect in
the weakly incoherent regime, as will be shown in Sec. II
below. Therefore, the main conclusion of Ref. 1, that the
interlayer conductivity in the weakly incoherent regime does
not differ from the coherent 3D regime, is also incorrect.
Below we will show that both the angular and magnetic-field
dependence of interlayer magnetoresistance in the weakly
incoherent regime differs from that in the 3D coherent limit.

The Green’s function in Eq. (2) is inapplicable to describe
the MQO even in the coherent limit, because the MQO of
the electron density of state (DOS) at the Fermi level lead to
similar oscillations of the electron self-energy, which must be
taken into account in the theory of MQO.19,20,22–24 In metals
with well-defined 3D electron dispersion given by Eq. (1)
with tz > h̄ωc,�, one can apply the Born approximation. This
gives the imaginary part � of the electron self-energy to be
proportional to the DOS, i.e. it oscillates around the field- and
energy-independent value �0:

� = �(ε) = �0[1 + ρ(ε,B)/ρ0], (6)

where ρ(ε) and ρ0 are the electron DOS with and without
magnetic field. The electron Green’s function of the form

G0
R(r1,r2,j,ε) =

∑
n,ky ,kz

�0∗
n,ky ,j

(x2,y2)�0
n,ky ,j

(x1,y1)eikz(z1−z2)

ε − ε2D(n,ky) + 2tz cos(kzd) − i�(ε)
,

(7)

with �(ε) from Eq. (6), has been substituted to the Kubo
formula in the calculation of MQO of interlayer conductivity
σzz in quasi-2D metals in Refs. 19, 20, and 22–24. Equations
(6) and (7) can only be applied to the metals with well-defined
3D electron dispersion, as in Eq. (1) at tz � h̄ωc,�0. In this
case the beats of MQO must be observed, as in Refs. 18–21.
However, the Born approximation and Eqs. (6) and (7) are
inapplicable to the very anisotropic almost 2D case, when
tz < h̄ωc,�0. Therefore, the conclusions of Refs. 22–24 about
the field dependence of interlayer magnetoresistance in the
nearly 2D limit tz � h̄ωc,�0 are incorrect. In this limit, in

addition to the oscillating field dependence in Eq. (6), the LL
broadening � has a strong monotonic field dependence [see
Eq. (20) below], which changes both the angular and field
dependence of interlayer magnetoresistance.

The completely incoherent variable-range hopping mech-
anism of the interlayer magnetotransport, which does
not conserve the in-plane electron momentum during the
interlayer hopping, has also been suggested6 to explain
the exponential growth in interlayer magnetoresistance with
decreasing temperature. However, all these approaches cannot
explain the monotonic increase of magnetoresistance with
increasing B in the minima of MQO, observed in β ′′-(BEDT-
TTF)2SF5CH2CF2SO3.9,10

Below we reexamine the calculation of interlayer conduc-
tivity in the weakly incoherent limit h̄ωc > �0 > tz. We argue
that Eqs. (2), (6), and (7) do not hold in this limit, and we
derive the different formula for the electron Green’s function.
Then we calculate the interlayer conductivity with the obtained
Green’s function, which gives the considerably different result
as compared to the coherent theory in Refs. 1 and 18–24. This
explains several unique qualitative features of MQO and of the
angular dependence of interlayer magnetoresistance observed
in the weakly incoherent limit.

II. THE MODEL

The electron Hamiltonian in layered compounds with small
interlayer coupling consists of the three terms

Ĥ = Ĥ0 + Ĥt + ĤI . (8)

The first term Ĥ0 is the 2D free-electron Hamiltonian summed
over all layers:

Ĥ0 =
∑
m,j

ε2D(m)c+
m,j cm,j ,

where {m} is the set of quantum numbers of electrons in
magnetic field on a 2D conducting layer, ε2D(m) is the
corresponding free-electron dispersion given by Eq. (3), and
c+
m(cm) are the electron creation (annihilation) operators in

the state {m}. The second term in Eq. (8) gives the coherent
electron tunneling between two adjacent layers:

Ĥt = 2tz
∑

j

∫
dx dy[�†

j (x,y)�j−1(x,y)

+�
†
j−1(x,y)�j (x,y)], (9)

where �j (x,y) and �
†
j (x,y) are the creation (annihilation)

operators of an electron on the layer j at the point (x,y) .
We call this interlayer tunneling Hamiltonian “coherent”
because it conserves the in-layer coordinate dependence of
the electron wave function (in other words, it conserves the
in-plane electron momentum) after the interlayer tunneling.
The last term

ĤI =
∑

i

Vi(r) (10)

is the impurity potential. The impurities are taken to be
pointlike and randomly distributed on the layers. The impurity
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distributions on any two adjacent layers are uncorrelated. The
potential Vi(r) of any impurity located at point ri is given by

Vi(r) = Uδ3(r − ri). (11)

In the 3D limit, when the interlayer transfer integral tz
is much larger than the electron level broadening � due
to the impurity scattering, the impurity potential ĤI can
be considered as the small perturbation for the electrons
with dispersion (1). In the Born approximation this gives
� = πniU

2ρ(EF ), in agreement with Eq. (6), where ni is
the volume impurity concentration, and ρ(EF ) is the DOS at
the Fermi level. This leads to the standard theory of magnetic
quantum oscillations in quasi-2D metals.17,20 In the opposite
limit, tz � �,h̄ωc, the interlayer hopping tz must be considered
as a perturbation for the disordered uncoupled stack of 2D
metallic layers, where Eq. (6) is no longer valid.27–33

The 2D metallic electron system in magnetic field in the
pointlike impurity potential has been extensively studied.27–33

The pointlike impurity potential leads to the broadening of
the LLs, which is described by the DOS distribution function
D(E). Since each LL without disorder is strongly degenerate,
even a weak impurity potential lifts this degeneracy and leads
to considerable broadening of the LLs. The electron Green’s
functions acquire a cut instead of the pole as in Eq. (2).
In the self-consistent single-site approximation27 the Green’s
function is given by

G(r1,r2,ε) =
∑
n,ky

�0∗
n,ky

(r2)�0
n,ky

(r1)G(ε,n), (12)

where

G(E,n) = E + Eg(1 − ci) − √
(E − E1)(E − E2)

2EEg

, (13)

and the DOS D(E) = (−1/π )Im GR(E) on each LL is
described by the domelike function27

D(E) =
√

(E − E1)(E2 − E)

2π |E|Eg

, (14)

where the electron energy E is counted from the last occupied
LL, E = ε − ε2D(n,ky), and

Eg = V0/2πl2
Hz.

Here V0 = U |ψ(zi)|2 ≈ U/d is the 2D analog of the strength
U of the pointlike impurity potential

Vi(x,y) = V0δ(x − xi)δ(y − yi), (15)

and ψ(z) is the out-of-plane electron wave function. The
boundaries of the DOS dome in Eq. (14) are

E1 = Eg(
√

ci − 1)2, E2 = Eg(
√

ci + 1)2, (16)

where ci is the ratio of the 2D impurity concentration, Ni =
nid, to the 2D DOS on one LL, NLL = 1/2πl2

Hz:

ci = Ni/NLL = 2πl2
Hznid. (17)

The function D(E) in Eq. (14) is nonzero in the interval 0 <

E1 < E < E2 and normalized to unity:
∫

D(E)dE = 1. The
LL broadening is

�B ≡ (E2 − E1)/2 = 2Eg

√
ci ∝

√
B. (18)

The ratio

�B

�0
=

2V0

√
nid/2πl2

Hz

πniU 2ρ(EF )
≈ 2U

√
niNLL/d

πniU 2ρ(EF )

= 2
√

niU 2ρ(EF )h̄ωc

πniU 2ρ(EF )
=

√
4h̄ωc

π�0
(19)

grows as
√

B in high magnetic field. Equations (18) and (19)
give the correct asymptote for the LL broadening in a strong
magnetic field. In a weak magnetic field, when h̄ωc � �0, the
mean scattering time τB related to level broadening as �B =
h̄/2τB , and entering the Drude formula, does not depend on
the value of magnetic field along the conductivity: τB = τ0.34

To get the correct asymptotic behavior for �B both in strong
magnetic field and at B = 0, one can take the simple function

�B ≈ �0[(4h̄ωc/π�0)2 + 1]1/4. (20)

More realistic models of the finite-range impurity potential,
and a more accurate calculation of the DOS, including the
many-site corrections, lead only to the small tails of the DOS
dome.28,30,33 The number of electron states in these tails is
much less than the number of states in the DOS dome and
can be neglected. However, to take these tails into account
and to simplify the subsequent calculation, one can take the
Lorentzian DOS distribution with the same broadening:

D(E) ≈ �B

π
(
E2 + �2

B

) = − Im GR(E)

π
. (21)

Combining Eqs. (12), (A1), and (21), we obtain

G(r1,r2,ε) =
∑
n,ky

�0∗
n,ky

(r2)�0
n,ky

(r1)

ε − εn − i�B

, (22)

This Green’s function will be used in the next section to
calculate the interlayer conductivity.

III. CALCULATION OF CONDUCTIVITY

The interlayer conductivity σzz, associated with the Hamil-
tonian (9), can be calculated using the Kubo formula
and the formalism, developed for the metal-insulator-metal
junctions.35 In analogy to Eq. (44) of Ref. 1,

σzz = e2t2
z d

h̄LxLy

〈 ∫
d2r d2r ′

×
∫

dε

2π
A(r,r ′,j,ε)A(r ′,r,j + 1,ε)[−n′

F (ε)]

〉
,

(23)

where the electron spectral functions

A(r,r ′,j,ε) = i[GA(r,r ′,j,ε) − GR(r,r ′,j,ε)], (24)
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and the advanced (retarded) Green’s functions GA(R)(r,r ′,j,ε)
on each layer j include the interaction with impurities. The
product of two spectral functions in Eq. (23) is rewritten as

� ≡ A(r,r ′,j,ε)A(r ′,r,j + 1,ε)

= GA(r,r ′,j,ε)GR(r ′,r,j + 1,ε) (25)

+GR(r,r ′,j,ε)GA(r ′,r,j + 1,ε)

−2 Re GR(r,r ′,j,ε)GR(r ′,r,j + 1,ε),

In addition to the terms with the product of Green’s functions
GAGR , the expression for conductivity also contains the
term −Re GRGR , which becomes important when MQO
are considered.20,22 Equation (46) in Ref. 1 and subsequent
formulas, where this term is omitted, can be applied only when
MQO are disregarded. In a strong magnetic field, especially in
the layered metals, on the contrary, the MQO are very strong.

The angular brackets in Eq. (23) mean averaging over
impurity configurations. Since the impurity distributions on
each layer are uncorrelated with other layers, one can
perform this averaging separately for each spectral function
independently,36 which gives

σzz = e2t2
z d

h̄LxLy

∫
d2r d2r ′

×
∫

dε

2π
〈A(r,r ′,j,ε)〉〈A(r ′,r,j + 1,ε)〉[−n′

F (ε)].

(26)

The averaged Green’s (or spectral) functions are translational
invariant: 〈GR(r,r ′,j,ε)〉 = 〈GR(r − r ′,j,ε)〉.

If the magnetic field is tilted by angle θ with respect
to the normal to the conducting planes, B = (Bx,0,Bz) =
(B sin θ,0,B cos θ ), the Green’s functions on two adjacent
layers acquire the phase shift [see Eq. (49) of Ref. 1]

GR(r,r ′,j + 1,ε)

= GR(r,r ′,j,ε) exp{ie[�(r) − �(r ′)]/h̄}, (27)

where

�(r) = −yBxd = −yBd sin θ.

Substituting Eq. (27) into Eq. (25) we obtain

� = 2GA(r,r ′,j,ε)GR(r ′,r,j,ε) cos{e[�(r) − �(r ′)]/h̄}
−2 Re[GR(r,r ′,j,ε)GR(r ′,r,j,ε)

× exp{−ie[�(r) − �(r ′)]/h̄}] (28)

and

σzz = 2e2t2
z d

h̄

∫
d2r

∫
dε

2π
[−n′

F (ε)]

×
{
|〈GR(r,ε)〉|2 cos

(
eByd

h̄
sin θ

)
(29)

− Re

[
〈GR(r,ε)〉2 exp

(
ieByd

h̄
sin θ

)]}
.

The term in the third line of Eq. (29) is absent in Eq. (50)
of Ref. 1. This term mostly affects the MQO of interlayer
conductivity.

In the magnetic field perpendicular to the conducting layers

σzz = 2e2t2
z d

h̄

∫
d2r

∫
dε

2π
[−n′

F (ε)][|〈GR(r,ε)〉|2

− Re〈GR(r,ε)〉2]. (30)

The integration over r for the Green’s function of the form
(12) is very simple and gives

σzz = 2e2t2
z dNLL

h̄

∫
dε

2π
[−n′

F (ε)]
∑

n

[|〈GR(ε,n)〉|2

− Re〈GR(ε,n)〉2]. (31)

With the approximate Green’s function, given by Eq. (22),
Eq. (31) becomes

σzz = 2e2t2
z dNLL

h̄

∫
dε

2π

∑
n

[−n′
F (ε)]2�2

B[
(ε − εn)2 + �2

B

]2 . (32)

The sum and integral in Eq. (32) is calculated in a standard
way, transforming the sum over LL into the harmonic sum by
applying the Poisson summation formula,37

∞∑
n=n0

f (n) =
∞∑

k=−∞

∫ ∞

a

e2πiknf (n) dn, (33)

where a ∈ (n0 − 1; n0). Then, performing the integrations, we
obtain

σzz = σ0(B)
∞∑

k=−∞
(−1)k exp

[
2π (ikμ − |k|�B )

h̄ωc

]

× 2kπ2T/h̄ωc

sinh(2kπ2T/h̄ωc)

[
1 + 2π |k|�B

h̄ωc

]
, (34)

where

σ0(B) = e2t2
z νF d

h̄�B

, (35)

νF = NLL/h̄ωc is the DOS at the Fermi level in the absence of
magnetic field. Equation (34) outwardly resembles Eqs. (17)–
(21) of Ref. 22, derived in the Born approximation in the
limit of well-defined 3D electron dispersion. It also resembles
Eqs. (12) and(15) of Ref. 19 and Eqs. (10) and(15) of Ref. 20
in the limiting case of tz → 0. However, there is an important
difference between Eqs. (34) and (35) and the previous results,
which comes out because Eqs. (34) and (35) are derived beyond
the traditionally used Born approximation. This difference
consists in the replacement of the field-independent quantities
�0 and �ε by �B , which has the strong monotonic dependence
on magnetic field given by Eq. (20).

Let us now compare how strongly the field dependence of
interlayer conductivity given by Eqs. (34) and (35) differs
from the previous results [see, e.g., Eqs. (17)– (21) of
Ref. 22]. In Fig. 1 we compare the field dependence of
magnetoresistance Rzz(B) = 1/σzz, calculated using Eq. (34)
with �B given by Eq. (20) (solid blue line, corresponding
to the result obtained) and with �B = �0 (dashed red line,
corresponding to Ref. 22). The strong difference is evident.
First, the interlayer magnetoresistance shows the monotonic
growth with the increase of magnetic field, directed along
conductivity and perpendicular to the conducting layers. This
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FIG. 1. (Color online) The MQO of resistivity Rzz(B) = 1/σzz, calculated using Eq. (34) with �B given by Eq. (20) (solid blue line) and
with �B = �0, which corresponds to Ref. 22 (dashed red line). The parameters used to plot (a) are m∗ = 1.45me, �0 = 0.58 K, and T = 1 K.
The parameters in(b) are m∗ = me, �0 = 1 K, and T = 0.6 K.

monotonic growth is observed in all experiments on interlayer
magnetoresistance in strongly anisotropic metals (see, e.g.,
Refs. 21 and 25) but, to the best of our knowledge, was not
explained before and therefore was not used to extract any
information about the compounds. Equations (20) and (35)
allow to use this dependence for an alternative estimate of
the LL broadening �(B) from the experimental data. Second,
the result obtained in Eqs. (34) and (20) takes into account the
magnetic-field dependence of the Dingle temperature, which
leads to the weaker field dependence of the MQO amplitude
and predicts a smaller amplitude of the MQO as compared to
the result of Refs. 22 and 23. This difference is most clearly
illustrated in Fig. 1(b).

The angular dependence of interlayer magnetoresistance is
also considerably modified by the replacement �0 → �B . In
tilted magnetic field the calculation of the integral in Eq. (29),
performed in Ref. 1, can be applied with the different magnetic-
field-dependent value �B instead of �0, which gives [compare
to Eq. (1) of Ref. 1]

σzz = σ0(Bz)

{
[J0(κ)]2 + 2

∞∑
ν=1

[Jν(κ)]2

1 + (νωcτB)

}
, (36)

where κ ≡ kF d tan θ is the same as in Ref. 1, but σ0(Bz) and
τB acquire the field and angular dependence: σ0(Bz) is given
by Eq. (35) and

τB = τB(Bz) = h̄/2�B = τ0(�0/�B). (37)

In the high magnetic field ωcτ � 1 and in the weakly
incoherent limit tz < �B , σ0(Bz) ∝ τB ∝ 1/

√
B cos θ .

There are two main differences between the obtained
angular dependence of magnetoresistance, given by Eq. (36),
and that given by Eq. (1) of Ref. 1. First, the sharp peaks
of magnetoresistance at the Yamaji angles become smoother
in the obtained formula. This change is due to the higher
harmonics [Jν(κ)]2 in angular magnetoresistance oscillations
(AMROs), which are less damped in Eq. (36) as compared
to Eq. (1) in Ref. 1 because of the smaller value of τB =
τ0(�0/�B) ∝ 1/

√
Bz. These higher harmonics also slightly

shift the positions of the Yamaji angles. Second, the monotonic
part of the angular dependence of magnetoresistance changes

because of the additional angular dependence of the prefactor
σ0(Bz) given by Eq. (35), which in a strong field ∝1/

√
B cos θ .

To illustrate these differences, in Figs. 2 and 3 we plot
the angular dependence of conductivity σzz(θ ) and of magne-
toresistance Rzz(θ ) = 1/σzz(θ ) given by Eq. (36) with τB =
h̄/2�B = τ0(�0/�B) (solid blue line) and τB = τ0 (dotted
red line). For simplicity, we take the axially symmetric case,
i.e., the symmetric in-plane electron dispersion. One can see
that in the minima of conductivity, i.e., at the Yamaji angles,
the replacement τ0 → τB is very important. The predicted
value of conductivity at the Yamaji angles with τB given by
Eq. (37) is much larger than with τB = τ0 [see Figs. 2(a) and
3(a)]. This difference grows with the increase of magnetic
field. It is even more evident on the resistivity plots in
Figs. 2(b) and 3(b). The maxima of magnetoresistance, given
by Eq. (36), are much lower than according to Ref. 1. The
positions of the conductivity minima, i.e., the Yamaji angles,
also slightly shift after the replacement τ0 → τB in Eq. (36)
(see Figs. 2 and 3). For the first Yamaji angle at B = 3 T
this shift �θYam ≈ 1◦ [see Fig. 2(a)]. The angular-dependent
prefactor σ0(Bz) in Eq. (36) considerably changes the ratio
σzz(θ = π/2)/σzz(θ = 0), which, according to Eqs. (35) and
(36), becomes larger by the factor �B/�0 [see Eq. (19) and
Figs. 2 and 3].

IV. DISCUSSION

Let us formulate the main difference of the present approach
to the calculation of interlayer conductivity in the weakly
incoherent regime as compared to the previous methods,
developed in Refs. 19, 20, and 22–24 to calculate the MQO
of conductivity. In these papers the impurity potential is
considered as a small perturbation on the background of a free-
electron gas with well-defined 3D electron dispersion given by
Eq. (1). Hence, the impurity scattering was taken into account
only by the imaginary part of the electron self-energy given
by Eq. (6), which was calculated in the Born approximation.
The impurities are treated even less accurately in Ref. 1, where
the constant electron mean free time has been used to include
the interaction with impurities. The Born approximation can
be applied only in the 3D coherent limit, when the interlayer

245129-5



P. D. GRIGORIEV PHYSICAL REVIEW B 83, 245129 (2011)

50 0 50
θ deg

2

4

6

8

10

12

14

Rzz

50 0 50
θ deg

0.2

0.4

0.6

0.8

1.0

σ zz

(a) (b)

FIG. 2. (Color online) The angular dependence of conductivity σzz(θ )/σzz(0) (a) and of magnetoresistance Rzz(θ )/Rzz(0) (b), calculated
using Eq. (36) with τB given by Eq. (37) (solid blue line) and with τB = τ0 (dotted red line). The parameters for this plot are kF d = 4, m∗ = me,
B = 3 T, �0 = 1 K, which gives ωcτ ≈ 1.74.

transfer integral is much larger than the LL broadening. In the
weakly incoherent regime, when tz < �,h̄ωc, this is incorrect,
because for a 2D electron system in magnetic field the impurity
potential has a much stronger effect than in 3D. Qualitatively,
in a 3D electron system the electrons after scattering by an
impurity move away in the interlayer direction and never
return to this impurity. Therefore, this impurity only leads
to single scattering of this electron into some other state,
which is well described by the Born approximation or even
by a constant electron mean free time τ0, or, equivalently, by
the constant imaginary part �0 of the electron self-energy.
In a 2D electron system in magnetic field, after scattering
the electrons return to the same impurity after the cyclotron
period. Therefore, the impurity has a permanent influence on
the electron state, considerably shifting the electron energy and
modifying the electron states. Hence, in the weakly incoherent
regime, when tz < �,h̄ωc, the interlayer hopping term (9)
in the Hamiltonian (8), rather the impurity potential (10),
must be considered as a small perturbation. Therefore, to
calculate the interlayer conductivity, we start from the stack
of isolated 2D disordered conducting layers in the magnetic
field, where the effect of the impurity potential is considered
much more accurately, at least in the self-consistent single-site

(“noncrossing”) approximation. This allows us to go beyond
the Born approximation, incorrectly applied in Refs. 22–24.
Then we substitute the obtained electron Green’s functions
to the Kubo formula for the tunneling conductivity between
adjacent conducting layers, which does not require the 3D
electron dispersion. The effect of impurities in the final results
turned out to be much stronger than in the previous approaches.
Phenomenologically, this difference can be taken into account
by the replacement of the initial level broadening �0 in Eq. (2)
by the larger value given by Eq. (20).

One can also obtain Eq. (22) with the value of � given by
Eq. (20) using the alternative arguments. The physical origin
of large DOS broadening in Eq. (14) is not the finite lifetime
τ of electron states, which is mathematically described by
the imaginary part of the self-energy Im � = �0 = h̄/2τ , as
in the 3D limit. On the 2D layers the LL broadening comes
from the energy shift of each electron state, which is described
by the state-dependent real part of the electron self-energy
Re �. The averaging of the electron Green’s function in
Eq. (2) over the impurity configurations is independent on each
conducting layer, since the impurity distribution is assumed
to be uncorrelated. Then, the coordinate part of the Green’s
function remains of the form (2) with the bare electron wave
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FIG. 3. (Color online) The same as in Fig. 2 but at a higher magnetic field value B = 15 T, which corresponds to ωcτ ≈ 8.7.
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functions in the numerator [see Eq. (12) and the Appendix], but
the denominator acquires the real part of electron self-energy,
which is distributed with the DOS function D(E):〈

G0
R(r1,r2,j,ε)

〉
=

∫
dE D(E)

∑
n,ky

�0∗
n,ky ,j

(x2,y2)�0
n,ky ,j

(x1,y1)

ε − E − h̄ωc(n + 1/2) − i0
.

The angle brackets indicate averaging over impurity con-
figurations. Substituting the approximate Lorentzian DOS
distribution, given by Eq. (21), one can easily perform the
integration over E and obtain

〈
G0

R(r1,r2,j,ε)
〉 ≈

∑
n,ky

�0∗
n,ky ,j

(x2,y2)�0
n,ky ,j

(x1,y1)

ε − h̄ωc(n + 1/2) − i�B

. (38)

This Green’s function is equivalent to Eq. (22) and differs
from Eq. (2) by the increase of the imaginary self-energy part,
�0 → �B , with �B given by Eq. (20).

The proposed analysis considers only the limiting case
�B � tz , when �B is given by Eqs. (18) or (20), but it is not
accurate for the intermediate case tz ∼ �B , where the crossover
from the coherent to the weakly incoherent regime takes place.
The phenomenological formula (20) gives only a qualitative
dependence �B(Bz) in this region. The crossover from the
coherent to the weakly incoherent regime may be driven by
the disorder (impurity concentration) or by magnetic field Bz.
The latter happens because, with the increase of the magnetic
field, the effective LL broadening �B also increases [see
Eq. (18)] and at some crossover field Bc ∼ t2

z m∗
ec/�0eh̄ it

becomes greater than the interlayer transfer integral tz. To
calculate the exact value Bc of the crossover field and to
describe the behavior of interlayer conductivity in this region,
one needs to calculate the electron Green’s function in layered
metals with impurities and the magnetic field in the crossover
region tz ∼ �B . This is an interesting and still an open
problem.

Above, we did not study the MQO in a tilted magnetic
field. The second term in the curly braces in Eq. (29) does not
contribute to the background magnetoresistance, but it affects
the MQO. This term amplifies the MQO by the last factor
in Eq. (34) and modifies the angular dependence of the MQO
amplitude. The latter is a fine effect, which is harder to measure
because the angular dependence of the MQO amplitude is also
affected by the Zeeman splitting and by possible magnetic
ordering.

If the normalized pointlike impurity concentration ci < 1,
the NLL − Ni electron states on each LL left degenerate, and
besides the DOS dome the sharp δ(E) term in the DOS
survives.29 However, as has been shown in Ref. 32, the
numerous weak defects and the impurities, situated far from
the conducting layers, are important for the lifting of the LL
degeneracy in all layered materials. For an achievable magnetic
field even in the pulsed magnets B < 100 T, lHz > 25 Å.
Therefore, the typical normalized impurity concentration is
greater than unity, ci > 1, and one can use the one-maximum
DOS distribution as in Eq. (14).

The oscillations of the chemical potential, which
appear to be strong in the artificial layered compounds
as heterostructures38 and are also observed in some other

materials,39 may considerably affect the MQO of thermody-
namic and transport quantities.40,41 For example, they may lead
to the mixing of the MQO frequencies even in the de Haas–van
Alphen effect.40 However, in the natural layered compound,
even in the extremely anisotropic almost 2D layered system
as β ′′-(BEDT-TTF)2SF5CH2CF2SO3, the oscillations of the
chemical potential turned out to be negligibly small, as
was experimentally confirmed by analyzing the shape of the
magnetization oscillations.42 This shape turned out to be the
same as in the 2D theory of magnetization oscillations with a
fixed chemical potential (see Fig. 3 of Ref. 42). In anisotropic
3D metals such as beryllium, where the magnetic quantum
oscillations are very strong, the oscillations of the chemical
potential are also damped by more than ten times.43 The
absence of the chemical potential oscillations was explained
by the observation of the MQO of the sample volume, which
leads to oscillations of the electron concentration and cancels
the oscillations of the chemical potential.43 The observation
of a strong MQO of the metallic sample volume is not
surprising, because the delocalized electrons give the main
contribution to the modulus of elasticity of metals.44 The
role of this magnetostriction on the damping of the MQO of
the chemical potential is somewhat analogous to the electron
reservoir, which can be simply included in the theory of
MQO.22,41 The main result of the present paper, that the
monotonic field dependence of the LL broadening strongly
affects the magnetic field and angular dependence of the
interlayer magnetoresistance, is not sensitive to the oscillations
of the chemical potential.

The electron-electron interaction, neglected in the above
calculations, is more important in the layered, strongly
anisotropic compounds than in usual 3D metals and may mod-
ify the quantitative behavior of magnetoresistance. For exam-
ple, the superconducting fluctuations may considerably change
the properties of cuprate high-temperature superconductors
even above the superconducting transition temperature.45 The
quantum corrections to conductivity are small, but may also
become detectable when the magnetic field is tilted toward
the conducting plane.46 However, all these effects are much
weaker than the gross qualitative effects obtained in the present
work.

The term “weakly incoherent transport” was introduced
in Ref. 1, where this limit was treated incorrectly because
of neglecting the magnetic-field dependence of the electron
self-energy part �0 in the in-plane Green’s function. A
similar mistake has been made in later theoretical papers,
considering this limit.22–24 Nevertheless, the term weakly
incoherent became widely used both in the experimental and
theoretical works (see, e.g., Refs. 8, 12, 23, 24, and 46).
Strictly speaking, the term weakly incoherent is not exact,
because the Hamiltonian of the model in Eq. (8) contains
the tunneling term given by Eq. (9), which conserves the
in-plane electron momentum. This Hamiltonian does not
contain any additional coherence-breaking terms as compared
to the standard “coherent” theory. The only difference is the
extreme anisotropy. The more accurate term for this regime
of interlayer transport would be “extremely anisotropic,”
“conditionally coherent,” or “weakly coherent.” However, we
keep the original term weakly incoherent to avoid confusion
and to emphasize the relation with previous publications.
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In Sec. III we have shown that the weakly incoherent
regime strongly differs from the coherent limit. It also differs
from the completely incoherent limit, where the different
mechanisms of the interlayer electron transport, including
that via resonance impurities2,7,8 and the hopping conductivity
between completely localized states,6 play an important role.
One difference of the weakly incoherent regime from the
completely incoherent one is that the AMROs are not damped,
being almost of the same amplitude as in the coherent
regime. Only the higher harmonics in AMROs increase,
making the AMRO maxima less pronounced [see Figs. 2(b)
and 3(b)]. The second difference is that the temperature
dependence of conductivity in the weakly incoherent regime
is the same as in the coherent limit (usually metallic), while
the temperature dependence of the hopping conductivity6

is exponential. Therefore, the weakly incoherent regime of
interlayer magnetotransport is a separate regime, which should
be distinguished from the coherent and completely incoherent
limits.

V. SUMMARY

We reexamine theoretically the conducting properties
of layered metals in the so-called weakly incoherent
regime, when the interlayer transfer integral tz is much less than
the Landau-level separation h̄ωc and broadening �B due to the
interaction with impurities. The angular and field dependence
of interlayer conductivity in this regime is calculated. We
obtain that both these effects in the weakly incoherent limit
considerably differ from the coherent regime. This contradicts
previous theoretical results.1,22 The background interlayer
conductivity σzz decreases with the increase of magnetic field
Bz according to Eq. (35), with �B approximately given by
Eq. (20), while in the standard coherent theory22 it remains
constant (see Fig. 1). The Dingle temperature of MQO also
increases with magnetic field ∝�B , which modifies the field
dependence of the MQO amplitude [see Fig. 1(b) for an
illustration). Meanwhile, in the weakly incoherent regime the
angular oscillations of background magnetoresistance are not
damped as in the completely incoherent mechanisms of the
interlayer electron transport, considered, e.g., in Refs. 2–8.
However, the angular dependence of interlayer magnetoresis-
tance in the weakly incoherent regime, given by Eqs. (36) and
(37), considerably differs from that in the standard coherent
theory47 and from the dependence obtained in Refs. 1 for the
same weakly incoherent regime [see Figs. 2 and 3 and the dis-
cussion after Eqs. (36) and (37)]. This difference includes both
the monotonic and oscillating parts of the angular dependence
of magnetoresistance. Phenomenologically, the differences
between the coherent and weakly incoherent regimes can be
taken into account by the replacement of the electron mean free
time τ0 by the different value τB ≈ τ0/[(8ωcτ0/π )2 + 1]1/4 in
all formulas for the field and angular dependence of interlayer
magnetoresistance.
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FIG. 4. The first diagram for the electron self-energy with the
intersection of the impurity lines.

APPENDIX: THE IN-PLANE ELECTRON GREEN’S
FUNCTION IN THE IMPURITY POTENTIAL

Consider the noninteracting 2D electron gas in the potential
of randomly distributed pointlike impurity, as given in Eq. (15).
The peculiarity of the 2D electron gas in a strong magnetic field
in the presence of impurities is that the Born approximation
of the scattering amplitude on each impurity is insufficient to
describe the system. Physically, this means that an electron
scatters many times by one impurity, because in the magnetic
field the electrons periodically return to the same point after
passing along the cyclotron orbit. In the 3D case, the diagram
in Fig. 4 with the intersections of impurity lines is small by the
parameter ni/ne, where ni and ne are the volume impurity and
electron concentrations. In the 2D case in the magnetic field
there is no general proof that the diagrams with intersections
of impurity lines are small. However, the calculations of the
DOS in Refs. 28, 30, and 33 show that these diagrams only
lead to the small tails of the DOS. Therefore, in our calculation
of interlayer conductivity we keep only the diagrams without
intersections of impurity lines.

Now we prove by the method of mathematical induction
that, if one neglects the diagrams with the intersection of
impurity lines, the electron Green’s function, averaged over
impurity configurations, has the form of Eq. (12) with

G(ε,n) = 1/[ε − εn − �n(ε)]. (A1)

The energy εn of the nth LL is given by Eq. (3), and the
electron wave functions �0

n,ky
(r) by Eq. (4). The self-energy

part �n(ε) for the nth LL must be determined self-consistently,
and is given by the set of diagrams shown in Fig. 5. In the self-
consistent single-site (noncrossing) approximation the self-
energy part is

�n(ε) = E − Eg(1 − ci)

2
−

√
(E − E1)(E2 − E)

2
.

The restriction given by Eq. (12) is nontrivial because G(ε,n)
does not depend on ky .

Without impurities, i.e., in the zeroth order of mathematical
induction, Eq. (12) holds by definition. Assume it holds for
an arbitrary number N of impurities in the electron Green’s

Σ =

α
x

α
x

α
x

FIG. 5. The set of diagrams for the irreducible self-energy,
corresponding to the self-consistent single-site approximation. The
double solid line symbolizes the exact electron Green’s function.
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function GN (r1,r2,ε). When we add one more impurity center,
the Green’s function GN+1(r1,r2,ε) is given by

GN+1(r1,r2,ε) =
∫

drα GN (r1,rα,ε)GN (rα,r2,ε)�(ε,rα),

(A2)

where �(ε) is given by the set of diagrams in Fig. 5, with
the double line standing for GN (rα,rα,ε). Performing the

integration over ky in Eq. (12), we find

GN (rα,rα,ε) =
∑

n

NLL

ε − εn − �N,n(ε)
.

Therefore, �(ε,rα) = �(ε), and substituting Eq. (12) into
Eq. (A2) and integrating over rα , we obtain

GN+1(r1,r2,ε) =
∑
n,ky

�0∗
n,ky

(r2)�0
n,ky

(r1)

ε − εn − �N,n(ε)
+ ci

∫
drα

∑
n,ky

�0∗
n,ky

(rα)�0
n,ky

(r1)

ε − εn − �N,n(ε)

∑
n′,k′

y

�0∗
n′,k′

y
(r2)�0

n′,k′
y
(rα)

ε − εn′ − �N,n′ (ε)
�(ε) + · · ·

=
∑
n,ky

�0∗
n,ky

(r2)�0
n,ky

(r1)

ε − εn − �N,n(ε)

∞∑
j=0

(
ci�(ε)

ε − εn − �N,n(ε)

)j

=
∑
n,ky

�0∗
n,ky

(r2)�0
n,ky

(r1)

ε − εn − �N+1,n(ε)
, (A3)

where

�N+1,n(ε) = �N,n(ε) + ci�(ε).

Equation (A3) has the form (12), which proves our statement.
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