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Magnetic fluctuations and self-energy effects in two-dimensional itinerant systems with
a van Hove singularity in the electronic spectrum
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We investigate a competition of tendencies toward ferromagnetic and incommensurate order in two-dimensional
fermionic systems within functional renormalization-group technique, accounting for the self-energy corrections
and using temperature as a scale parameter. We assume that the Fermi surface (FS) is substantially curved and lies
in the vicinity of van Hove singularity points. It is shown that the character of magnetic fluctuations is strongly
asymmetric with respect to the Fermi level position relative to van Hove singularity (VHS). For the Fermi level
above VHS, we find at low temperatures dominant incommensurate magnetic fluctuations, while below the VHS
level, we find indications for the ferromagnetic ground state. In agreement with the Mermin-Wagner theorem, at
finite temperatures and in small magnetic fields, we obtain small magnetization, which appears to be a power-law
function of magnetic field. It is found that the FS curvature is slightly increased by correlation effects, and the
renormalized bandwidth decreases at sufficiently low temperatures.
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I. INTRODUCTION

During the last two decades, the problem of magnetic
fluctuations in itinerant-electron compounds attracts sub-
stantial interest in connection with the physics of layered
systems. In copper-oxide high-temperature superconductors,
the importance of magnetic fluctuations is seen from the
proximity of an antiferromagnetically ordered region to the
region of superconducting state with pronounced incommen-
surate magnetic fluctuations.1,2 Another impressive example
of peculiar magnetic properties of low-dimensional systems
is provided by the family of layered strontium ruthenates,
which are pure metallic and incidentally have a very complex
magnetic behavior.

Neutron scattering3 of the one-layer paramagnetic metal
Sr2RuO4 (which, at low temperatures T � 1.5 K, becomes
an unconventional, most likely p-wave, superconductor4,5)
reveals an incommensurate character of magnetic fluctuation
spectrum, with the largest contribution corresponding to the
wave vector Qs ∼ (2/3)(π,π ) and the smaller one with the
wave vector Ql ∼ Qs/2. It was argued6 that incommensurate
short-wave magnetic fluctuations characterized by the wave
vector Qs are expected to originate from α and β bands
[produced by dxz an dyz orbitals and generating quasi-one-
dimensional sheets of Fermi surface (FS)], while the long-
wave magnetic fluctuations with the wave vector Ql originate
most likely from the γ band, produced by dxy orbitals and
generating quasi-two-dimensional sheets of FS. Moreover,
magnetic properties of this compound can be controlled by the
substitution effect: being doped by lanthanum, Sr2−yLayRuO4

exhibits enhancement of magnetic susceptibility. This en-
hancement is likely related to the position of the Fermi
level of the γ band. The fit of the tight-binding spectrum
to experimentally determined Fermi surfaces provides an
expectation of the onset of the ferromagnetic order at y = 0.27,
related to the elevation of the Fermi level of the γ band toward
a van Hove singularity (VHS). However, despite the VHS
at the Fermi level, revealed by angle-resolved photoemission

spectroscopy (ARPES),7 no ferromagnetic order was found
for this doping (Ref. 8).

An intriguing behavior of magnetic properties is observed
also in Ca2−xSrxRuO4 near x = 0.5. The band structure
calculations9 and angle-resolved photoemission spectroscopy
studies10 yield that the doping by Ca results in rotation of
RuO6 octahedra and, in turn, in a complex movement of the
Fermi level with respect to VHS and reconstruction of the
electronic spectrum. The substitution of Sr by Ca in Sr2RuO4

has a great impact onto magnetic properties of the system
despite that the number of carriers remains intact. The RuO6

octahedra rotation affects strongly the electronic structure
providing the electronic topological transition in the γ band9

with Fermi level passing through the van Hove singularity.
This is accompanied by a number of magnetic anomalies for
the Fermi level below VHS (after an appropriate particle-
hole transformation): divergence of the Wilson ratio and
magnetic susceptibility in Ca1.5Sr0.5RuO4,11 incommensurate
magnetic fluctuations of a new type in Ca1.8Sr0.2RuO4 and
Ca1.38Sr0.62RuO4, which are most likely produced by the γ

band.12

Bilayer ruthenate compound Sr3Ru2O7 also provides a
number of interesting physical properties, in particular, incom-
mensurate magnetic fluctuations13 and metamagnetism.14–16

The effect of substitution of Sr by Ca in (Sr1−xCax)3Ru2O7

was studied in Ref. 17. Although the Wilson ratio approaches
∼700 for x = 0.2, and the system becomes nearly ferromag-
netic in the temperature interval (3 � T � 10 K), further
lowering of temperature does not result in the long-range
ferromagnetic ordering, but instead forces the system to freeze
into a spin-glass state.

Therefore, an important problem related to the magnetic
properties of metallic two-dimensional compounds is reveal-
ing the conditions for which the ferromagnetic order (observed
to be suppressed experimentally) is stable. To investigate an in-
terplay of different magnetic states in itinerant layered systems,
it is convenient to consider the two-dimensional (2D) one-band
Hubbard model. It is justified by ARPES experiments and
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first-principles calculations of the above-mentioned com-
pounds that the electronic spectrum is quasi-two-dimensional
and can be fit using nearest-(t) and next-nearest-neighbor (t ′)
hoppings. Despite the fact that this model is strongly simplified
as compared to the situation in real compounds, it catches an
important dependence of ground-state ordering on the form of
the electronic spectrum, in particular, on the t ′/t ratio and band
filling. On the other hand, the electronic spectrum containing
nearest-neighbor and next-nearest-neighbor hoppings retains
VHS, which is often present in the density of states (DOS) of
real compounds.

A large enough value of DOS at the Fermi level, occurring
due to VHS, leads to the ferromagnetic ground state according
to the Stoner theory.18 This approach, however, neglects
magnetic fluctuations, in particular, of incommensurate type.
A generalization of the Stoner theory to treat the spin spiral
instability and Néel antiferromagnetism reveals that, in a major
part of the phase diagram, the spiral phase is even more
preferable than the ferromagnetic one.19,20 In particular, the
phases with the wave vectors Q = (Q,Q) and Q = (Q,π )
were found to compete strongly with the ferromagnetic
phase.20 The critical value of the Hubbard interaction Uc for
the ferromagnetic instability is smallest in the region with the
Fermi level below VHS. On the other hand, in the vicinity and
well above VHS, the ferromagnetic phase is to a great extent
suppressed by the incommensurate (Q,Q) phase.

These results are also supported by studies of the 2D
spin-fermion model,21 which show that the competition with
incommensurate magnetic fluctuations results in substantial
shrinkage of the region of stability of ground-state ferro-
magnetism in comparison with Stoner theory in qualitative
agreement with the mean field for incommensurate phases20

and variational results.22 A T -matrix approximation23 may
serve as a natural addition to the consideration based on the
spin-fermion model treating the particle-particle contribution
and being exact in the limit of a small number of carriers,
although the possibility of incommensurate magnetic ordering
was missed by this approximation. The above-discussed
approaches neglect the effects of the renormalization of
electronic spectrum, although the consideration within the
spin fermion treats incoherent contributions to the electronic
Green’s function yielding quasisplitting of the Fermi surface
at low temperatures for the ferromagnetic ground state.24

These renormalizations can be important for the condition
of magnetic instabilities.

To study interplay of magnetic and electronic properties
and their effect on the possibility of ferromagnetic instability,
we focus here on the functional renormalization-group (fRG)
technique, which is a powerful tool for treatment of correlation
effects (see Ref. 25 for the introduction in the application to
the Hubbard model). In the pioneering study of Ref. 26, the
use of the Polchinski’s form of fRG technique allowed us to
construct the phase diagram of the nearest-neighbor-hopping
Hubbard model (μ-T plane). The momentum cutoff scheme
of the Wick-ordered version of fRG equations was employed
to obtain the ground-state instability type at small t ′/t in
Ref. 27. Later, the temperature28–30 and Hubbard interaction31

were used as flow parameters in one-particle irreducible
(1PI) investigations of the t-t ′ Hubbard model. The main
result of these studies is that the small next-nearest-neighbor

hopping (t ′/t � 0.2) favors the antiferromagnetic instability
at VH filling, the moderate next-nearest-neighbor hopping
(0.2 � t ′/t � 0.35) favors the d-wave supeconducting in-
stability, and the rather large t ′/t > 0.35 corresponds to
ferromagnetic instability. Away from van Hove band filling,
the competition of antiferromagnetic and superconducting
instabilities is obtained at small t ′/t , while at larger values
t ′/t � 0.35, the competition of ferromagnetic instability and
p-wave superconductivity is observed.28,29,31

The essential shortcoming of the above-reviewed
approaches27–29,31 is that these do not consider the self-energy
corrections to the electronic Green’s function. Hence, impor-
tant nontrivial effects of renormalization of the electronic
spectrum in the vicinity of magnetic phase transition (or
in the regime with strong magnetic fluctuations) can be
missed, provided that the Fermi level is near VHS. On the
other hand, spin-dependent self-energy corrections provide the
mechanism of the response to magnetic field, which is crucial
in the context of investigation of ferromagnetic instability.
Note that only antiferromagnetic and superconducting phases
were considered previously within the combination of fRG and
mean-field approaches (Ref. 32), and within the fRG approach
in the symmetry broken phase.33 Considering ferromagnetic
instability poses a problem of scale-dependent FS, which was
theoretically elaborated only in the self-adjusting Polchinski
and Wick-ordered schemes, proposed in Ref. 34.

In this paper, we present a study of the evolution of magnetic
and electronic properties with decreasing temperature within
1PI fRG in zero and small finite magnetic fields. We treat
accurately the FS problem, including movement of projecting
points and momentum dependence of the self-energy. The plan
of this paper is the following. In Sec. II, we introduce the model
and review earlier approaches to ferromagnetic instability at
weak and intermediate coupling. In Sec. III, we introduce the
details of our fRG approach to take into account the fluctuation
effects, retaining the electronic self-energy. In Sec. IV, we
present and discuss the numerical results. In Sec. V, we present
the conclusions.

II. THE MODEL AND EARLIER APPROACHES

We consider the Hubbard model with the action

S = β
∑
kσ

(−iνn + εk − μ − hσ )c+
kσ ckσ

+ βU

4N

∑
k1k2k3k4σσ ′

c+
k1σ

c+
k2σ ′ck3σ ′ck4σ δk1+k2,k3+k4 , (1)

where β = 1/T is inverse temperature, N is the number of
lattice sites, h is a magnetic field directed along the z axis
(measured in units of Bohr magneton), εk is an electronic
spectrum, μ is the chemical potential, U is the Hubbard on-
site interaction, and δ is the Kronecker δ symbol. The sums
in Eq. (1) are taken over 4-vectors k = (iνn,k), where νn =
π (2n + 1)T are the fermionic Matsubara frequencies (n ∈ Z).
We consider electronic dispersion on the square lattice

εk = −2t(cos kx + cos kx) + 4t ′(cos kx cos ky + 1), (2)
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where t,t ′ > 0 are hopping parameters. Such a form of the
spectrum corresponds to VHS at zero energy. We fix the ratio
t ′/t = 0.45.

To gain insight into possible types of magnetic order, we
consider the magnetic susceptibility χq(ω) in the paramagnetic
state35

χ−1
q (ω) = φ−1

q (ω) − U, (3)

where φq(ω) is the susceptibility, irreducible in the particle-
hole channel. The paramagnetic state is unstable with respect to
the formation of the incommensurate state with the wave vector
Q, provided that the maximum of irreducible susceptibility
φq(0) is at q = Q and χQ(0) diverges. A critical interaction
for stability of such an incommensurate magnetic state Uc =
φ−1

Q (0). For the sake of simplicity, let us consider the random-
phase approximation (RPA) where φq(ω) coincides with the
noninteracting spin susceptibility

χ0
q (iωn) = − T

N

∑
kνn

G0
k(iνn)G0

k+q(iνn + iωn), (4)

where G0
k(iνn) = (iνn − εk + μ)−1 is the noninteracting

electronic Green’s function. In Fig. 1, we present the
zero-temperature momentum profile of static noninteracting
magnetic susceptibility χ0

q (ω = 0). Below VH filling, the
competition between incommensurate magnetic structure with
large wave vector and a variety of incommensurate instabilities
with small magnetic wave vectors is observed [see Fig. 1(a)].
On the other hand, above VH filling, the ferromagnetic
instability competes with the long-wave incommensurate
magnetic instability21[see Fig. 1(b)]. This consideration shows
that, for large enough t ′, the tendency to incommensurate
magnetic ordering originates from the geometry of the FS.

The competition of ferromagnetism and incommensurate
magnetic ordering beyond mean-field approximation was
discussed within the quasistatic approach (QSA) in Ref. 21.
Under the assumption of the ground state to be ferromagnet-
ically ordered, it was found that magnetic fluctuations can
reconstruct the momentum dependence of the susceptibility
only at finite electronic interaction, stabilizing the ferromag-
netic ground state with respect to incommensurate magnetic
fluctuations. Above the critical value of the interaction, the

maximum of φq(0) is reached at q = 0. The corresponding
result for the boundary separating the ferromagnetic and
(Q,Q) incommensurate instabilities is presented below in
Fig. 10.

The effort of direct account of the electron correlation
effects was performed in temperature-flow fRG study28,29

( = 0 fRG). While the problem of ferromagnetism formation
was investigated in zero magnetic field, the self-energy
renormalization was neglected, which makes the FS scale
independent and the chemical potential not renormalized.
Formal consequences of this assumption are discussed in
Sec. III D.

III. FUNCTIONAL RENORMALIZATION GROUP WITH
SELF-ENERGY CORRECTIONS

This paper is an extension of the study of Ref. 29. Contrary
to previous approaches, (i) we do not neglect the self-energy
corrections  to the electronic Green’s function G and
account for their momentum dependence, which results in the
renormalization of spectrum parameters t and t ′ and moving
FS, and (ii) we partially take into account the momentum
dependence of the vertex inside the patches, which allows us
to account for the scale dependence of the Fermi surfaces
Fσ (s), corresponding to different spin projections σ = ±1.

A. fRG equations

We use the 1PI fRG equations25 in the truncation of Ref. 36:

�̇ = � ∗ d

ds
(GsGs) ∗ �

∣∣∣∣
pp

+ � ∗ d

ds
(GsGs) ∗ �

∣∣∣∣
ph

+ � ∗ d

ds
(GsGs) ∗ �

∣∣∣∣
ph1

, (5)

̇s = � ∗ S, (6)

where � is the 1PI 4-vertex function (we refer to it as a
vertex below); pp, ph, and ph1 denote particle-particle and
two independent particle-hole channels; S = −G2

s dG−1
0,s/ds

is the single-scale propagator; and G0,s , Gs , and s are the
appropriately rescaled noninteracting and interacting Green’s
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FIG. 1. (Color online) Momentum dependence of the static magnetic susceptibility of free electrons χ0
q (ω = 0), t ′ = 0.45t : (a) Fermi level

below VH filling (μ = −0.05t); (b) Fermi level above VH filling (μ = 0.05t).
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(a)

d

ds
k2σ2

k1σ1

k4σ4

k3σ4

Γ =

k2σ2

k1σ1

k1 + k2 − pσ

pσ

k4σ4

k3σ4

Γ Γ

+

k1σ1

k2σ2k3σ3

pσ

k3 − k1 + pσ

k4σ4

Γ Γ +

k1σ1

k2σ2k4σ4

pσ

k4 − k1 + pσ

k3σ3

Γ Γ

(b)

d

ds
Σ =

kσ

pσ

kσ
Γ

FIG. 2. Diagrammatic representation of (a) Eqs. (5) and (10) and (b) Eqs. (6) and (11). Pairs of internal lines in (a) correspond to scale
derivative of particle-particle and particle-hole bubbles [see Eqs. (12) and (13)]. Internal line in (b) denotes the single-scale propagator S.

functions and the self-energy, respectively. Momentum argu-
ments and spin indices are omitted for brevity. The asterisks
denote the summation over internal 4-momentum and spin
indices corresponding to a specified channel, and the dots
denote the derivatives, taken with respect to the scale parameter
s. Equations (5) and (6) are shown diagrammatically in Fig. 2.

If ferromagnetic (FM) order parameter or magnetic field are
directed along the z axis, the SU(2) symmetry is broken. The
remaining axial symmetry results in the self-energy, which is
diagonal in spin indices σ,σ ′:

σσ ′(k) = kσ δσσ ′, (7)

and the vertex function components are nonzero provided
that σ1 + σ2 = σ3 + σ4. We consider the vertex component

�σ1σ2;σ1σ2 (for brevity, we denote it as �σ1σ2 ); the others can be
obtained using the exact relation

�σ1σ2;σ3σ4 (k1,k2; k3,k4) = −�σ2σ1;σ3σ4 (k2,k1; k3,k4)

= �σ2σ1;σ4σ3 (k2,k1; k4,k3). (8)

Another useful property, which is a consequence of the
symmetry with respect to the combination of time-reversal
transformation and σ → −σ transformation, is

�σ1σ2;σ3σ4 (k1,k2; k3,k4) = �̄σ3σ4;σ1σ2 (k3,k4; k1,k2). (9)

By neglecting the frequency dependence of the vertex and
self-energy, the fRG equations can be written in the following
explicit form:

�̇σ1σ2 (k1,k2; k3,k4) = (
1 − δσ1σ2/2

) 1

N

∑
p

�σ1σ2 (k1,k2; p,k1 + k2 − p)Lpp
σ1σ2

(p,k1 + k2 − p)�σ1σ2 (p,k1 + k2 − p; k3,k4)

− 1

N

∑
pσ

�σ1σ (k1,p; k3,k1 − k3 + p)Lph
σσ (p,k1 − k3 + p)�σσ2 (k1 − k3 + p,k2; p,k4)

+ δσ1σ2

1

N

∑
pσ

�σ1σ (k1,k2 − k3 + p; k4,p)Lph
σσ (p,k2 − k3 + p)�σσ2 (p,k2; k2 − k3 + p,k3)

+ (
1 − δσ1σ2

) 1

N

∑
p

�σ1σ2 (k1,k2 − k3 + p; p,k4)Lph
σ1σ2

(p,k2 − k3 + p)�σ1σ2 (p,k2; k3,k2 − k3 + p), (10)

̇kσ = 1

2N

∑
pσ ′

�σσ ′(k,p; k,p)
[
fpσ ′ + (2εpσ ′ − pσ ′)f ′

pσ ′
] − μ̇

∑
pσ ′

�σσ ′(k,p; k,p)f ′
pσ ′ − kσ /2, (11)

where

Lpp
σσ ′(k,k′) =

[
εkσ f ′

kσ + εk′σ ′f ′
k′σ ′

εkσ + εk′σ ′
+

(
̇kσ − μ̇

)
f ′

kσ + (
̇k′σ ′ − μ̇

)
f ′

k′σ ′

εkσ + εk′σ ′
− (fkσ + fk′σ ′ − 1)

(
̇kσ + ̇k′σ ′ − 2μ̇

)
(εkσ + εk′σ ′)2

]
, (12)

Lph
σσ ′(k,k′) = −

[
εkσ f ′

kσ − εk′σ ′f ′
k′σ ′

εkσ − εk′σ ′
+

(
̇kσ − μ̇

)
f ′

kσ − (
̇k′σ ′ − μ̇

)
f ′

k′σ ′

εkσ − εk′σ ′
− (fkσ − fk′σ ′)

(
̇kσ − ̇k′σ ′

)
(εkσ − εk′σ ′)2

]
. (13)
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We have introduced the renormalized electronic spectrum

εkσ = εk − μ − hσ + kσ , (14)

and fpσ ≡ f (εpσ ) = 1
2 [1 − tanh(βεpσ /2)]. Note that the ne-

glect of the frequency dependence of the vertex function �

and the self-energy  necessary implies the vanishing of Im

and Im�, which leaves incoherent contributions to the Green’s
function beyond the scope of the present consideration. This
is justified at not too low temperatures where the quasiparticle
concept is valid and the quasisplitting of the Fermi surface24

is absent.
Below, we consider the temperature cutoff28 with s =

log(t/T ). The single-scale propagator has the form

ST
kσ = −G2

kσ

(
iνn − εk − hσ + μ

2T 1/2
+ T 1/2 dμ

dT

)
, (15)

where Gkσ = (iνn − εkσ )−1. In this paper, we choose
temperature-independent bare chemical potential (dμ/dT =
0), although the temperature dependence of μ can be adjusted,
e.g., to keep the number of particles fixed.37 Equations (10)
and (11) are basic for the 1PI fRG approach since they can,
in principle, determine the renormalization of the electronic
spectrum and interaction at any temperature. This system of
equations should be supplemented by initial conditions at s =
−∞(T = +∞). In the infinite-temperature limit, correlation
effects are absent, and one obtains for the self-energy kσ =
U/2 and interaction �σ1σ2 (k1,k2; k3,k4) = U (1 − δσ1σ2 ).

The fRG equations (10) and (11) form the system of
ordinary functional differential equations. To solve them nu-
merically, one has to introduce some approximation procedure
to reduce the considered system to a finite system of ordinary
equations. Below, we present the procedure of numerical
solution in details.

B. The self-energy ansatz and Fermi surface

The first step is the use of common patching scheme28

to avoid dealing with the system of functional equations.
However, we do not neglect the momentum dependence of
the self-energy (and vertices) inside the patches, in particular,
Eq. (11) is fully employed. We assume that the self-energy has
the form

kσ = −2δtσ (cos kx + cos ky) + 4δt ′σ cos kx cos ky + σ ,

(16)

where the parameters δtσ ,δt ′σ , and σ are determined as fol-
lows. While solving numerically the system of fRG equations,
at each step, we calculate the values of ̇kσ on two sets
of (σ -dependent) projecting points (PPs, see the Appendix
for details). For considered k ∈ PPs, the linear regression
procedure is used:

̇kσ → −2δṫσ (cos kx + cos ky) + 4δṫ ′σ cos kx cos ky + ̇σ .

(17)

In this way, we determine the flow of unknown quantities
δtσ ,δt ′σ , and σ in Eqs. (10) and (11).

Such a choice efficiently reduces the number of variables
and retains VHS points of the renormalized spectrum. Note
that σ does not depend on k and renormalizes the chemical

potential μ; δtσ and δt ′σ contribute to the change of momentum
dependence of the spectrum (δtσ corresponds to the bandwidth
renormalization).

Therefore, it is convenient to represent the renormalized
spectrum (14) in the form

εkσ = −2teff,σ (cos kx + cos kx)

+ 4t ′eff,σ (cos kx cos ky + 1) − μeff,σ , (18)

where

μeff,σ = μ − σ + 4δt ′σ + hσ,
(19)

teff,σ = t + δtσ t ′eff,σ = t ′ + δt ′σ .

The scale-dependent effective chemical potential μeff,σ results
in Fermi surface, calculated with the renormalized spectrum
parameters teff,σ ,t ′eff,σ . Applying the present method, one
should be careful in determining the geometry of the FS. If
t ′eff,σ /teff,σ < 1/2, the bottom of the band is at the energy wσ =
−4teff,σ + 8t ′eff,σ and the FS is singly connected; however, if
t ′eff,σ /teff,σ � 1/2, the bottom of the band is zero. In this case,
if μeff,σ � wσ , the FS is singly connected and the patching
scheme of Ref. 26 can be used, while for μeff,σ < wσ , the
Fermi surface consists of two disconnected parts and the
patching scheme should be chosen differently.

Despite that the self-energy renormalization is included in
this study, we neglect incoherent contributions to the Green’s
functions. Due to this renormalization, the actual Fermi level
μeff is determined by the combination of the bare spectrum
and the self-energy parameters (19) at the end of the flow.

C. The vertex ansatz

The vertex function � is represented by its values at the
current FS. Since we always trace the renormalization of
kσ , we have to take into account moving of the Fermi
surface during fRG flow. PPs of the current FS are changing
during the flow and the discrete (projected) vertex function
derivative acquires an additional contribution corresponding
to this movement,

d�

ds
= ∂�

∂s
+ ∂�

∂kPP

dkPP

ds
. (20)

We denote symbolically the derivatives with respect to PPs
(kPP) as ∂/∂kPP.

To take into account this momentum dependence of �,
we assume that, apart from the position of external legs in
certain patches, the vertex function depends on momenta ki

through the renormalized energies εki σ and linearize the latter
dependence. Let the momenta of external legs kc

1,k
c
2,k

c
3 be

on the current FS and consider vertex with all momenta ki

belonging to the main set of PPs and three vertices with two
momenta ki belonging to the main set of PPs (see Appendix),
and one belonging to the auxiliary set. Therefore, we have four
possibilities for the choice of k1,k2,k3, and obtain a system of
four linear equations (we use εkc

i σi
= 0)

�σσ ′
(
kc

1,k
c
2; kc

3

) +
∑

i

∂i�σσ ′
(
kc

1,k
c
2; kc

3

)
εki σi

= �σσ ′(k1,k2; k3), (21)
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FIG. 3. (Color online) Temperature dependence of the renormalized Fermi level μeff at h = 0: (a) U = 3t , (b) U = 4t . Chemical potential
values μ̄ (see text) are shown by numbers near the plots.

with unknown quantities �σσ ′(kc
1,k

c
2; kc

3) and
∂i�σσ ′(kc

1,k
c
2; kc

3). Solving the system (21) one determines the
vertex on the current FS.

D. Relation to previous approaches

In the zero magnetic field, neglecting the momentum
dependence of the self-energy (i.e., with δt = δt ′ = 0), one
can demand the chemical potential to absorb all the corrections
to the self-energy in Eq. (10), which is possible since the
electronic spectrum enters Eq. (10) through εkσ only. On the
other hand, Eq. (11), being reformulated with μ′ = μ − ,
reduces to μ̇′ = 0. Hence, in this case, μ is replaced by a
constant μ′. The important consequence of this approximation
is that FS is fixed within this ansatz since it is determined
solely by the scale-independent parameter μ′.

If the field is nonzero, the self-energy corrections can
not be absorbed into the chemical potential even when the
renormalization of the hopping parameters is neglected. This,
in turn, results in moving of spin FSs during the flow so
that the projected vertex acquires a contribution from this
moving. As described in detail in Sec. III C, we account for
this contribution in the self-consistent numerical scheme of
treatment of Eqs. (10), (11), and (21).

IV. TEMPERATURE DEPENDENCE OF THE
RENORMALIZED PARAMETERS

In this section, we present and discuss numerical results
of the present fRG approach accounting for the self-energy
corrections in zero (Sec. IV A) and finite magnetic fields
(Sec. IV B). Afterward, in Sec. IV C, we present our results
for the phase diagram.

A. Results in zero magnetic field

In this section, we consider the results of fRG calculations
in the spin symmetric phase for U/t = 3 and 4. We choose
the bare chemical potential μ in such a way that, at the end
of the flow, the renormalized position of the Fermi level μeff ,

determined by Eq. (19), lies in the vicinity of VHS. It is clear
physically and verified numerically in our investigation that
the magnetic response is suppressed for the Fermi level well
separated from VHS.

Starting from an infinite-temperature limit, the position of
the Fermi level first tends to increase from its high-temperature
Hartree value μ − U/2 to almost low-temperature Hartree
value μ̄ = μ − U

∫ μ̄

−4t+8t ′ ρ(ε)dε, with ρ being the bare DOS.
At even lower temperatures, μ decreases due to correlation
effects. The obtained low-temperature scale dependence of
μeff for different bare chemical potentials μ is shown in
Figs. 3(a) (U/t = 3) and 3(b) (U/t = 4). We stop the flow
when the effective interaction becomes too large (� 2.5W ,
where W = 8t is bare bandwidth). The corresponding scale
smin yields the minimal temperature that is available within the
flow Tmin = t exp(−smin). In the following, we parametrize
the initial chemical potential of the flow by the Hartree Fermi
level μ̄.

The cases U = 3t and 4t are somewhat different due to
the absence of the region of saturation of μeff(s) dependence
for U = 3t , although the dependence μeff(s) becomes weak
at the end of the flow. Below, we consider the renormalized
Fermi level μeff in the saturation region (if it exists) as a
representative parameter that characterizes the flow, since the
renormalization of other parameters of the electronic spectrum
is not too strong. The charge response is slightly suppressed in
the vicinity of van Hove filling for the case μeff < 0 more than
for μeff > 0. The nonmonotonous behavior of μeff(s) slightly
above VHS (μ̄ = 1.0t) for U = 4t (of which consequences
are discussed below) is worthy of notice.

In our scheme, the effective chemical potential renormaliza-
tion has substantial contribution from t and t ′ renormalizations
[see Eq. (19)]. In Fig. 4, we present, for instance, teff/t and
t ′eff/teff plots for U = 4t . The bandwidth (teff/t) is somewhat
reduced at the end of the flow well below VHS, indicating
prominent correlation effects; for μeff above VHS, teff/t

first increases with decreasing temperature (which implies
that correlation effects in this regime are not substantial)
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FIG. 4. (Color online) Effective (renormalized) hopping parameters: (a) teff/t , (b) t ′
eff/teff for U = 4t . Numbers correspond to the value of

chemical potential μ̄.

and then decreases at lower temperatures, which is related
to enhancement of the vertex in the vicinity of magnetic
instability. On the other hand, the ratio t ′/t is not strongly
renormalized (this means that the self-energy effects do not
change substantially the curvature of the Fermi surface)
and monotonously increases toward the value 1/2 as μ̄

increases, which corresponds to flattening of the electronic
dispersion. The complete treatment of the case μ̄ � 1.4t ,
where t ′eff/teff exceeds 1/2 during the flow, corresponding
to a change of FS geometry (see for details Sec. III B),
requires special consideration and is beyond the scope of this
paper.

The type of leading magnetic instability can be inferred
from the behavior of vertices. Let us consider the scale profiles
of the maximal vertex. We consider the maximal total vertex
�max

↑↓ (the maximum is taken over all possible combinations of

momenta) and maximal exchange vertex �
max,E
↑↓ (the maximum

is taken over all combinations of momenta with k2 = k3).
The ferromagnetic instability is accompanied by coincidence

of �max
↑↓ and �

max,E
↑↓ in the vicinity of transition point where

both the values diverge, reflecting an instability of the
paramagnetic state with respect to zero-momentum collective
spin excitations. Therefore, the criterion for commensurate
magnetic fluctuations has the form

��max ≡ �max
↑↓ − �

max,E
↑↓ = 0 (22)

and yields information about the type of leading instability.
The scale dependences of �max

↑↓ and �
max,E
↑↓ for different μ̄

are presented in Figs. 5 (μeff < 0) and 6 (μeff > 0). Let us
consider first the case of Fermi level below VHS, μeff < 0.
For both the cases U = 3t [Fig. 5(a)] and U = 4t [Fig. 5(b)],
�max

↑↓ is diverging and ��max/�max
↑↓ vanishes or is very small

at the end of the flow. Therefore, magnetic fluctuations are
predominantly ferromagnetic at the end of the flow. On the
other hand, ��max increases as μeff approaches VHS: for both
U = 3t and U = 4t , ��max is the largest in the case μ̄ = 0.8t .
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FIG. 5. (Color online) The scale profiles of �max
↑↓ (solid lines) and �

max,E
↑↓ (dashed lines) (see text) in the case h = 0: (a) U = 3t , (b) U = 4t

for different choices of the chemical potential μ̄ (shown by numbers) yielding Fermi level below VHS (μeff < 0).
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This means that, in the vicinity of VHS, the ferromagnetic
fluctuations hardly dominate over incommensurate ones.

For μeff > 0 (see Fig. 6), the difference ��max is nonzero
up to the lowest temperatures where �max diverges. Moreover,
the ratio ��max/�max

↑↓ increases as μ increases. We interpret
this as that the incommensurate fluctuations are dominating
over the ferromagnetic ones. In the case μ̄ = 1.0t , where the
temperature dependence of μeff(s) is strongly nonmonotonous
[see Fig. 3(b)], which is possibly related with invalidity of
ansatz (16) and (21) in this regime, and causes the shift of the
point of vertex diverging to substantially lower temperatures.
This case should be considered more correctly in further
elaborated studies.

In the next section, we introduce a small magnetic field to
investigate magnetic properties of the system.

B. Magnetization in the finite magnetic field

In this section, we supplement the picture in the zero
magnetic field considered above by the results for magnetic
response in the finite magnetic field. In the case h > 0, we
have μeff↑ �= μeff↓ due to spin dependence of the spectrum
parameters teff,σ ,t ′eff,σ , and σ and, to a small extent, due
to the presence of magnetic field. At low scales (high
temperatures), the spectrum parameters do not depend on
the spin projection substantially and μeff↑ − μeff↓ ≈ 2h, but
with increasing the scale (lowering temperature), the strong
spin dependence can be realized, which is a manifestation of
exchange enhancement.

The strength of magnetic response is characterized by the
magnetization m, which can be easily calculated using current
parameters of the electronic spectrum δtσ ,δt ′σ ,σ (we remind
that the frequency dependence of the self-energy is neglected):

m = 1

2N

∑
k

(fk↑ − fk↓). (23)

Figure 7 shows the comparison of the scale profiles of
magnetization m for different bare chemical potentials. For
μeff above VHS, we find slightly negative m at the end of
the flow for both the cases U = 3t and U = 4t . This is

possibly related to an influence of incommensurate magnetic
fluctuations above VHS, as conjectured from the results in zero
magnetic field. Below VHS, where dominating ferromagnetic
fluctuations were observed in the absence of magnetic field,
the magnetic response to magnetic field becomes positive
and considerable, especially in the vicinity of VHS: the
maximal value of m at the end of the flow increases, but the
temperature of sharp increase of the magnetization becomes
lower as μ increases. Note that the absolute values of
magnetization are rather small (m  2n) at the end of the
flow. To verify the fulfillment of the Mermin-Wagner theorem,
we fit the data for magnetization taken at lowest temperatures
of the flow to m ∝ hα dependence (see Fig. 8), which gives
α ∈ (0.46,0.83) depending on the chemical potential μ. In
the vicinity of VHS level (μ̄ = 1.0t,1.1t) for U = 4t , the
magnetization is somewhat larger at the end of the flow, in
particular, α = 0.17 at μ̄ = 1.1t . Additionally, in this case,
magnetization tends to saturate at lowest temperatures with
increasing the magnetic field (not shown). For these chemical
potentials, the renormalized Fermi level lies very near VHS
and the Mermin-Wagner theorem may not be fulfilled to a
good accuracy. On the other hand, these cases are on the
borderline between the regions of strong ferromagnetic and
incommensurate fluctuations.

The temperature dependence of the exponent α is of
particular interest, since it allows us to investigate the
magnetic properties of the system while entering the region
of strong magnetic fluctuations. It is obvious that at high
temperatures m ∝ h (α = 1), but at low temperatures this
relation can be violated due to fluctuations. To determine
the temperature of the crossover into the regime with strong
ferromagnetic fluctuations, we adopt the criterion α = 1/3,
dictated by the mean-field value of the critical exponent at
the conventional magnetic phase transition. We denote the
crossover scale as s∗ [the corresponding temperature is T ∗ =
t exp(−s∗)].

Figure 9 shows the comparative (with respect to the
magnetic field) representation of m/h and m/h1/3 scale
profiles for different positions of Fermi level below VHS
in the case U = 4t . In the cases μ̄ = 0.4t and 0.6t , the
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FIG. 7. (Color online) The magnetization scale profiles in the field h = 10−4t for different chemical potential μ̄ specified by numbers: (a)
U = 3t , (b) U = 4t .

crossover scale is reached within the flow and lies near its
end, while in the case μ̄ = 0.9t , it is beyond the flow and is
obtained by an extrapolation. Therefore, increasing μ̄ tends to
decrease T ∗. We do not find a well-resolved crossover scale
at U = 3t , but we note that the system is close to it at the
end of the flow in the case μ̄ = 0.4t , where the magnetic
fluctuations tend to be commensurate. This means that, at
U = 3t , crossover to ferromagnetic ordering can be realized
only at extremely low temperatures, which are not available
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FIG. 8. (Color online) The logarithmic plots of the dependence
m(h) and its fit to m ∝ hα . The chemical potentials μ̄ and fitted α are
shown near the plots.

within the present approach. For the case μeff > 0 and both
U = 3t and U = 4t , we find a relatively weak response, which
becomes negative close to the end of the flow, as discussed
above.

The distribution of temperatures Tmin and T ∗ for different
chemical potentials yields a natural connection between zero-
field (Tmin) and finite-field (T ∗) results. We find that both Tmin

and T ∗ decrease as the system approaches VHS, which is
possibly an effect of incommensurate magnetic fluctuations
and temperature smearing of VHS (above van Hove filling,
the DOS falls down faster than below it); below VHS, we
obtain T ∗ < Tmin. However, in the case μ̄ = 1.1t , we find
T ∗ > Tmin, which is possibly connected to the above-discussed
violation of the Mermin-Wagner theorem in a close vicinity
above VHS.

C. Phase diagram

In this section, we summarize the results obtained in zero
(Sec. IV A) and finite (IV B) magnetic fields and compare
our results with the results of previous approaches. The phase
diagram constructed in terms of renormalized Fermi level μeff

(see discussion in Sec. IV A) and Coulomb interaction U is
shown in Fig. 10.

In the case μeff < 0, the large region on the phase diagram
is found where magnetic fluctuations are predominantly
commensurate. In small finite magnetic fields at U = 3t ,
a crossover from paramagnetic to ferromagnetic order is
observed well beyond the flow, while at U = 4t , the crossover
to ferromagnetic state is well resolved in the close vicinity
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FIG. 9. (Color online) The scale profiles of ratios m/h [(a), (c), and (e)] and m/h1/3 [(b), (d), and (f)] for U = 4t at different small magnetic
fields: h/t = (5,10,20,40) × 10−5 and different bare chemical potentials μ̄, the values of which are shown explicitly.

of the end of the flow. In the case μeff > 0 (excluding the
region of near vicinity of Fermi level to VHS), we do not
find commensurate magnetic fluctuations to be dominating;
they are completely replaced by incommensurate fluctuations
with corresponding maximal vertex �max

↑↓ being diverging
in the zero magnetic field. This conclusion agrees with the
result in the finite magnetic field, where the magnetization
m becomes slightly negative at low temperatures. Therefore,
we conclude that ferromagnetic order is suppressed by
incommensurate magnetic fluctuations if the Fermi level is
above VHS. The case of μeff very near but above VHS is
worthy of special attention: In the case U = 3t , we find
incommensurate magnetic fluctuations in the zero magnetic
field and no indication of ferromagnetic ordering in the finite
field. However, very near VHS at U = 4t , we find almost
commensurate magnetic fluctuations in the zero magnetic field
and ferromagneticlike behavior in the finite magnetic field. At
the same time, in this case μeff depends nonmonotonously on
μ and the magnetization on the value of the magnetic field.
These states are shown by the “?” symbol in Fig. 10.

The mean-field and quasistatic approximation (MFA and
QSA) boundary lines calculated in Refs. 20 and 21 are shown
on the phase diagram in Fig. 10 for comparison [the effective
chemical potential in MFA μMF

eff = μ − Un/2, and in QSA

it is determined from the condition for electronic density
n(μeff) = n0(μ), where n0(μ) is the number of particles in
the noninteracting model]. The critical interaction for stability
of ferromagnetism within the present approach Uc > 3t is
somewhat larger then the QSA and the mean-field resuts
[Uc(μeff = 0) ≈ 2t], which naturally suggests that the account
for the electronic correlations results in an enhancement of Uc.

The results of this paper partly agree with those calcu-
lated within fRG approach without self-energy effects29,39

( = 0 fRG approach, see Fig. 10), obtained by studying
the temperature dependences of magnetic and supercon-
ducting susceptibilities in zero magnetic field. The lower
threshold for ferromagnetism Uc obtained in this paper
appears to be finite, contrary to  = 0 fRG. At the same
time, away from VHS, these two approaches qualitatively
agree.

The comparison of different approaches MFA, QSA,  = 0
fRG, and SE fRG shows a step-by-step restriction of the size
of the ferromagnetic region. Ferromagnetism is practically
absent for μeff > 0 within SE fRG, but not restricted with
respect to previous approaches in the case μeff < 0. Above
VHS, ferromagnetism is destroyed by well-resolved incom-
mensurate magnetic fluctuations, while below VHS, quantum
commensurate fluctuations dominate.
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V. CONCLUSIONS

In this paper, we present a fRG treatment of magnetic order
in the Hubbard model, controlled by the Fermi level being
in the vicinity of van Hove singularity (VHS) and on-site
Coulomb interaction. The introduced version of fRG accounts
for self-energy corrections, which implies a proper account
of the Fermi surface moving as the temperature decreases.
The following aspects of this problem are investigated: the
renormalization of vertices in the zero magnetic field, spin
splitting in the finite field, finite-temperature behavior, and the
electronic spectrum renormalization. Correlation effects do
not change substantially the form of the electronic spectrum,
which is characterized by t ′/t . However, the renormalized ratio
t ′/t monotonously increases as the Fermi level rises toward
VHS.

We find that magnetic properties of the system are sub-
stantially asymmetric with respect to the Fermi level position
relative to VHS. In particular, ferromagnetic ordering is
strongly suppressed above VHS due to competition with
incommensurate magnetic fluctuations. Below VHS, we find
precursors of ferromagnetic ordering at low temperatures and
not too small interaction (of order of half-bandwidth). The
temperature of the crossover to the regime of strong ferromag-
netic fluctuations decreases as the Fermi level elevates toward
VHS.

The asymmetry is connected with the electronic topological
transition, which occurs when the Fermi level crosses VHS.
At this transition, the curvature of the Fermi surface changes
its sign, being singular at VHS points of the Brillouin zone.
At μeff > 0, the flat parts of the Fermi surface appear in
the vicinity of VHS points (“quasinesting” situation), which
results in enhancement of the incommensurate fluctuations.

The results of the present approach improve the results
of the mean-field approximation20 and quasistatic approach21

and agree with previous fRG study29 for the position of the
Fermi level away from VHS. The Mermin-Wagner theorem is
also shown to be fulfilled to a good accuracy in the present
approach in the most part of the phase diagram. The magnetic
field dependence of magnetization demonstrates power-law
behavior with the exponents α ∈ (0.62,0.83).

For the Fermi level above VHS the ferromagnetic phase
is practically absent. This explains qualitatively the mag-
netic behavior of lanthanum-doped one-layer ruthenates
Sr2−xLaxRuO4. The parameters of the dxy band of Sr2RuO4 are
t ′/t = −0.405 and n ∼ 4/3. The particle-hole transformation
ciσ → (−1)ic†iσ results in the replacements t ′ → −t ′, n →
2 − n. Therefore, in terms of new variables, we have t ′/t =
0.405 and n ∼ 2/3, which implies μeff � 0.1t . In this case, we
expect spiral magnetic ordering in the ground state for U ∼ 3t .

Doping Sr2RuO4 by lanthanum corresponds to the decrease
of electronic filling n and the approach of the Fermi level
to the VHS of the γ band. This, however, results in strong
enhancement of the magnetic susceptibility, and not in the
transition into the ferromagnetic state, which agrees with
the experimental data.8 The non-Fermi-liquid behavior of
doped by lanthanum Sr2RuO4 (Ref. 8) can be possibly
related to the nonmonotonous temperature dependence of
the Fermi level near VHS in the present approach, which
neglects nonquasiparticle contributions. These contributions
may therefore be important for the Fermi level near VHS (see,
e.g. Ref. 38), which is the subject of future study.

Enhancement of susceptibility observed in the
Ca2−xSrxRuO4 compound at x = 0.5 corresponds to
the position of the Fermi level between VHS and the γ -band
edge. This agrees qualitatively with our conclusion that
the position of the Fermi level below VHS favors strong
ferromagnetic fluctuations. A similar picture can be seemingly
applied to the bilayer compound (Sr1−xCax)3Ru2O7.17

The results obtained demonstrate an important role of
many-electron renormalizations of the electron spectrum, in
particular, of the chemical potential, in the presence of VHS.
This fact can be crucial for the criteria and properties of
weak itinerant ferromagnetism. Another important point is that
peculiarities of ferromagnetic ordering related to the presence
of VHS can not be even qualitatively captured by any elaborate
method based on DOS consideration only.

The obtained finite-temperature picture, in particular, the
relation of the character of magnetic fluctuations to the position
of the Fermi level and absence of the long-range order
(which is stated by the Mermin-Wagner theorem), should be
supplemented by a zero-temperature study of this problem.
Investigation of the effect of finite (but not too small) magnetic
field and possibility of the metamagnetic transitions is also of
interest. Another unsolved problem is a unified description of
weak and strong ferromagnets, which can receive new insights
from weak-coupling investigations of the Hubbard model.
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APPENDIX: PROJECTING POINTS

To parametrize the momentum dependence of the self-
energy and vertex, we introduce a set of points in the Brillouin
zone (below we refer to them as projecting points, PPs), so that
the values of functions at these points represent the function.
In previous studies,28 this set of the points was chosen as an
intersection of lines of constant angles (located at the center
of patches) with FS, which was assumed to be fixed. Since
we account for momentum dependence of the self-energy and
vertex more accurately, we supplement this set of PPs at FS by
a corresponding set in the vicinity of FS by choosing additional
points belonging to shifted FS and call it an auxiliary set of
PPs. However, since moving of FS is a continuous process,
we apply the discrete Runge-Kutt procedure (RKP) to solve
the system of differential equations numerically, which causes
some complications in the definition of PP.

At any discrete step of RKP, we introduce the PPs of the
following types: (i) main PPs, which belong to FS, determined
by the chemical potential μ, and the self-energy kσ at the

beginning of the step; (ii) auxiliary PPs, which are determined
analogously to main PPs, with μ being shifted by δμσ for
different spin projections, and δμσ is determined by typical
shift of momentum-independent part of self–energy σ at
previous step; (iii) current PPs, which are determined by
current kσ within the step. Note that, at the beginning of the
step, the main PPs coincide with current ones. Introduction
of the auxiliary PPs set is needed since, due to definition of
the main PPs set, the functions chosen to represent momen-
tum dependence of  (cos kx + cos ky, cos kx cos ky,1) are
linearly dependent at the constant energy set (see Sec. III B),
which does not allow us to use them for linear regression of 

derivatives. Therefore, an additional set of PPs is needed; the
calculation of the vertex near current FS allows us to expand
the vertex linearly beyond simple projecting ansatz (see detail
explanation in Sec. III C), which was used in earlier studies.

RKP makes its step using the vertex and self-energy
derivatives calculated at the intermediate (current) value of
argument s at fixed (during the step) sets of main and auxiliary
PPs. From this, we extract derivatives δ̇tσ , δ̇t ′σ , and ̇σ (see
Sec. III B). However, the right-hand side of fRG equations
contains the current self-energy function and vertex function,
projected on the current FS. RKP allows us to calculate this
current self-energy function and use it to determine the current
FS and corresponding current PPs set. Then, we apply the
procedure of Sec. III C, accounting for the influence of the FS
moving on the current value of the projected vertex.
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