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surfaces, and interfaces
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We present an implementation of the linear density response function within the projector-augmented wave
method with applications to the linear optical and dielectric properties of both solids, surfaces, and interfaces.
The response function is represented in plane waves while the single-particle eigenstates can be expanded on a
real space grid or in atomic-orbital basis for increased efficiency. The exchange-correlation kernel is treated at
the level of the adiabatic local density approximation (ALDA) and crystal local field effects are included. The
calculated static and dynamical dielectric functions of Si, C, SiC, AlP, and GaAs compare well with previous
calculations. While optical properties of semiconductors, in particular excitonic effects, are generally not well
described by ALDA, we obtain excellent agreement with experiments for the surface loss function of graphene
and the Mg(0001) surface with plasmon energies deviating by less than 0.2 eV. Finally, the method is applied to
study the influence of substrates on the plasmon excitations in graphene.
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I. INTRODUCTION

Time-dependent density functional theory (TDDFT)1 has
been widely used to calculate optical excitations in molecules
and clusters as well as the optical and electron energy-loss
spectra of bulk semiconductors, metals, and their surfaces.2

The excitation energies and oscillator strengths of both single-
particle and collective electronic excitations are determined
by the frequency-dependent linear density response function
χ (r,r′,ω) giving the density response at point r to first order
in a time-dependent perturbation of frequency ω applied at
point r′,

δn(r,ω) =
∫

drχ (r,r′,ω)δVext(r′,ω). (1)

For finite systems, χ can be efficiently calculated by invert-
ing an effective Hamiltonian in the space of particle-hole
transitions. For the practically relevant case of frequency-
independent exchange-correlation kernels this formulation
leads to the well-known Casida equation.3 For extended
systems, it is more convinient to express χ in a basis of plane
waves4–6 where it has the generic form χGG′(q,ω), with G
being reciprocal-lattice vectors and q being wave vectors in
the first Brillouin zone (BZ).

In this paper we focus on the electronic response function
of extended systems treating electron-electron interactions
at the level of the random phase approximation (RPA) and
the adiabatic local-density approximation (ALDA). For many
extended systems such a description is insufficient to account
for optical excitations because the electron-hole attraction is
not properly accounted for. However, dielectric properties, in
particular collective plasmon excitations, are generally accu-
rately reproduced by this approach,7,8 and quantitative agree-
ment with electron energy-loss experiments have been reported
for bulk metals,9,10 surfaces,11,12 graphene-based systems,13,14

semiconductors,15,16 and even supercondutors.17 Furthermore,
the accurate evaluation of the density response function at the
RPA or ALDA level is a prerequisite for implementation of
most post-DFT schemes, such as RPA correlation energy,18

exact-exchange optimized-effective-potential methods,19 the

GW approximation for quasiparticle excitations,20,21 and the
Bethe-Salpeter equation21,22 for optical excitations.

Here we present an implementation of the density re-
sponse function within the electronic structure code GPAW,23,24

which is based on the projector augmented wave (PAW)
methodology25,26 and represents wave functions on real-space
grids or in terms of linear combinations of atomic orbitals
(LCAO).27 Within the PAW formalism one works implicitly
with the all-electron wave functions and has access to the
(frozen) core states. This makes the method applicable to a
very broad range of systems including materials with strongly
localized d or f electrons, which can be problematic to
describe with pseudopotentials. An additional advantage of
the PAW formalism, with respect to linear-response theory,
is that the optical transition operator in the long-wavelength
limit can be obtained directly due to the use of all-electron
wave functions.28 The noninteracting response function χ0

is built from the single-particle eigenstates obtained either
on a real-space grid, which is the standard representation in
the GPAW code, or in terms of a localized atomic-orbital
(LCAO) basis. We have found that the latter choice reduces the
computational cost of χ0 considerably while still preserving
the high accuracy of the grid calculation.

The method is used to calculate the macroscopic dielectric
constants of a number of bulk semiconductors, showing
very good agreement with previous calculations as well as
experiments. For the surface plasmons of the Mg(0001)
surface we find, in agreement with previous studies, that the
ALDA kernel lowers the plasmon energies by around 0.3 eV
relative to the RPA values and thereby reduces the deviation
from experiments from 4% to 1–2%. Very good agreement
with experiments is also found for the plasmon energies of
graphene, which are shown to exhibit a linear dispersion with
a value of 4.9 eV in the long-wavelength limit. The deposition
of graphene on a SiC substrate is shown to have little effect
on the plasmon energies but leads to significant broadening
of the plasmon resonances. In contrast, deposition on an Al
surface completely quenches the graphene plasmons due to
strong nonlocal electronic screening.
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The rest of this paper is organized as follows. Section II
introduces the theoretical framework, where the PAW method-
ology, the density response function for both finite q and q →
0, and the ALDA kernel in the PAW method are discussed.
The details of the implementation and parallelization in
GPAW and other technical details are presented in Sec. III.
Section IV presents applications for optical properties and
plasmon excitations of bulk and surfaces, where comparison
with other calculations and experiments are given. Our recent
investigation on the effect of a semiconducting and metallic
substrate on the plasmon excitations in graphene is also briefly
discussed in this section. Finally, a summary is given in Sec. V.

II. METHOD

A. Basics of the PAW formalism

In the PAW formalism,25,26 a true all-electron Kohn-Sham
wave function ψnk is obtained by a linear transformation from
a smooth pesudo-wave function ψ̃nk via ψnk = T̂ ψ̃nk. The
transformation operator is chosen in such a way that the all-
electron wave function ψnk is the sum of the pseudo one ψ̃nk
and an additive contribution centered around each atom written
as

ψnk(r) = ψ̃nk(r) +
∑
a,i

〈
p̃a

i

∣∣ψ̃nk
〉[
φa

i (r − Ra) − φ̃a
i (r − Ra)

]
.

(2)

The pseudo-wave function ψ̃nk matches the all-electron one
ψnk outside the augmentation spheres centered on each atom
a at position Ra . Their differences inside the augmentation
region are expanded on atom-centered all-electron partial
waves φa

i and the smooth counterparts φ̃a
i . The expansion

coefficient is given by 〈p̃a
i |ψ̃nk〉, where p̃a

i is chosen as a
dual basis to the pseudopartial wave and is called a projector
function. A frequently occurring term is the all-electron
expectation value for a semilocal operator A written as

〈ψnk|A|ψnk〉 = 〈ψ̃nk|A|ψ̃nk〉 +
∑
a,ij

〈
ψ̃nk

∣∣p̃a
i

〉〈
p̃a

j

∣∣ψ̃nk
〉

× [〈
φa

i

∣∣A∣∣φa
j

〉 − 〈
φ̃a

i

∣∣A∣∣φ̃a
j

〉]
. (3)

B. Density response function and dielectric matrix

A key concept in TDDFT is the density response function χ .
It is defined as χ (r,r′,ω) = δn(r,ω)/δVext(r′,ω), where Vext is
the external perturbing potential and δn is the induced density
under the perturbation. For periodic systems, χ can be written
in the form

χ (r,r′,ω) = 1

Nq�

BZ∑
q

∑
GG′

ei(q+G)·rχGG′(q,ω)e−i(q+G′)·r′
,

(4)

where G,G′ are reciprocal-lattice vectors, q is a wave vector
restricted to the first Brillouin zone (BZ), Nq is the number of
q vectors, and � is the volume of the real-space primitive cell.

The density response function of the interacting electron
system, χ , can be obtained from the noninteracting density
response function of the Kohn-Sham system, χ0, and a kernel

K describing the electron-electron interactions by solving a
Dyson-like equation

χGG′(q,ω) = χ0
GG′(q,ω)

+
∑
G1G2

χ0
GG1

(q,ω)KG1G2 (q)χG2G′(q,ω). (5)

The expression for the noninteracting density response
function in the Bloch representation of Adler and Wiser4,5

is

χ0
GG′(q,ω) = 2

�

∑
k,nn′

(fnk − fn′k+q)
nnk,n′k+q(G)n∗

nk,n′k+q(G′)

ω + εnk − εn′k+q + iη
,

(6)

where

nnk,n′k+q(G) ≡ 〈ψnk|e−i(q+G)·r|ψn′k+q〉 (7)

is defined as the charge-density matrix. Its evaluation within
the PAW formalism is explained in detail in the following
subsection. εnk, fnk, and ψnk are the Kohn-Sham eigen-energy,
occupation, and wave function for band index n and wave
vector k, and η is a broadening parameter. The summation
over k runs all over the BZ and

∑
k fnk = 1 is satisfied for the

occupied states. The factor of 2 accounts for spin (we assume
a spin-degenerate system).

The kernel in Eq. (5) consists of both a Coulomb and
an exchange-correlation (xc) part. The Coulomb kernel is
diagonal in the Bloch representation and written as

KC
G1G2

(q) = 4π

|q + G1|2 δG1G2 , (8)

while the xc kernel evaluated within ALDA is given by

Kxc−ALDA
G1G2

(q) = 1

�

∫
drfxc[n(r)]e−i(G1−G2)·r, (9)

with

fxc[n(r)] = ∂2Exc[n]

∂n2

∣∣∣∣
n0(r)

. (10)

Details on the evaluation of the xc kernel in the PAW method
can be found in a following subsection.

The Fourier transform of the microscopic dielectric matrix,
defined as ε−1(r,r′,ω) = δVtot(r,ω)/δVext(r′,ω), is related to
the density response function via

ε−1
GG′(q,ω) = δGG′ + 4π

|q + G|2 χGG′(q,ω), (11)

where χ is obtained from χ0 according to Eq. (5). The
off-diagonal elements of the χ0

GG′ matrix describes the re-
sponse of the electrons at wave vectors different from the
external perturbing field and thus contain information about
the inhomogeneity of the microscopic response of electrons
known as the “local field effect.”6 The macroscopic dielectric
function is defined as

εM (q,ω) = 1

ε−1
00 (q,ω)

, (12)

and is directly related to many experimental properties. For
example, the optical-absorption spectrum (ABS) is given by
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ImεM (q → 0,ω). The electron energy-loss spectrum (EELS29)
is proportional to −Im(1/εM ). Both spectra reveal information
about the elementary electronic excitations of the system.
EELS is especially useful in probing the collective electronic
excitations, known as plasmons, of bulk and low-dimensional
systems.29

C. Charge-density matrix in the PAW method

In this subsection, we will discuss the charge-density
matrix nnk,n′k+q(G), which is defined in Eq. (7) and is a
crucial quantity for the evaluation of χ0. Care must be taken
for the long-wavelength limit (q → 0) since the Coulomb
kernel, 4π/|q + G|2, diverges at q → 0 and G = 0; while
the charge-density matrix approaches zero at this limit. As a
result, we separate the discussion into two parts: finite q and
q → 0.

1. Finite q

Considering the transformation between the pseudo-wave
function and the all-electron wave function in Eq. (2) and
employing Eq. (3) yields

nnk,n′k+q(G) = ñnk,n′k+q(G)

+
∑
a,ij

〈
ψ̃nk

∣∣p̃a
i

〉〈
p̃a

j

∣∣ψ̃n′k+q
〉
Qa

ij (q + G) (13)

with

ñnk,n′k+q(G) ≡ 〈ψ̃nk|e−i(q+G)·r|ψ̃n′k+q〉 (14)

Qa
ij (K) ≡ 〈

φa
i

∣∣e−iK·r∣∣φa
j

〉 − 〈
φ̃a

i

∣∣e−iK·r∣∣φ̃a
j

〉
(15)

and K ≡ q + G.
The pseudodensity matrix in Eq. (14) is calculated using

a mixed space scheme. First, the cell periodic function
ψ̃∗

nk(r)ψ̃n′k+q(r)e−iq·r is evaluated on a real-space grid; then it
is Fourier transformed to get

ñnk,n′k+q(G) = F[ψ̃∗
nk(r)ψ̃n′k+q(r)e−iq·r]. (16)

The augmentation part in Eq. (15) is calculated on fine
one-dimensional radial grids centered on each atom. Such fine
grids are required to represent accurately the oscillating nature
of the all-electron partial wave in the augmentation region.
The plane-wave term e−iK·r is expanded using real spherical
harmonics by

e−iK·r = 4π
∑
lm

(−i)ljl(|K|r)Ylm(r̂)Ylm(K̂), (17)

where jl is the spherical Bessel function for angular momen-
tum l and K̂ = K/|K|. Combining the above equations and the
expression for the partial wave |φa

i 〉 = φa
ni li

(r)Ylimi
(r̂), we can

write

Qa
ij (K) = 4πe−iK·Ra

∑
lm

(−i)lYlm(K̂)
∫

d r̂ YlmYlimi
Ylj mj

×
∫

dr r2jl(|K|r)
[
φa

ni li
(r)φa

nj lj
(r) − φ̃a

ni li
(r)φ̃a

nj lj
(r)

]
.

(18)

2. Long-wavelength limit

In the long-wavelength limit, the G �= 0 components of the
density matrix nnk,n′k+q(G) remain the same as that for finite
q. Only the G = 0 components need to be modified and are
written as

nnk,n′k+q(0)|q→0 ≡ 〈ψnk|e−iq·r|ψn′k+q〉q→0. (19)

In Ref. 30, the above so-called longitudinal form is de-
rived in the PAW framework by using Taylor expansion
of the eiq·r to the first order. Here we adopt an alter-
native but equivalent form, which can be derived using
the second-order k · p perturbation theory31 as described
below.

Expressing the wave function using Bloch’s theo-
rem as ψnk(r) = unk(r)eik·r, where unk(r) is the periodic
Bloch wave, the dipole transition element in Eq. (19)
becomes

〈ψnk|e−iq·r|ψn′k+q〉 = 〈unk|un′k+q〉. (20)

For vanishing q, the wave function for |un′k+q〉 can be obtained
in terms of those for |umk〉 through second-order perturbation
theory:

|un′k+q〉 = |un′k〉 +
∑
m�=n′

〈ψmk|Ṽ |un′k〉
εn′k − εmk

|umk〉. (21)

The perturbing potential Ṽ in the above equation is obtained
through

Ṽ = H (k + q) − H (k) = −iq · (∇ + ik), (22)

where

H (k) = − 1
2 (∇ + ik)2 + V (r) (23)

is the k · p Hamiltonian31 and V (r) is the effective Kohn-Sham
potential.

Combining Eqs. (20)–(22), the charge-density matrix at the
long-wavelength limit becomes

nnk,n′k+q(0)|q→0 = −iq · 〈nnk|∇ + ik|un′k〉
εn′k − εnk

,

= −iq · 〈ψnk|∇|ψn′k〉
εn′k − εnk

. (24)

The above expression for the charge-density matrix in the
PAW method has an advantage over the pseudopotential
method, where the nabla operator has to be corrected by the
commutator of the nonlocal part of pseudopotential with the
position operator r.28 In the PAW method, the matrix element
〈ψnk|∇|ψn′k〉 is given by

〈ψnk|∇|ψn′k〉 = 〈ψ̃nk|∇|ψ̃n′k〉 +
∑
a,ij

〈
ψ̃nk

∣∣p̃a
i

〉〈
p̃a

j

∣∣ψ̃n′k
〉

× [〈φa
i

∣∣∇∣∣φa
j

〉 − 〈
φ̃a

i

∣∣∇∣∣φ̃a
j

〉]
. (25)

In GPAW, where the pseudo-wave functions ψ̃nk are rep-
resented on a real-space grid, the first matrix element
is calculated using a finite difference approximation for
the nabla operator. The augmentation part is evaluated on
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fine one-dimensional radial grids. The nabla operator com-
bined with partial waves φa

i (r) = φa
n1l1

(r)Yl1m1 (r̂) and φa
j (r) =

φa
n2l2

(r)Yl2m2 (r̂) is written as

〈
φa

i

∣∣∇∣∣φa
j

〉 =
〈
φa

i

∣∣∣∣ ∂

∂r

(
φa

n2l2

rl2

)
∂r

∂r
rl2Yl2m2

〉

+
〈
φa

i

∣∣∣∣φ
a
n2l2

rl2
∇(

rl2Yl2m2

)〉
. (26)

Since real spherical harmonics are employed, we get

∂r

∂r
=

(x

r
,
y

r
,
z

r

)
=

√
4π

3

(
Y1mx

,Y1my
,Y1mz

)
. (27)

Substitute the above equation into Eq. (26) and split the
integration into radial and angular parts, we get for the x

component

〈
φa

i

∣∣ ∂

∂x

∣∣φa
j

〉

=
√

4π

3

∫
dr r2φa

n1l1

∂

∂r

(
φa

n2l2

rl2

)
rl2

∫
d r̂ Yl1m1Yl2m2Y1mx

+
∫

dr r2φa
n1l1

φa
n2l2

r

∫
d r̂ Yl1m1r

1−l2
∂

∂x

(
rl2Yl2m2

)
. (28)

The derivation for the y and z component and for the pseudo-
partial wave follows in a similar way.

D. ALDA xc kernel in the PAW method

The ALDA xc kernel, expressed in Eq. (9), is evaluated
using the all-electron density, which takes the form

n(r) = ñ(r) +
∑

a

[na(r − Ra) − ña(r − Ra)], (29)

where

ñ(r) =
∑
nk

fnk|ψ̃nk(r)|2 +
∑

a

ña
c (|r − Ra|), (30)

na(r) =
∑
ij

Da
ijφ

a
i (r)φa

j (r) + na
c (r), (31)

ña(r) =
∑
ij

Da
ij φ̃

a
i (r)φ̃a

j (r) + ña
c (r), (32)

with Da
ij = ∑

nk〈ψ̃nk|p̃a
i 〉fnk〈p̃a

j |ψ̃nk〉. Here na
c (r) is the all-

electron core density and ña
c (r) can be chosen as any smooth

continuation of na
c (r) inside the augmentation sphere since it

will be canceled out in Eq. (30).
The ALDA xc kernel can also be separated into smooth and

atom-centered contributions,

Kxc−ALDA
G1G2

= K̃xc−ALDA
G1G2

+
∑

a

�K
a,xc−ALDA
G1G2

. (33)

The smooth part is constructed from pseudodensity and by
utilizing a Fourier transform

K̃xc−ALDA
G1G2

= 1

�

∫
drfxc[ñ(r)]e−i(G1−G2)·r

= 1

�
F {fxc[ñ(r)]}|G1−G2

. (34)

The atom-centered contribution is evaluated on one-
dimensional (1D) grids,

�K
a,xc−ALDA
G1G2

= 1

�

∫
r2drd r̂e−i(G1−G2)·r[fxc[na] − fxc[ña]].

(35)

III. NUMERICAL DETAILS

In this section we describe the most important numerical
and technical aspects of our implementation: in particular,
the Hilbert transform used to obtain χ0 from the dynamic
form factor (spectral function) and the applied parallelization
scheme.

A. Symmetry

For each wave vector q, the evaluation of χ0 involves a
summation over occupied and empty states in the entire BZ.
By exploiting the crystal symmetries, however, we need only
calculate the wave functions and energies in the irreducible BZ
(IBZ). This is because the wave function at a general k point
can always be obtained from a wave function in the irreducible
part of the BZ by application of a symmetry transformation T .
In general, we have the relation

ψn,T k(r) = ψn,k(T −1r), (36)

where k belongs to the IBZ. The above relation can be directly
verified by considering how the right-hand side transforms
under lattice translations. In addition to the crystal symmetries,
time-reversal symmetry applies to any system in the absence
of magnetic fields,

ψ−k(r) = ψ∗
k (r). (37)

B. Hilbert transform

Rather than constructing χ0 directly from Eq. (6) we obtain
it as a Hilbert transform of the (noninteracting) dynamic form
factor, S0.32,33 The latter is given by

S0
GG′ (q,ω) = 2

�

∑
k,nn′

(fnk − fn′k+q)δ(ω + εnk

− εn′k+q)nnk,n′k+q(G)n∗
nk,n′k+q(G′). (38)

In practice S0(ω) is evaluated on a uniform frequency grid
extending from 0 to around 40–60 eV with a grid spacing in
the range 0.01–0.1 eV, and the δ functions are approximated
by triangular functions following Ref. 34. The noninteracting
response function is obtained as

χ0
GG′(q,ω) =

∫ ∞

0
dω′S0

GG′(q,ω′)

×
[

1

ω − ω′ + iη
− 1

ω + ω′ + iη

]
. (39)

The above Hilbert transform is performed directly on the
frequency grid setting the broadening parameter η equal to
the grid spacing.
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C. LCAO vs grid calculations

It is well known that the use of localized atomic orbitals
as basis functions can significantly reduce the computational
effort of ground-state electronic structure calculations. For
calculations of the density response function the use of
localized basis functions is complicated by the fact that such
basis sets are typically not closed under multiplication.35–37

As a consequence, the size of the product basis needed to
represent the response function grows as N2

μ, where Nμ is
the number of basis functions used to represent the wave
functions (we note that for strictly localized basis functions,
the effective size of the “product basis” grows only linearly
with the system size because pair densities of nonoverlapping
orbitals vanish, however, the prefactor is typically very large).
A further challenge is the computation of the Coulomb
interaction kernel, 1/|r − r′|, in the product basis leading to
six-dimensional multicenter integrals. These intergrals must
be performed either by using efficient Poisson solvers or by
resorting to analytical techniques. The latter is extensively
used in quantum chemistry codes applying Gaussian basis
sets.

For these reasons we have chosen to represent the density
response function in a plane-wave basis. The plane-wave basis
is closed under multiplication and the Coulomb kernel is
simply given by Eq. (8). However, we still keep the advantage
of using an LCAO as basis in the calculation of the Kohn-Sham
wave functions and energies, which enter the construction of
χ0.27 Apart from reducing the computational effort of the
ground-state calculation (which must include many unoc-
cupied bands), the storage requirements for wave functions
become much less than for corresponding grid or plane-wave
calculations. This is because the LCAO coefficients provide
a more compact representation of the wave functions, in
particular for open structures containing large vacuum regions,
and because significantly fewer unoccupied wave functions
result from the LCAO calculation (for a fixed energy cutoff).

Compared to plane waves or real-space grids, LCAO
calculations employing standard basis sets usually give a
less accurate but often acceptable description of the occupied
and low-lying unoccupied wave functions and energies. For
higher-lying unoccupied states, blueshifts are expected due to
the (unphysical) confinement imposed by the localized basis
set, and the continuum is broken into discrete bands. Despite
these effects, we have found that the use of LCAO wave
functions instead of grid wave functions has rather little effect
on the dielectric function—at least in the relevant low-energy
regime.

As an example, Fig. 1 shows the absorption spectrum (a)
and EELS spectrum (b) of graphene calculated using LDA
wave functions and energies from a grid calculation and
from an LCAO basis set of varying quality. The unit cell is
the primitive cell of graphene containing two carbon atoms
and with 20 Å vacuum. The BZ is sampled on a 64 × 64
Monkhorst-Pack grid. The number of bands included are 60
for the grid and LCAO (qztp) basis and 26 for the LCAO (dzp)
basis. In all three cases this corresponds to inclusion of states
with energy below 40 eV. The response function is evaluated at
the RPA level including local-field effects up to a plane-wave
cutoff of 150 eV (465 G vectors).

FIG. 1. (Color online) The imaginary part of the dielec-
tric function (a) and energy-loss function (b) of graphene at
q = 0.046 Å−1 along ̄ − M̄ direction of its surface Brillouin zone.
The LDA wave functions and energies entering χ0 have been obtained
using a 3D uniform grid (black solid line) and a localized atomic
orbital (LCAO) containing single ζ (red dotted), single ζ with
polarization (green dashed), and double ζ with polarization (purple
dashed-dotted), respectively.

For excitation energies below 10 eV, the LCAO results agree
remarkably well with the grid calculations. In particular the
π → π∗ absorption peak at around 4 eV in panel (a) and the
π plasmon around 5 eV in panel (b) are well reproduced in
LCAO calculations with only the smallest single-ζ (sz) basis
set showing small deviations. For energies above 10 eV, we
observe slight deviations. However, for the standard szp and
dzp basis sets the overall agreement is remarkable for the entire
energy range. In particular, the σ → σ ∗ transition at around
14 eV in panel (a) and the σ plasmon around 17 eV in panel
(b) are clearly visible, although in the LCAO (dzp) calculation
the latter is split into two peaks.

Figure 2 shows another comparison of a grid- and LCAO-
based linear-response calculation for the case of a Mg(0001)
surface modeled by a 16-layer slab. The energy-loss function
calculated with 3D grids is characterized by two peaks at
around 7.5 and 11 eV, which correspond to the surface and bulk
plasmons, respectively. Again the LCAO (dzp) calculation
reproduces the grid results quite accurately showing only
slight discrepancies in the peak positions (around 0.1 eV) and
the intensity. Note that dzp basis used in this case includes
double-ζ orbitals of 3s and 3p atomic orbitals as well as one
d-type Gaussian polarization function. The inclusion of d-type
orbitals in the basis set is crucial for the correct description of
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FIG. 2. (Color online) The energy-loss function of Mg(0001)
surface at q = 0.07 Å−1 along ̄ − M̄ direction of its SBZ calculated
with 3D uniform grid (GRID, black solid line) and localized atomic
orbital (LCAO) using dzp (red dashed line) basis. The dzp basis used
here includes double-ζ orbitals of 3s and 3p atomic orbitals as well
as one d-type Gaussian polarization function.

both the single-particle band structure and the Mg plasmons.
Both the grid and LCAO response function calculations were
performed at the ALDA level including empty bands up to
20 eV above the Fermi level. The local fields are included with
a 500-eV plane-wave cutoff (corresponding to 317 G vectors)
in the direction perpendicular to the surface and 10 eV in the
surface plane. The small effect of local fields within the surface
plane is in agreement with previous results.38 The frequency
grid spacing employed for the Hilbert transform was 0.1 eV.

D. Storage of wave functions

For ground-state calculations performed using grid based
wave functions, the entire set of occupied and unoccupied wave
functions might be too large to be stored on disk, making
the separation of the ground-state and response function
calculations impossible. In this case, the response function,
or more precisely, the dynamical form factor of Eq. (38), is
constructed as the wave functions are calculated.

In the LCAO mode, only the expansion coefficients of the
wave functions in terms of the localized basis functions are
calculated and stored. Since this representation is significantly
more compact than the grid representation, the entire set of
wave functions can be calculated and stored at once, and the
calculation of the response function can be performed as a
postprocessing step.

E. Parallelization

The calculation of the response function involves the three
steps: evaluation of the spectral function S0

GG′(q,ω) according
to Eq. (38), Hilbert transform following Eq. (39), and solving
Dyson’s equation (5). Figure 3 illustrates the parallelization
scheme applied for each of these three steps.

It is natural to parallelize the evaluation of S0
GG′(q,ω′)

over k points (or bands for few k point calculations). On
the other hand, the size of the matrix is often too large to
be handled on a single CPU. In such cases each CPU only

FIG. 3. Schematic illustration of the applied parallelization
scheme. Each box represents a single CPU. (a) The calculation of
S0

GG′ (q,ω) is performed in parallel over wave vectors k (or bands
n, for large cells) and frequencies ω. (b) The Hilbert transform is
parallelized over G. (c) Finally the Dyson equation is solved by
parallelizing over the frequencies.

calculates S0 on a part of the frequency grid. This leads
to the two-dimensional parallelization scheme illustrated in
Fig. 3(a). Finally the full S0

GG′(q,ω′) is obtained by summing
over k points, i.e., summing up the columns in Fig. 3(a). Since
the Hilbert transform involves a frequency convolution it is
convenient to redistribute the data from parallelization over ω

to over G. Finally, the Dyson equation is done separately for
each frequency point and is therefore parallelized over ω, as
shown in panel (c).

IV. RESULTS

In this section, the density response function method is
applied to study the optical properties and plasmon excitations
of solids. They are usually measured by optical and electron
energy-loss spectroscopy (EELS), which are related to ImεM

and −Im[1/εM ], respectively. For extended systems, the two
kinds of spectroscopy give quite distinct spectra. The optical-
absorption spectrum (ABS) is determined by single-particle
excitations while EELS is dominated by collective electronic
excitations, plasmons, which are defined as εM → 0.

A. Optical properties

Table I shows the calculated RPA static dielectric function
in the optical limit for five semiconductors (C, Si, SiC, AlP,
GaAs). We use the same lattice constants as in Ref. 30 and a
grid spacing of 0.2 Å. A Monkhorst-Pack grid of 12 × 12 × 12
and 60 unoccupied bands are used. We use a Fermi temperature
of 0.001 eV in the ground-state LDA calculation and a
broadening parameter (η) of 0.0001 eV in χ0. Note that in
this case we calculate the static response function directly
from Eq. (6), i.e., we do not use the Hilbert transform. For
calculations including local-field effects, a cutoff of 150 eV
(169 G vectors) is used. The dielectric constants obtained
both with and without local fields agree to within 0.1 with
previous PAW calculations.30 The only exception is GaAs,
for which our dielectric constant is around 0.4 larger. This
deviation could come from differences in the PAW setups for
Ga or As. The inclusion of local fields lowers the dielectric
constants by 10–15% while the ALDA kernel increases
the dielectric constants by around 5%. Both trends are in
agreement with earlier reports.20,40 The fact that the neglect
of exchange-correlation effects (at the ALDA level) improves
the agreement with experiments can be seen as a consequence
of error cancellation between the underscreening provided by
RPA and underestimation of the LDA single-particle band gap.
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TABLE I. The static macroscopic dielectric constants ε calculated
using the PAW method with random-phase approximation (RPA)
and adiabatic local-density approximation (ALDA) without local
field (NLF) and including local field (LF) effect. These values are
compared with other PAW calculations (Ref. 30) and experiments
(Ref. 39).

Crystal C Si SiC AlP GaAs

RPA, NLF 5.98 13.99 7.18 9.04 15.12
RPA, LF 5.58 12.58 6.58 7.83 13.67
ALDA, LF 5.83 13.21 6.89 8.27 14.32
RPA, NLF (Ref. 30) 5.98 14.04 7.29 9.10 14.75
RPA, LF (Ref. 30) 5.55 12.68 6.66 7.88 13.28
ALDA, LF (Ref. 30) 5.82 13.31 6.97 8.33 13.98
Expt. (Ref. 39) 5.70 11.90 6.52 7.54 11.10

Figure 4 shows the dynamical dielectric function for Si.
Compared to the calculations for the static dielectric constant,
a significantly denser k-point sampling of 80 × 80 × 80 is
employed here to resolve the finer details in the spectrum.
A total of 36 unoccupied bands are used in the construction
of χ0. Local fields corresponding to a 150-eV plane-wave
cutoff are included and η is set to 0.01 eV. The onset of
absorption and the position of the two characteristic peaks
in the absorption spectrum compare very well with previous
RPA calculations30 as shown by the arrows in the figure.
However, it is quite different from the experimental absorption
spectrum,41,42 which exhibits an absorption onset at ∼0.5
eV larger than predicted by our calculation, and shows a
double peak around 3.8 eV. The effect of local fields and the
ALDA kernel is to reduce the intensity of the main absorption
peak slightly, in agreement with earlier reports.40,43,44 The
disagreement with the experimental spectrum is due to the
underestimation of the band gap by LDA and the fact that
ALDA kernel fails to reproduce the electron-hole interaction.

FIG. 4. Imaginary part of the dynamical dielectric function of
bulk silicon. The arrows indicate the absorption onset and the position
of main and secondary peaks, respectively, as extracted from Ref. 30.
Calculations have been performed including local-field effects (dotted
and dashed) and exchange-correlation effects at the ALDA level
(dashed).

B. Plasmon excitations

In contrast to the optical excitations, like the Si absorption
spectrum discussed in the previous section, plasmon exci-
tations are generally well described by RPA and TDLDA.
Plasmon excitations appear as strong peaks in the electron
energy-loss spectrum (EELS), which is directly related to the
imaginary inverse dielectric function,

−Imε−1(q,ω) = − 4π

|q|2 ImχG=0,G′=0(q,ω). (40)

For excitations at surfaces, a surface loss function can be
defined as38

g(q,ω) = −2π

|q|
∫∫

dzdz′χG‖=G′
‖=0(z,z′; q,ω)e|q|(z+z′),

(41)

where ‖ and z correspond to directions parallel and perpen-
dicular to the surface, respectively, and χG‖G′

‖(z,z
′; q,ω) is the

Fourier transform of χGG′(q,ω) in the z direction.

C. Surface plasmons of Mg(0001)

Figure 5 shows the surface loss function of the Mg(0001)
surface along the ̄ − M̄ direction of the surface BZ calculated
within RPA (a) and TDLDA (b). The Mg surface is modeled
by a slab of 16 layers as in previous calculations,38 and a
vacuum region of 40 Å. Such a thick slab and vacuum region
is necessary to avoid splitting of the surface plasmon peak due
to coupling between the surface plasmons at the two sides
of the slab. The LDA wave functions are calculated on a
uniform grid with a grid spacing of 0.24 Å and a 64 × 64 × 1
Monkhorst-Pack k-point sampling. For the response function
calculations we include 200 bands (including 16 occupied
bands) and use a broadening parameter of 0.02 eV. We
use an anisotropic cutoff energy for the local-field effects.
Since the surface plasmon depends sensitively on the density
profile at the surface where the density decays exponentially
into the vacuum, a cutoff energy of 500 eV is applied in the
z direction. In the surface plane, where local-field effects are
much less important, we have found it sufficient to use a cutoff
energy of 10 eV. Compared to the RPA results in panel (a), the
inclusions of the LDA exchange-correlation kernel in panel
(b) shifts the peaks down by 0.1–0.2 eV.

The energies of these surface plasmons for both the ̄ − M̄

and ̄ − K̄ directions are shown in Fig. 5(c). The obtained
dispersion relations agree well with previous calculations.38

The well-known negative dispersion at small q observed for
simple metal surfaces are also well reproduced in this work.
Compared to experimental data, the TDLDA energies of the
surface plasmons agree within 0.1 eV for small q, while the
discrepancy increases to around 0.2 eV for larger q. The fact
that the inclusion of exchange-correlation effects (at the ALDA
level) brings the plasmon energies in better agreement with
experiments is in contrast to the case of the dielectric functions
for which the ALDA kernel was found to worsen the agreement
with experiments. As already explained, the overestimation
of the dielectric function is a direct consequence of the
underestimation of the band gap by LDA. For metallic systems
this band-gap problem is not present (although interband
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FIG. 5. (Color online) Surface loss function of the Mg(0001)
surface along the ̄ − M̄ direction of the surface BZ calculated using
RPA (a) and TDLDA (b). In both cases |q| increases from bottom to
top. (c) Surface plasmon dispersion for both the ̄ − M̄ and ̄ − K̄

directions. Results from this work (filled dots) compare well with
other calculations (hollow dots, Ref. 38) and experiments, Ref. 45.

transitions may be underestimated) and the inclusion of xc
effects correctly lowers the plasmon energies.

D. Plasmons in adsorbed graphene

In this section we investigate the influence of a substrate
on the plasmon excitations in graphene. For a more detailed
discussion of these results we refer the reader to Ref. 46.
As representatives for semiconducting and metallic substrates
we consider SiC(0001) and Al(111). Both of these systems
are known to bind graphene relatively weakly. Consequently,
band-structure effects arising from the hybridization between
graphene and metal states are minor for these systems. Instead,
the interaction between the graphene and the substrate is
expected to be governed by long-range Coulomb interactions.
In particular, the collective plasma oscillations in the graphene
layer will be mainly affected by the field created by the induced
charge oscillations in the substrate.

The atomic structure and band structure of graphene on
both substrates are shown in Fig. 6. For graphene/SiC(0001),

FIG. 6. (Color online) Atomic structure of graphene adsorbed
on SiC(0001) (a),(b), and Al(111) (d),(e). The lateral unit cells are
indicated by red lines in the top panels. The LDA band structures of
the surfaces are shown in the lower panels. Also shown is the band
structure of free-standing graphene (red dots). The Fermi level is set
to zero.

the unit cell, indicated by red solid lines in panel (a), contains
2 × 2 graphene and

√
3 × √

3 SiC.47,48 As can be seen in
panel (b), two carbon layers are adsorbed on four bilayers
of SiC and the dangling bonds at the backside of the slab
are saturated by hydrogen. The first carbon layer adsorbs
covalently on the SiC surface and is here considered as a
part of the substrate. The upper carbon layer binds weakly
to the substrate, in agreement with experiments,49 with an
LDA binding energy per C atom of 0.039 eV, and adsorption
distance of 3.56 Å. As shown in panel (c), linear conical bands
appear within the band gap of the substrate, resembling that
of free-standing graphene (red dotted line). The Fermi level is
shifted up by 0.05 eV, introducing slight electron doping into
graphene. For the graphene/Al(111) structure we use a 1 × 1
unit cell with four layers of Al as substrate. Again, graphene
binds weakly to the Al surface with an LDA interplane distance
of 3.36 Å and binding energy per C atom of 0.049 eV, in good
agreement with recent van der Waals DFT calculations.50 As
shown in panel (f), the “Dirac cone” of graphene is shifted
0.5 eV below the Fermi level. The loss function is calculated on
the basis of wave functions obtained with a double-ζ polarized
LCAO basis set. All states with energy below 50 eV above
the Fermi level were included in the construction of χ0. We
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FIG. 7. (Color online) Loss function of free-standing graphene
(a) and graphene on SiC substrate (b) as a function of q. The loss
functions, from bottom to top (solid lines), correspond to increasing
q at an interval of 0.046 Å−1. The dashed line corresponds to the loss
function of the substrate at q = 0.092 Å−1. (c) Dispersion relations
for the π plasmons of free-standing graphene (red filled circles) and
graphene on SiC (black filled squares). They are compared with
earlier ab initio calculation on free-standing graphene (blue hollow
circles) and experiments on single-wall carbon nanotubes (green
hollow squares) (Ref. 51) as well as experiments on graphene /

SiC(0001) (purple hollow diamonds) (Ref. 52). Lines are added to
guide the eye.

used a plane-wave cutoff energy of 50 eV (corresponding to
500 G vectors) for the local-field effects. We have found that
increasing the plane-wave cutoff energy to 500 eV separately in
the in-plane and normal directions leads only to minor changes
in the EELS spectrum. Further details on the calculations can
be found in Ref. 46.

Figure 7 shows the calculated loss function of free-standing
graphene (a) and graphene on SiC (b). The free-standing
graphene exhibits a collective mode at around 5 eV, which
results from the electronic transitions of the π → π∗ bands
and is referred to as the graphene π plasmon. The dispersion
of the π plasmon is shown in Fig. 7(c). In contrast to
its three-dimensional counterpart, graphite, which shows a
parabolic dispersion of the π plasmons,13 graphene has a linear
plasmon dispersion. The origin of the linear dispersion has
been attributed to the role of local-field effects.51

Figure 7(b) shows the loss function of graphene adsorbed
on the SiC(0001) surface. Compared to the results of the free-
standing graphene, the strength of the π plasmons are strongly
damped, in particular for small q values. As q increases, the
strength of the π plasmons gradually recovers to that of a free-
standing graphene, indicating that the substrate effect becomes
weaker for larger q. This trend can be explained by the 1/q2

dependence of the Coulomb interaction.
As shown in Fig. 7(c), the substrate has little effect on the

energies of the π plasmons. In fact the plasmon dispersion
for both free-standing and substrate supported graphene agree
well with previous calculations51 as well as experiments on
graphene/SiC (Ref. 52) and carbon nanotubes.51 We have
found that the response function, and thus the EELS spectrum,

FIG. 8. (Color online) Surface loss functions for graphene on
Al(111) as a function of the adsorption distance d for |q| =
0.046 Å−1. The surface loss function of free-standing graphene is
shown as black dots. Inset: sketch of graphene on Al substrate.

of the combined graphene/substrate system can be obtained
accurately from the response functions of isolated graphene
and substrate assuming only Coulomb interaction between
the two, i.e., neglecting effects related to hybridization and
charge transfer.46 This demonstrates that the strong damping of
plasmons results from the nonlocal screening of the graphene
plasmon excitation by the substrate electrons.

Figure 8 shows the surface loss function of graphene
on Al(111) for various adsorption distances. In contrast to
the semiconducting SiC substrate, the π plasmon at 5 eV
is completely quenched on the metallic Al substrate at the
equilibrium distance d = 3.36 Å (full black line). As the
graphene is pulled away from the surface, the π plasmon
reappears at an energy lower than that of the free-standing
graphene. This downshift is due to the coupling to the surface
plasmons of the aluminum substrate at 9.0 eV. The graphene π

plasmon is only fully recovered at a distance of around 20 Å,
illustrating the long-range nature of the interaction.

V. CONCLUSIONS

We have implemented the linear density response function
in the adiabatic local-density approximation (ALDA) within
the real-space projector augmented wave method GPAW, and
used it to calculate optical and dielectric properties of a
range of solids, surfaces, and interfaces. The Kohn-Sham wave
functions, from which the response function is built, can be
obtained either on a real-space grid or in terms of localized
atomic-orbital basis functions. The latter option reduces the
computational requirements for calculating and storing the
often very large number of wave functions required for the con-
struction of the response function without sacrificing accuracy.
The dielectric constants of a number of bulk semiconductors
as well as the optical-absorption spectrum of silicon at the
ALDA level was shown to be in good agreement with previous
calculations. For the surface plasmons of the Mg(0001) surface
we find, in agreement with previous studies, that the ALDA
kernel lowers the plasmon energies by around 0.3 eV realtive
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to the RPA values and thereby reduces the deviation from
experiments from around 4% to 1–2%. Very good agreement
with experiments was also found for the plasmon energies of
graphene, which were shown to exhibit a linear dispersion with
a value of 4.9 eV in the long-wavelength limit. The deposition
of graphene on a SiC substrate is shown to have little effect on
the plasmon energies but leads to significant damping of the
plasmon resonances. In contrast deposition on an Al surface
completely quenches the graphene plasmons due to strong
nonlocal electronic screening effects.
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