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We present a detailed analysis of the optical modes and light propagation in photonic crystals consisting of
chiral spheres in a nonchiral isotropic medium, calculated by the full electrodynamic layer-multiple-scattering
method. It is shown that resonant modes of the individual spheres give rise to narrow bands that hybridize with
the extended bands of the appropriate symmetry associated with light propagation in an underlying effective
chiral medium. The resulting photonic dispersion diagrams exhibit remarkable features, peculiar to a system
that possesses time-reversal but not space-inversion symmetry, which are analyzed in terms of group theory.
In particular, we reveal the occurrence of strong band bending away from the Bragg points with consequent
negative-slope dispersion inside the first Brillouin zone, slow-photon bands, and frequency gaps. The calculated
band structure is discussed in conjunction with relevant reflection diagrams, providing a consistent interpretation
of the underlying physics.
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I. INTRODUCTION

Photonic crystals consisting of chiral building units pe-
riodically arranged in one, two, and three dimensions have
been investigated during the past decades, mainly in re-
lation to the occurrence of frequency band gaps.1–3 More
recently, it has been suggested that material chirality offers
new opportunities to realize negative refraction and related
effects in effectively uniform media. Specifically, it has been
shown that the existence of a chiral resonance, realized
either in a mixture of small helical inclusions4,5 or in an
assembly of resonant particles in a nondispersive chiral
medium,6 leads to negative refraction and superlensing for
one polarization, resulting in improved and simplified designs
of novel chiral optical metamaterials.7–12 Furthermore, in
the strong-chirality regime, intriguing wave properties, such
as chirality-dependent node switching, polarization-sensitive
transmission, and handedness-dependent mode localization,
have been reported on two-dimensional photonic structures
consisting of infinite cylinders made of a chiral (meta)material
embedded in a dielectric background.13

On the other hand, in photonic crystals formed by optically
active constituents, the combined effect of space-inversion
symmetry breakdown and gyrotropy has the same impact
on the eigenmode structure and configuration as in the
spin-orbit coupling in electronic band states in asymmetric
semiconducting compounds, which allows one to draw certain
parallels between electron spin and photospin transport in
these periodic structures. Such an analysis was carried out on a
one-dimensional chiral/nonchiral periodic multilayer structure
in the weak-chirality regime.14

In the present work, we report a rigorous group-theory
analysis to explain general features of the frequency band
structure of three-dimensional photonic crystals consisting
of chiral spheres in a nonchiral (dielectric) medium in the
strong-chirality regime but below the negative-index threshold,
and provide a consistent interpretation of the physical origin
of the different eigenmodes of the electromagnetic (EM)
field in such structures in conjunction with relevant reflection

spectra. The remaining of the paper is organized as follows.
Section II summarizes the basic concepts and formulas
of electrodynamics in a homogeneous chiral medium. In
Sec. III we discuss EM scattering by a single chiral sphere in a
homogeneous dielectric medium and, in particular, the particle
resonances. In Sec. IV we report a comprehensive analysis
of photonic dispersion diagrams and corresponding reflection
spectra of a face-centered cubic (fcc) crystal of chiral spheres,
calculated by the full electrodynamic layer-multiple-scattering
method. The main results of the article are summarized in the
last section.

II. ELECTROMAGNETIC WAVES IN A HOMOGENEOUS
CHIRAL MEDIUM

The optical response of a homogeneous optically active
(chiral) medium is described by the phenomenological Drude-
Born-Fedorov constitutive relations15

D(r,t) = εcε0[E(r,t) + βc∇ × E(r,t)], (1)

B(r,t) = μcμ0[H(r,t) + βc∇ × H(r,t)], (2)

in which the nonlocal character is reflected by the presence
of the spatial derivative (rotation), being a consequence of
the EM induction. The dimensionless coefficients εc and μc

correspond to the isotropic relative permittivity and perme-
ability, respectively, while the chirality parameter βc (in units
of length) is a real number in a lossless medium. If harmonic
time dependence exp(−iωt) is assumed, the field equations
for the chiral medium can be compactly written in a matrix
form15
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√
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being the velocity of light in vacuum.
A linear transformation of the EM field16(
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diagonalizes K, i.e.,

A−1KA =
(

qL 0
0 −qR

)
, (9)

where

qL = qc/(1 − qcβc), (10)

qR = qc/(1 + qcβc). (11)

The so-called Beltrami (transformed) fields, QL and QR ,
satisfy Maxwell equations in the homogeneous chiral medium
and the EM field can be decomposed into two eigenmodes
corresponding to left- and right-circularly polarized waves,
denoted by LCP and RCP, respectively. In a source-free
medium with exp(−iωt) time dependence we have

∇2Q + λ2Q = 0, (12)

∇ × Q = λQ, (13)

∇ · Q = 0, (14)

where λ = qL for Q = QL and λ = −qR for Q = QR .

It can be readily verified that Eqs. (12)–(14) accept
LCP and RCP plane-wave solutions of the form exp(iqL ·
r)êL and exp(iqR · r)êR , where qL and qR are given by
Eqs. (10) and (11), and êL and êR are unit vectors defined by
êL = (ê1L + iê2L)/

√
2 and êR = (ê1R − iê2R)/

√
2 with each

set of unit vectors (ê1L,ê2L,q̂L) and (ê1R,ê2R,q̂R) forming an
orthogonal right-handed triad. Similarly, it is straightforward
to show that the corresponding spherical-wave solutions
have the form17 jl(qLr)Xlm(r̂) + 1

qL
∇ × jl(qLr)Xlm(r̂) and

jl(qRr)Xlm(r̂) − 1
qR

∇ × jl(qRr)Xlm(r̂), respectively, where jl

are spherical Bessel functions and Xlm(r̂) are vector spherical
harmonics. From the Beltrami fields, in either the plane-wave
or the spherical-wave representation, one can obtain the
corresponding EM field by Eq. (7).

In a usual lossless chiral medium, the limitation of the
dimensionless chirality parameter |qcβc| to values less than
unity ensures positive wave numbers qL and qR , and positive
energy density. However, this restriction is not necessary4 and
if the medium exhibits strong dispersion, |qcβc| can be larger
than unity in certain frequency regions, an example being
chiral metamaterials.9–11

III. SCATTERING BY A CHIRAL SPHERE

We assume a homogeneous chiral sphere of radius S,
characterized by EM parameters εc, μc, and βc embedded
in a nonchiral host medium characterized by ε and μ. The
sphere is illuminated by a plane EM wave. Expanding the
Beltrami fields inside the sphere into LCP and RCP vector
spherical waves with expansion coefficients ac

Llm and ac
Rlm,

respectively, we obtain the corresponding EM field through
Eq. (7)
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(15)

Hin(r) = −iZ−1
c

∞∑
l=1

l∑
m=−l

{
ac

Llm

[
jl(qLr)Xlm(r̂) + 1

qL

∇ × jl(qLr)Xlm(r̂)

]

+ iZca
c
Rlm

[
jl(qRr)Xlm(r̂) − 1

qR

∇ × jl(qRr)Xlm(r̂)

]}
. (16)

Outside the sphere we express the EM field as a combination of the incident and scattered fields in the usual manner18
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l=1
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i

q
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where q = ω
√

εμ/c, Z = √
μμ0/(εε0), and h+

l are spher-
ical Hankel functions, and the coefficients a0

P lm and
a+

P lm (P = E, H ) refer to the incident and scattered
waves, respectively. Applying the proper boundary condi-
tions, i.e., continuity of the tangential components of the
EM field at the surface of the sphere, one can relate
the expansion coefficients of the scattered field to those
of the incident field through the so-called scattering T

matrix

a+
P lm =

∑
P ′=E,H

TPP ′;l a0
P ′lm, P = E,H. (19)

Explicit expressions for the elements of the T matrix, which
is diagonal in l and independent on m because of the spherical
symmetry, can be written as follows:3

TEE;l = UL;lCR;l + UR;lCL;l

UL;lVR;l + UR;lVL;l
, (20)

THH ;l = VL;lDR;l + VR;lDL;l

UL;lVR;l + UR;lVL;l
, (21)

TEH ;l = i
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UL;lVR;l + UR;lVL;l
= −THE;l , (22)

where
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1
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It can be seen that the T matrix is nondiagonal in P in the given representation, which reflects the mixing of the E- and
H -polarization modes upon scattering because of chirality. The 2 × 2 blocks of the T matrix for given l have the form ( A B

−B C
)

[see Eqs. (20)–(22)], and thus the corresponding eigenvalues are λl,± = [(A + C) ± √
(A − C − 2B)(A − C + 2B) ]/2.

With the help of the T matrix, defined above, one can calculate directly the change in the number of states up to a frequency
ω between the system under consideration (a single chiral sphere in a nonchiral host medium) and that of the host medium
extending over all space19

�N (ω) = 1

π
Im ln det [I + T] = 1

π
Im

∞∑
l=1

(2l + 1)[ln(1 + λl+) + ln(1 + λl−)] =
∞∑
l=1

�Nl(ω), (27)

where I is the unit matrix. Of more interest is the difference in the density of states induced by the scatterer and given by
�n(ω) = d�N (ω)/dω. On the other hand, the scattering cross section associated with an LCP or RCP incident plane wave,
normalized to the geometric cross section, can also be expressed in terms of the T matrix as follows:20

σsc;L = 2

(qS)2

∞∑
l

(2l + 1){|TEE;l|2 + |THH ;l|2 + 2|TEH ;l|2 − 2Im[(TEE;l + THH ;l)T
∗
HE;l]}, (28)

σsc;R = 2

(qS)2

∞∑
l

(2l + 1){|TEE;l|2 + |THH ;l|2 + 2|TEH ;l|2 + 2Im[(TEE;l + THH ;l)T
∗
HE;l]}. (29)

Let us consider, as an example, a single sphere of radius
S = 0.45a0 (a0 here is an arbitrary length unit) made of a chiral
material with βc/a0 = 0.2, εc = 2, and μc = 1 embedded in
a nonchiral dielectric medium with ε = 3 and μ = 1. To scale
with reality, assuming for the chirality parameter βc a value of
3 × 10−8 m,13 a0 corresponds to 150 nm. This sphere supports
resonant modes of the EM field, which are mostly localized at
the sphere and leak to some minor degree in the host region.
These modes are associated with the poles of the eigenvalues
of the scattering T matrix in the lower complex frequency
half-plane close to the real axis. Such poles appear for one
of the eigenvalues of the T matrix as qcβc approaches unity

(and consequently qL increases asymptotically) at zil = ωil −
iγil ; ωil is the eigenfrequency and γil (0 < γil � ωil) denotes
the inverse of the lifetime of the respective 2l-pole resonant
mode of ith order. Considering the asymptotic expansions
of the spherical Bessel functions for large arguments in
the limit qLS → ∞, we deduce an approximate standing-
wave-like condition for the occurrence of resonant modes:
qLS − lπ/2 + ϕl = nπ for n = 0, ± 1, ± 2, . . . , where ϕl are
appropriate phase functions, which vary slowly with frequency
for each value of l (l = 1,2,3, . . .). Of course, the closer we
get to the limit qcβc → 1 the better the above approximation
becomes.
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FIG. 1. The change in the density of states, �n, induced by a
single sphere of radius S = 0.45a0 (a0 here is an arbitrary length
unit) made of a chiral material with βc/a0 = 0.2, εc = 2, and μc = 1
embedded in a nonchiral dielectric medium with ε = 3 and μ = 1
(upper diagram) and the corresponding scattering cross sections
(lower diagram) associated with LCP (black line) and RCP (gray
line) incident light. The inset to the upper diagram displays the
symmetry-resolved resonant modes (l = 1, 2, 3, dotted lines) in the
low-frequency part of the spectrum.

In the upper diagram of Fig. 1, we depict the change
in the density of states, �n, induced by the chiral sphere
under consideration, calculated from Eq. (27). The inset to the
diagram displays an enlarged view in the frequency region of
the first resonant modes. It can be seen that �n is characterized
by resonance peaks and is nicely fitted by Lorentzian curves
given by19

�nil(ω) ≈ 2l + 1

π

γil

(ω − ωil)2 + γ 2
il

, i = 1,2, . . . (30)

The first two dipole (l = 1) resonant modes with lifetimes
γ −1

11 c/a0
∼= 4 and γ −1

21 c/a0
∼= 10 appear at ω11 = 2.152c/a0

and ω21 = 2.651c/a0, respectively, while the first quadrupole
(l = 2) mode appears at ω12 = 2.380c/a0 with γ −1

12 c/a0
∼= 16

and the first octapole (l = 3) mode at ω13 = 2.380c/a0 with
γ −1

13 c/a0
∼= 135. As shown in the lower diagram of Fig. 1, these

particle resonances can be excited solely by an LCP incident
wave.

IV. A FACE-CENTERED CUBIC CRYSTAL
OF CHIRAL SPHERES

We now consider an fcc crystal (with lattice constant a)
of spheres embedded in a dielectric medium characterized
by ε = 3 and μ = 1. We view the crystal as a sequence of
(001) crystallographic planes. In each plane, the spheres are
arranged on a square lattice with lattice constant a0 = a

√
2/2

while consecutive planes are separated by a distance d = a/2.
The spheres have a radius S = 0.45a0 and are made of a
chiral material with εc = 2, μc = 1, and βc/a0 = 0.2. It is
interesting to note that the given crystal lacks invariance under
space inversion because of its chiral constituents. Therefore,

the appropriate point symmetry group is O, which consists of
only proper rotations, and not Oh, that would be if the spheres
were optically inactive.21

We study the photonic eigenmodes and the optical response
of this crystal by means of full electrodynamic calculations us-
ing the layer-multiple-scattering method,22,23 which is ideally
suited for the case under consideration. Besides the complex
photonic band structure of the infinite crystal, the method
allows one to calculate, also, the reflectance of the semi-infinite
crystal, R, as well as the reflectance and transmittance of a
finite slab of the crystal, at any angle and, in this respect,
it can describe an actual transmission experiment. Another
advantage of the method is that it solves Maxwell equations in
the frequency domain and, therefore, it can treat dispersive
materials, such as chiral substances, and include losses in
a straightforward manner. The properties of the individual
scatterers enter only through the corresponding T matrix. At
a first step, in-plane multiple scattering is evaluated in the
spherical-wave basis using proper propagator functions. Sub-
sequently, interlayer scattering is calculated in a plane-wave
basis through appropriate transmission and reflection matrices,
by including all propagating and evanescent components of
the wave field necessary to obtain convergence. Therefore,
interaction between the scatterers is fully taken into account.
The scattering S matrix of a multilayer slab, which transforms
the incident into the outgoing wave field, is obtained by
combining the transmission and reflection matrices of the
component layers. The ratio of the transmitted or reflected
energy flux to the energy flux associated with the incident
wave defines the transmittance or reflectance of the slab,
respectively. On the other hand, for a three-dimensional crystal
consisting of an infinite periodic sequence of layers, stacked
along the z direction, applying the Bloch condition for the wave
field in the region between two consecutive unit slabs leads to
an eigenvalue equation, which gives the z component of the
Bloch wave vector, kz, for the given frequency ω and in-plane
wave-vector component reduced within the surface Brillouin
zone, k‖, which are conserved quantities in the scattering
process. The eigenvalues kz(ω,k‖), looked upon as functions
of real ω, define, for each k‖, lines in the complex kz plane.
Taken together they constitute the complex band structure of
the infinite crystal associated with the given crystallographic
plane. A line of given k‖ may be real (in the sense that kz

is real) over certain frequency regions and be complex (in
the sense that kz is complex) for ω outside these regions. It
turns out that, for given k‖ and ω, out of the eigenvalues
kz(ω,k‖) none or, at best, a few are real and the corresponding
eigenvectors represent propagating modes of the EM field in
the given infinite crystal. The remaining eigenvalues kz(ω,k‖)
are complex and the corresponding eigenvectors represent
evanescent waves. These have an amplitude, which increases
exponentially in the positive or negative z direction, and,
unlike the propagating waves, do not exist as physical entities
in the infinite crystal. However, they are an essential part
of the physical solutions of the EM field in a slab of finite
thickness. A region of frequency where propagating waves
do not exist for given k‖, constitutes a frequency gap of
the EM field for the given k‖. If over a frequency region
no propagating wave exists whatever the value of k‖, then
this region constitutes an absolute frequency gap. In order
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FIG. 2. The photonic band structure of an fcc crystal, with lattice
constant a (nearest-neighbor distance, a0 = a

√
2/2) of spheres of

radius S = 0.45a0 made of a chiral material with βc/a0 = 0.2, εc = 2,
and μc = 1 embedded in a nonchiral dielectric medium with ε = 3
and μ = 1 along the [001] direction. The bands of LCP and RCP
eigenmodes are shown by black and gray solid lines, respectively.
With dashed and dotted lines we denote inactive bands (see also
Fig. 3).

to ensure adequate convergence in our calculations for the
structure under consideration, it is sufficient to truncate the
spherical-wave expansions at lmax = 6 and take into account
37 two-dimensional reciprocal lattice vectors in the relevant
plane-wave expansions.22,23

In Fig. 2 we display the calculated photonic band structure
of the given crystal along its [001] direction. The bands along
this direction can be classified according to the irreducible
representations (A, B, E1, E2) of the C4 group, which is a
subgroup of O.21 All these bands are nondegenerate since
the irreducible representations of C4 are one dimensional.
The E1 and E2 bands have the symmetry of LCP and RCP
propagating waves, respectively, and thus can be excited by
a wave of the appropriate polarization, incident normally on
the (001) surface of the crystal. The A and B bands cannot
be excited by an externally incident wave because they do
not have the proper symmetry. These bands correspond to
bound states of the EM field in a finite (001) slab of the
crystal, which decrease exponentially outside the slab on
either side of it. To demonstrate this, we determined the
eigenmodes of a (001) slab of the given crystal consisting
of NL = 4 planes of spheres for k‖ = (0,0) in the manner
of Ref. 24. Over the frequency range of each of these bands
we obtain four eigenfrequencies, which when plotted against
values of the reduced wave number kz = κπ/(NL + 1), where
κ = 1,2, . . . ,NL and NL = 4, reproduce the corresponding
dispersion curves of the infinite crystal as shown by the open
circles in Fig. 3.

The eigenmodes at the center of the Brillouin zone, k =
(0,0,0), have the symmetry of the full O point group, while
at the boundaries of the Brillouin zone, k = (0,0,±π/d), they
have the symmetry of the D4 point group, which is a subgroup
of O. Compatibility between the irreducible representations
of the O and C4 and of the D4 and C4 groups (see Table I)
implies that the optically active LCP and RCP bands along
the [001] direction, of E1 and E2 symmetry, respectively,

FIG. 3. A detailed view of Fig. 2 over a limited frequency region
about the lowest multipole resonances of the single sphere, shown
in the margin together with the corresponding eigenmodes at the
center of the Brillouin zone. The latter are denoted by the appropriate
irreducible representation of the relevant point group (the O group).
The bands along the given [001] direction have the symmetry of the
C4 group: A (dashed line), B (dotted line), E1 (black solid line), and
E2 (gray solid line). The shaded area marks the frequency gap. The
open circles show the eigenfrequencies of a (001) slab of the given
crystal, four-layers thick, plotted against discrete values of kzd/π =
1/5, 2/5, 3/5, 4/5 (see text). On the left of the band diagram we
display the corresponding reflection spectrum (for LCP and RCP
incident waves) of the semi-infinite crystal.

converge to doubly degenerate modes of E symmetry at
the corresponding boundaries of the Brillouin zone and to
three-fold degenerate (T1 or T2) modes at the center of the
Brillouin zone, as shown in Fig. 3. Another interesting feature
in the band diagram of Figs. 2 and 3 follows from invariance
under time reversal, which reflects reciprocity as in the case of
nonchiral photonic crystals: though ωnE1 (k) �= ωnE1 (−k) and
ωnE2 (k) �= ωnE2 (−k), because of the lack of space-inversion
symmetry ωnE1 (k) = ωnE2 (−k), where n = 1,2, . . . is a band
index. This means that time-reversal symmetry alone ensures
degeneracy of the LCP and RCP modes at the center and the
boundaries of the Brillouin zone. We note that polarization
decomposition and existence of optically inactive bands apply
along high-symmetry directions, such as [001] or [111].
Along an arbitrary direction, all bands belong to the identity
representation and thus can be excited by an appropriately
incident wave of any polarization.

At low frequencies (below ωa0/c ≈ 2) we obtain non-
degenerate extended bands of LCP and RCP modes of E1

and E2 symmetry, respectively, as expected for propagation
in a homogeneous chiral effective medium in the reduced
zone representation because of structure periodicity. At higher
frequencies, the dispersion diagram is characterized by the
narrow bands, which originate from the resonant modes of the
individual spheres, weakly interacting between them. The E1

and E2 components of these resonance bands interact with the
extended effective medium bands of the same symmetry to
produce the band structure shown in Figs. 2 and 3. It can
be seen that anticrossing interactions lead to strong band
bending and negative-slope dispersion inside the Brillouin
zone while a frequency gap extending from ωa0/c = 2.103
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TABLE I. Compatibility relations between the irreducible rep-
resentations of the O and C4, and of the D4 and C4 groups.

O A1 A2 E T1 T2

C4 A B A B A E1 E2 B E1 E2

D4 A1 B1 A2 B2 E

C4 A B A B E1 E2

to ωa0/c = 2.139 opens up along the [001] direction of the
given crystal.

We note that the total number of bands shown in Fig. 2
equals the number expected from the interaction of the
resonance bands with the “would be” extended effective
medium bands. In agreement with group theory (see also
Table I), as can be seen in Fig. 3, a dipole resonant mode
of the individual spheres gives a threefold degenerate mode of
T1 symmetry at the center of the Brillouin zone, which splits
into an A, an E1, and an E2 band along the [001] direction.
Correspondingly, a quadrupole resonant mode gives a doubly
degenerate E mode and a threefold degenerate T2 mode at
k = (0,0,0). These are separated into an A and a B band
and into a B and an E1 and an E2 band along the [001]
direction, respectively. Moreover, an octapole resonant mode
of the spheres gives a nondegenerate A2 mode as well as
two threefold degenerate modes of T1 and T2 symmetry at
k = (0,0,0). Along the [001] direction, these evolve as: a B

band; an E1, an E2, and an A band; an E1, an E2, and a B

band, respectively.
Next to the band-structure diagram, in Fig. 3 we also depict

the reflection spectrum of the corresponding semi-infinite
crystal, for light incident normally on its (001) surface. We
find that the reflectance does not depend on the polarization
(LCP or RCP) of the incident wave, as in the case of a
homogeneous chiral medium.25,26 It is interesting to note that
the existence of only RCP (LCP) modes for positive (negative)
kz, e.g., above and below the frequency gap (see Figs. 2 and
3), does not mean polarization-selective transmission. Indeed,
light propagation along a given direction in the crystal occurs
through those bands with the proper sign of their group velocity
(forward-propagating modes) and not of kz. As can be seen
from Figs. 2 and 3, an RCP band with positive or negative
group velocity at a given frequency is accompanied by an LCP
band with the same sign of group velocity at this frequency
and vice versa. Therefore, circularly polarized waves of either
handedness can be transmitted through the crystal. In the
gap region, where propagating modes of the EM field in the
crystal are absent, the reflectance equals unity as shown in the
left-hand diagram of Fig. 3.

As mentioned above, along an arbitrary direction, all
bands belong to the identity representation and thus can be
excited by an appropriately incident wave of any polarization.
However, since the bands couple to a different degree with each
polarization mode, the corresponding reflection spectrum for
LCP and RCP incident light is, in this case, different, as shown
in Fig. 4.

Losses in a chiral medium, which are significant for chiral
metamaterials, imply an imaginary part also in the chirality
parameter and can be taken into account in our calculations.

FIG. 4. The photonic band structure of the crystal under consid-
eration, for k‖ = (0.1,0)2π/a0. The shaded area marks the frequency
gap. On the left of the band diagram we display the corresponding
reflection spectrum of the semi-infinite crystal for LCP (black line)
and RCP (gray line) incident light.

Losses cause all bands to become complex, in the sense that
all values of the wave vector acquire an imaginary part, and
reduce the reflection peaks because of absorption.

In our calculations, we assumed that the different EM
parameters of the constituent materials are constants over the
range of frequency considered but our method can deal with
situations in which these parameters depend on the frequency.
It should be pointed out that, assuming a constant value for
βc, the strength of chirality, described by the dimensionless
parameter |qcβc|, vanishes at the static limit (ω = 0) and
increases linearly with frequency; this allows us to study
both the weak- and strong-chirality regimes in the same
physical system. In the frequency region of interest, i.e., about
ωa0/c ≈ 2.5, the constant chirality parameter βc = 0.2a0 that
we assumed corresponds to qcβc ≈ 0.7, which is achievable
in practice. In chiral metamaterials, |qcβc| can even exceed
unity near a resonance frequency, leading to a negative
effective refractive index for a specific polarization mode.9–11

Moreover, there are substances with very strong chirality,
an example being helical polymers. For instance, it has
been reported that poly-L-lactic acid (PLLA) exhibits a huge
optical rotatory power,27 which corresponds to βc = 3.08 ×
10−8 m.13 Therefore, PLLA nanoparticles,28 self-assembled
into an ordered structure, could offer a route for the realization
of crystals of chiral spheres such as that studied in the present
work, operating at optical frequencies.

V. CONCLUSIONS

In summary, we reported a thorough investigation of the
optical eigenmodes and light propagation in three-dimensional
periodic structures of chiral spheres in a nonchiral medium,
by means of rigorous, full electrodynamic calculations using
the layer-multiple-scattering method. We analyzed dispersion
diagrams in conjunction with corresponding reflection spectra
and explained aspects of the underlying physics to a degree
that goes beyond existing interpretation. In the strong chirality
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regime, but below the negative-index threshold, resonant
modes of the individual spheres, weakly interacting with each
other, form slow-light bands that hybridize with the other
photonic modes of the appropriate symmetry. Our results re-
veal a rich photonic band structure, which exhibits remarkable
features that endow these composites with functionalities such
as slow-light transport, splitting of circular polarization states,
and filtering. Moreover, we reported a rigorous group theory
analysis for the proper characterization of all eigenmodes

according to their symmetry, which complements previous
work on the subject14 and is also useful for the interpretation
of photonic band diagrams of chiral metamaterials.12
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