
PHYSICAL REVIEW B 83, 245104 (2011)

Possible proximity of the Mott insulating iridate Na2IrO3 to a topological phase: Phase diagram
of the Heisenberg-Kitaev model in a magnetic field
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Motivated by the recent experimental observation of a Mott insulating state for the layered iridate Na2IrO3, we
discuss possible ordering states of the effective iridium moments in the presence of strong spin-orbit coupling
and a magnetic field. For a field pointing in the 〈111〉 direction—perpendicular to the hexagonal lattice formed by
the iridium moments—we find that a combination of Heisenberg and Kitaev exchange interactions gives rise to a
rich phase diagram with both symmetry breaking magnetically ordered phases as well as a topologically ordered
phase that is stable over a small range of coupling parameters. Our numerical simulations further indicate two
exotic critical points at the boundaries between these ordered phases.
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I. INTRODUCTION

In the realm of condensed matter physics, spin-orbit
coupling has long been considered a residual, relativistic
correction of minor relevance to the macroscopic properties
of a material. In recent years this perspective has dramatically
changed, especially due to the theoretical prediction and
subsequent experimental observation of fundamentally new
states of quantum matter, so-called topological insulators,1

that are solely due to the effect of spin-orbit coupling.
The topological insulators experimentally realized so far are
semiconductors, whose physical properties can be largely
captured by band theory of noninteracting electrons. It is
an interesting challenge, for both theory and experiment, to
identify an even broader class of materials where this physics
plays out even in the presence of interactions and strong
correlations.2 Good candidate materials for the latter are the
iridates.3,4 These 5d transition metal oxides are prone to exhibit
electronic correlations and form (weak) Mott insulators, while
the relatively large mass of the iridium ions (Z = 77) gives
rise to a comparably strong spin-orbit coupling, which has
been found to be as large as λ ≈ 400 meV.5 The most common
valence of the iridium ions in these materials is Ir4+. The d

orbitals of this 5d5 configuration are typically split by the
surrounding crystal field, and for the octahedral geometry of
the IrO6 oxygen cage, result in an orbital configuration where
five electrons occupy the lowered, threefold degenerate t2g

level. Spin-orbit coupling will further lift this degeneracy of the
t2g orbitals and for strong coupling the effective l = 1 orbital
angular momentum6 is combined with the s = 1/2 spin degree
of freedom carried by the hole of this partially filled t2g orbital
configuration. This leaves us with two Kramers doublets of
total angular momentum j = 3/2 and j = 1/2, of which the
former is of lower energy and fully occupied by four electrons,
while the partial filling of the latter gives rise to an effective
spin-1/2 degree of freedom.

In this manuscript we focus on the iridate Na2IrO3, in
which NaIr2O6 slabs are stacked along the crystallographic
c axis, and the Ir4+ ions in the layers form a hexagonal
lattice.4 Recent measurements of the magnetic susceptibility
provide evidence of effective spin-1/2 moments and magnetic

correlations below TN ≈ 15 K indicating that Na2IrO3 is
indeed a Mott insulator.4 Theoretically, it has been argued7,8

that the interactions between the effective iridium moments in
the Mott regime are captured by a combination of isotropic
and highly anisotropic exchanges, which can be tracked back
to the spin and orbital components of the effective momenta.
A microscopic Hamiltonian interpolating between these two
types of exchanges is given by

HHK = (1 − α)
∑
〈i,j〉

�σi · �σj − 2α
∑

γ−links

σ
γ

i σ
γ

j , (1)

where the σi denote the effective spin-1/2 moment of the
Ir4+ ions, γ = x,y,z indicates the three different links of the
hexagonal lattice, and 0 � α � 1 parametrizes the relative
coupling strength of the isotropic and anisotropic exchange
between the moments.9 For α = 0 the Hamiltonian reduces to
the ordinary Heisenberg model, while in the opposite limit of
highly anisotropic exchanges (α = 1) the system corresponds
to the Kitaev model.11,12 The latter is known to exhibit a
gapless spin-liquid ground state (for equal coupling along the
links) that can be gapped out into a topological phase with
non-Abelian quasiparticle excitations by certain time-reversal
symmetry breaking perturbations.11 One such perturbation is
a magnetic field pointing in the 〈111〉 direction, perpendicular
to the honeycomb layer,

HHK+h = HHK −
∑

i

�h · �σi. (2)

The main result of our manuscript is the rich phase diagram
of this model, shown in Fig. 1. Besides two conventional,
magnetically ordered phases we find a topologically ordered
phase and two critical points, which we will discuss in detail
in the remainder of the manuscript.

II. NUMERICAL SIMULATIONS

We determine the ground-state phase diagram of Hamilto-
nian (2) by extensive “quasi-2D” density-matrix renormal-
ization group (DMRG)15 calculations on systems with up
to N = 64 sites. In particular, we consider clusters of size
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FIG. 1. (Color online) Ground-state phase diagram of the
Heisenberg-Kitaev model (1) in a 〈111〉 magnetic field of strength h.
Interpolating from the Heisenberg (α = 0) to Kitaev (α = 1) limit for
small field strength, a sequence of three ordered phases is observed:
a canted Néel state for α � 0.4, a canted stripy Néel state illustrated
in Fig. 2(c) for 0.4 � α � 0.8, and a topologically ordered state
for nonvanishing field around the Kitaev limit. All ordered phases
are destroyed for sufficiently large magnetic field giving way to a
polarized state.

N = 2 × N1 × N2, which are spanned by multiples N1�a1 and
N2�a2 of the unit cell vectors �a1 = (1,0) and �a2 = (1/2,

√
3/2)

as illustrated in Fig. 2. It should be noted that the numerical
analysis of Hamiltonian (2) is a challenging endeavor, since
not only the entire Hilbert space needs to be considered [due
to the lack of SU(2) invariance], but one also has to work
with complex data types (due to the 〈111〉 orientation of the
magnetic field). Our DMRG calculations keep up to m = 2048
states, which is found to give excellent convergence with
truncation errors of less than 10−8. We further use periodic
boundary conditions in both lattice directions, which reduces
finite-size effects. We have determined the phase boundaries
in Fig. 1 by extensive scans of the ground-state energy,
magnetization, and their derivatives in the (α,h)-parameter
space.16

III. MAGNETICALLY ORDERED STATES

We start our discussion of the phase diagram shown
in Fig. 1 by first recapitulating previous results8 for the
Heisenberg-Kitaev model (1) in the absence of a magnetic
field. Interpolating the relative coupling strength α between the
isotropic Heisenberg limit (α = 0) and the highly anisotropic
Kitaev limit (α = 1) a sequence of three phases has been
observed:8 The Néel ordered state of the Heisenberg limit is
stable for α � 0.4, when it gives way to a “stripy” Néel ordered
state illustrated in Fig. 2 which covers the coupling regime
0.4 � α � 0.8. In the extended parameter regime 0.8 � α � 1
the collective ground state is a gapless spin liquid. Near α = 1,
perturbation theory reveals that the gapless excitations of this
phase are emergent Majorana fermions forming two Dirac
cones in momentum space.

Including a magnetic field in the 〈111〉 direction a rich
phase diagram evolves out of this sequence of three phases.
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FIG. 2. (Color online) (a) The honeycomb lattice spanned by unit
vectors �a1 = (1,0) and �a2 = (1/2,

√
3/2). Illustration of magnetic

states with (b) Neel order and (c) stripy Neel order.

For the magnetically ordered states we find that the orientation
of the order in the Néel and stripy AFM phase cants along
the 〈111〉 direction. To further characterize these canted
states, it is helpful to analyze the independent symmetries of
Hamiltonian (2). Besides the lattice translational symmetry T

and a reflection symmetry I around the centers of the hexagons,
there is an additional C∗

3 symmetry, which is a combination
of a threefold rotation around an arbitrary lattice site and
a threefold spin rotation along the 〈111〉 spin axis.17 Both
canted phases break a subset of these discrete symmetries of
the Hamiltonian. The canted Néel order breaks the C∗

3 and
the I symmetries, which thus leads to a sixfold ground-state
degeneracy in this phase. The canted stripy phase breaks both
the C∗

3 and translational symmetry (since the ordering pattern
doubles the unit cell). As a consequence, we also find a sixfold
ground-state degeneracy in this phase.18

For sufficiently large magnetic field, the order of both
canted phases is destroyed and they give way to a simple
polarized state. Our numerical simulations strongly suggest
that the transitions between the polarized state and these
canted states are continuous, which is in agreement with
their spontaneous symmetry breaking. On the other hand,
the transition between the two canted states at finite field
strength (indicated by the bold line in Fig. 1) is found
to be first order. In our simulations this is indicated by a
sharp drop of the first derivative of the energy dE/dα as a
function of the coupling parameter α across this transition—as
shown in Fig. 3 for increasing strength of the magnetic field
h. Approaching the endpoint of this first-order line around
hc � 0.7 this drop smoothly vanishes, which indicates that
this endpoint possibly is a tricritical point at which the
two canted magnetically ordered phases and the polarized

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
magnetic field   h

0

10

20

30

40

50

60

70

en
er

gy
 ju

m
p

δ(
dE

/d
α)

FIG. 3. (Color online) Energy jump along the first-order tran-
sition between the canted Néel and stripy AFM. Scans of the
ground-state energy across this transition for various values of the
magnetic field strength are provided in the supplemental material.19
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phase meet. The existence of such a tricritical point can be
understood within a Landau description with two distinct order
parameters—corresponding to the discrete symmetry breaking
of the two different magnetically ordered phases—opening a
gap to magnon excitations.

IV. TOPOLOGICAL PHASE

We now turn to the spin liquid phase found
for coupling parameters 0.8 � α � 1. For the Kitaev
limit (α = 1) it has previously been argued11 that an
infinitesimal field along the 〈111〉 direction will drive the
system from the gapless spin liquid into a gapped non-
Abelian topologically ordered phase. As we will discuss
in the following, our numerical simulations allow us to
confirm the existence of such a topologically ordered state
for small magnetic field strengths not only in the Kitaev limit,
but for the full extent of the gapless spin liquid phase, as
indicated in the phase diagram of Fig. 1. We will further
present an independent and nonperturbative way to determine
the topological nature of this phase. This complements the
original argument by Kitaev,11 which was primarily based on
a perturbation expansion showing that the leading order effect
of a small magnetic field h is to introduce a topological mass
term for the Majorana fermions—however, such a perturbative
argument should be carefully tested when applied to a gapless
state. For this purpose, we consider an additional three-spin
exchange term κ , indicated by the blue bonds in Fig. 2(a), in
our Hamiltonian,

HHK+h+κ = HHK+h − κ
∑
ijk

σ x
i σ

y

j σ z
k . (3)

In the Kitaev limit (α = 1, h = 0) this Hamiltonian is exactly
solvable in the same Majorana fermion representation used in
the solution of the unperturbed Kitaev model.11 In particular,
one can prove that the three-spin exchange κ breaks time-
reversal symmetry and gaps out the spin liquid phase into
a topologically ordered state with non-Abelian excitations,
so-called Ising anyons. To demonstrate that a small magnetic
field in the 〈111〉 direction drives the system into the same
phase, we have numerically calculated the phase diagram in the
presence of both perturbations as shown in Fig. 4. The phase
boundaries were again obtained by scanning the derivatives of
ground-state energy and magnetization in the (h,κ)-parameter
space. In particular, this phase diagram shows that one can
adiabatically connect the phase for large κ and vanishing
magnetic field with the phase for small, nonvanishing magnetic
field and κ = 0, thus proving that the magnetic field gaps out
the spin liquid into the same non-Abelian topological phase
stabilized by the three-spin exchange. The only feature in
the diagram is a single phase transition line which separates
the topologically ordered state from the fully polarized state
expected for large magnetic field strengths. For the Kitaev limit
(κ = 0) this transition occurs for hc � 0.072. It is interesting
to note that the critical field hc initially grows with increasing
κ , but then saturates to some finite value around κ � 6.
Physically, this saturation can be understood by the behavior
of the gap for the Majorana fermions in the exact solution
for h = 0. The dispersion of the Majorana fermion is given
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FIG. 4. (Color online) (Top panel) Ground-state phase diagram of
the Kitaev model (α = 1) in the h − κ plane, where h is the strength
of a magnetic field pointing in the 〈111〉 direction and κ is the strength
of a time-reversal symmetry breaking three-site term. (Lower panels)
Magnetization sweep and its derivative for various κ .

by Ek = 2
√

|1 + ei�k·�a1 + ei�k·�a2 |2 + κ2 sin2(�k · �a1). For small

κ 	 1, the Majorana fermion has a gap Eg � √
3κ . However,

for large κ 
 1 the gap of Majorana fermion remains finite
and independent from κ , given by Eg � 2. Since the magnetic
field strength hc required to destroy the topological phase is
determined by the Majorana fermion gap at h = 0, the critical
field hc thus also increases and then saturates at large κ .

V. FIELD-DRIVEN TRANSITION OUT OF THE
TOPOLOGICAL PHASE

We now return to the phase diagram of the Heisenberg-
Kitaev model in Fig. 1 and focus on the transition between
the topologically ordered state and the polarized state for
large field strength. For the Kitaev limit (α = 1) this transition
occurs at a critical field strength of hc ≈ 0.072 and remains
almost constant as the coupling parameter α is decreased.
Interestingly, our numerics suggest that this field-driven phase
transition might be continuous or weakly first order. In
particular, we find that the second derivative of the ground-state
energy −d2E/dh2 at this transition diverges with increasing
system size, while the magnetization M(h) does not show any
discontinuity, as shown in Figs. 5(a) and 5(b), respectively.

While the limited system sizes in our study do not allow
one to unambiguously determine the continuous nature of
this field-driven phase transition, our numerics nevertheless
provide some further insights what might cause such a
continuous transition.20 To this end, we plot the number of
vortices in the ground state as a function of magnetic field,
that is, the number of plaquettes with a nontrivial flux, in
Fig. 5(c). Below the critical magnetic field (i.e., h < hc), there
are no vortices indicating a deconfined phase as expected in the
presence of a vortex gap. At the phase transition, however, the
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FIG. 5. (Color online) Phase transition for the Kitaev model (α =
1) in a 〈111〉 magnetic field of strength h. (a) Second derivative of the
ground-state energy −d2E/dh2, (b) magnetization M(h) and its first
derivative dM(h)/dh for different system sizes. (c) Vortex number.

vortices appear to condense and the number of vortices in the
ground state quickly increase above the critical field strength.
The nature of the phase transition might thus be framed in terms
of a confinement-deconfinement transition of a non-Abelian
gauge field, akin to the confinement-deconfinement transition
in the Abelian discrete gauge theory. An example of the latter is
the Z2 gauge theory (for example, the toric code in a magnetic
field21), for which it is well known that flux condensation leads
to a confinement transition.22

We note that although such a field-driven phase transition
might share many similarities for topological states with
Abelian and non-Abelian topological order, there also exist
important differences. For the Abelian Z2 gauge theory, it
has been shown that the critical field strength is of the same
magnitude as the single vortex gap and as a result, the
closing of the gap for a single vortex will naturally lead to
vortex condensation. In the non-Abelian case, however, the
single vortex gap, estimated around ∼0.27, is considerably
larger than the critical field strength. There are two potential
reasons for this discrepancy in the non-Abelian case. First, the
non-Abelian nature of the vortices gives rise to a macroscopic
degeneracy which might in turn enhance the low energy
quantum fluctuations. Second, in the limit of high vortex
density, the vortex core energy can be much smaller than in
the single vortex case and thus further enhance the quantum
fluctuations.

VI. A SECOND CRITICAL POINT

Finally, we note that there appears to be a second critical
point in our phase diagram around α ≈ 0.8 and h = 0, where
the stripy AFM phase and the gapless spin liquid meet. We find
that in the presence of the magnetic field the transition lines
of the field-driven phase transition out of the corresponding

0.785 0.79 0.795 0.8 0.805 0.81 0.815 0.82
coupling α

0

100

200

300

400

500

600

700

2n
d 

de
ri

va
ti

ve
   

-d
2 E

 / 
dα

2

N = 64 = 2x8x4
N = 48 = 2x6x4
N = 32 = 2x4x4
N = 24 = 2x4x3

h = 0.06

FIG. 6. (Color online) Constant field scan in the vicinity of the
(critical) point separating the stripy AFM from the topological phase.

canted and topologically ordered states bend in and merge only
in the zero-field limit as depicted in the inset of Fig. 1. To show
that there is indeed no direct transition between the canted
stripy Néel state and the topological phase we have made
extensive scans in the coupling parameter α in the vicinity of
this putative critical point for small field strength. As shown
in Fig. 6 for h = 0.06, the second derivative d2E/dα2 of the
ground-state energy clearly shows two peaks proliferating with
increasing system size indicative of two well-separated phase
transitions. However, the underlying effective theory for such
a multicritical point is not known, and will be left for further
study.

VII. OUTLOOK

Having established the rich phase diagram of the
Heisenberg-Kitaev model in a magnetic field, it is interesting
to speculate where one would place the iridate Na2IrO3.
While experiments4 report indications of an AFM ordered
ground state below TN ≈ 15 K, the precise nature of the
order remains open. Given the considerable suppression of the
ordering temperature TN in comparison with the Curie-Weiss
temperature �CW ≈ 116 K,4 which is typically interpreted as
an indicator of frustration, an alternative explanation would
be the proximity to a quantum critical point, such as the
multicritical point α ≈ 0.8 in the context of our phase diagram.
This would bring the material in close proximity to the spin
liquid phase for α � 0.8 and the topological phase found
for a magnetic field pointing in the 〈111〉 direction. To
further substantiate this possibility, it is desirable to study the
finite-temperature phase diagram of our model system and to
consider the effects of disorder, such as site mixing between
the Ir and Na sites.4 Finally, it would be interesting to bring
the Mott physics discussed in this manuscript in competition
with the topological insulator phase suggested in Ref. 23.
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