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Magnetic moments and Kondo effect near vacancies and resonant scatterers in graphene
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The effect of electronic interactions in graphene with vacancies or resonant scatterers is investigated. We apply
dynamical mean-field theory in combination with quantum Monte Carlo simulations, which allow us to treat
nonperturbatively quantum fluctuations beyond Hartree-Fock approximations. The interactions narrow the width
of the resonance and induce a Curie magnetic susceptibility, signaling the formation of local moments. The
absence of saturation of the susceptibility at low temperatures suggests a ferromagnetic Kondo effect.
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Introduction. Since its isolation,1,2 single-layer graphene
has attracted a great deal of attention, due to novel features.
The massless nature of the charge carriers implies that the
density of states vanishes at the Fermi energy in a neutral
layer.3 The low density of states in its vicinity allows for
the formation of sharp resonances due to vacancies4 or
impurities such as hydrogen, which form a strong cova-
lent bond with the carbon atoms, the so-called resonant
impurities.5,6 These resonances have been observed in graphite
surfaces.7

The enhancement in the density of states by those
resonances and the electron-electron interaction favor the
formation of local moments. The states associated with the
resonances differ from those induced by coupled magnetic
dopants in a number of ways: (i) They are built up from
the same π orbitals as the conduction band of graphene, (ii)
the resonance state is orthogonal to the conduction states,
and the hopping between the resonance and the extended
states vanishes, and (iii) they extend over a large region near
the defect, as there is no gap in the spectrum to confine
them.

Mean-field arguments based on the enhancement of the
local density of states favor the formation of a static magnetic
moment, as shown in a number of calculations.8–13 These
calculations cannot address the effect of these local moments
on charge and spin transport at low temperatures, as the latter
is determined by fluctuations which lead to the Kondo effect,14

not included in these calculations.
In the following, we analyze the electronic properties

of graphene by nonperturbative methods beyond a static
mean-field approximation. Our results show that the moment
near a vacancy is not quenched at the lowest accessible
temperatures, suggesting a ferromagnetic Kondo effect. For
a finite concentration of resonant impurities, the absence of
competition between the antiferromagnetic Kondo effect and
the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction
might lead to ferromagnetism, provided that the concentration
of impurities is large enough.15–18

The model. We describe the π band of graphene by a
nearest-neighbor tight-binding model, with a hopping param-
eter t . The effect of a resonant scatterer strongly bound to a
given site is taken into account by shifting the on-site energy
by an amount ε0. In the limit |ε0| � t the model describes an
unrelaxed vacancy. For |ε0| � t , a resonance near the Dirac

energy builds up. This resonance moves to the Dirac energy
and its width vanishes in the limit |ε0|/t → ∞. The main
features of the model, including the possibility of a local
moment at the resonance, are shown in Fig. 1.

We assume that the long-range part of the electron-electron
interaction is screened, and we describe the electron electron
interaction by an on-site Hubbard repulsive term U . The full
Hamiltonian is

H = −t
∑
〈i,j〉σ

c
†
iσ cjσ − ε0

∑
σ
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†
0σ c0σ

+U
∑

i

(
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2

) (
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)
, (1)

where c
(†)
iσ annihilates (creates) an electron with spin σ =

↑,↓ on lattice site i and where niσ = c
†
iσ ciσ denotes the

corresponding number density. The hopping t is only finite
for neighboring lattice sites (denoted by 〈i,j 〉). The lattice
site i = 0 corresponds to the impurity where the local
on-site energy ε0 is nonzero. We study the model at half filling,
i.e., at chemical potential μ = 0.

We approximate the interacting lattice problem by assum-
ing that the impurity site where ε0 	= 0 and a neighboring
site are attached to an effective medium described by a local
self-energy � as sketched in Fig. 2.

The effect of the impurity on the bath vanishes in the ther-
modynamic limit and can therefore be neglected.19 The result-
ing two-site cluster problem is solved numerically by quantum
Monte Carlo (QMC) simulations. We employ QMC methods
in continuous imaginary time, which perform a systematic
expansion in the interaction term of the Hamiltonian.20,21 The
QMC solution of the cluster problem is numerically exact
and fully incorporates interactions and quantum fluctuations.
The analysis can be regarded as the solution of a quantum
impurity problem where the interaction effects are included
at the impurity site and at a close neighbor, and approx-
imated by means of a local self-energy in the surrounding
medium.

In order to calculate the self-energy necessary to de-
termine the effective medium, we start by simulating the
homogeneous lattice system with ε0 = 0. We calculate the
self-energy necessary to obtain the effective medium using
either dynamical mean-field theory (DMFT)22 or second-order
perturbation theory in U/t . DMFT fully incorporates quantum
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FIG. 1. (Color online) Sketch of the model studied in the text.
The presence of a vacancy, or a resonant scatterer, passivates one of
the lattice sites. The resulting localized state near the Dirac energy
becomes spin polarized.

fluctuations local to the cluster but ignores spatial fluctuations.
The medium depends on the self-energy of the cluster system
and has to be calculated self-consistently by an iterative
procedure using QMC simulations. Subsequently, the impurity
is added to the system and one additional QMC simulation
is performed using the medium of the converged DMFT
calculation.

In order to check the quality of the DMFT approximation,
we additionally calculate the self-energy of the homogeneous
lattice system using second-order perturbation theory in U/t .
This self-energy—instead of the self-consistently determined
DMFT solution—is used to calculate the bath of the impurity
problem, which is then again solved by QMC. The perturbative
self-energy does not include quantum fluctuations to all orders.
However, it incorporates nonlocal effects of the actual lattice
structure, which are neglected by DMFT. Thus we are able to
test the influence of nonlocal correlations and the accuracy of
the DMFT approximation.

QMC methods map quantum-mechanical systems on a
classical one at the expense of an additional dimension
which—in most cases—is an imaginary time dimension. Thus,
QMC can only provide dynamical data for imaginary times or
frequencies. The necessary analytic continuation to physically
relevant real times or frequencies is usually performed by

FIG. 2. (Color online) Sketch of the lattice system with two
sublattices A and B (left-hand panel). The impurity is denoted by
an open circle. We map the lattice on a two-site cluster consisting
of only one unit cell (right-hand panel). The cluster is embedded in
an interacting medium, which determined by a local self-energy �.
The self-energy is calculated either by DMFT or by second-order
perturbation theory.
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FIG. 3. (Color online) Density of states D(ω) at the site next to the
impurity at βt = 10 calculated by DMFT in combination with QMC.
The analytic continuation was performed by maximum entropy. Top:
Density of states for ε0/t = 3 and different values of U/t . Bottom:
Density of states for U/t = 4 and different values of ε0/t . The insets
show a blowup of the region near the Dirac energy.

maximum entropy techniques.23 We use a standard maximum
entropy implementation24 to calculate the interacting density
of states for real frequencies.

Results. The density of states at the site next to the impurity
is shown in Fig. 3. We find a resonance whose width decreases
either by increasing ε0/t or by increasing U/t . The reduction
in width by the interactions is a characteristic feature of
magnetic impurity problems.14 It indicates the decoupling of
the impurity degrees of freedom from the conduction band.
For ε0 � 2t and U � 2t we find a second resonance to the
left of the Dirac point, which is shifted further to the left for
increasing values of ε0/t or U/t . There appear also satellite
peaks at high energies. These peaks are related to transitions
involving configurations, where the resonance hosts zero or
two electrons. The positions of these peaks are shifted by an
amount proportional to ε0, confirming that they are related to
the impurity.

We have repeated the previous calculations using an input
self-energy obtained from second-order perturbation theory.
The results are shown in Fig. 4 and are consistent with those
shown in Fig. 3 for U/t � 3. One clearly sees the formation of
a resonance that becomes sharper and shifts toward ω/t = 0
for increasing ε0/t . We also have a peak to the left of ω/t = 0
that is shifted with increasing ε0.
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FIG. 4. (Color online) Density of states at the site next to the
impurity at βt = 10 calculated by second-order perturbation theory.
Parameters are βt = 10, U/t = 1, and different values of ε0/t . The
inset is a blowup of the region near the Dirac energy.

We calculate the magnetic susceptibility of the impurity in
the imaginary-time framework of the QMC via

χS =
∫ β

0
dτ 〈[n↑(τ ) − n↓(τ )][n↑(0) − n↓(0)]〉, (2)

where τ denotes imaginary time, nσ (τ ) = e−τHnσ eτH , and
β = 1/kBT . As usual, T denotes temperature and kB

Boltzmann’s constant. Figure 5 shows χS as function of
the inverse temperature. A fully localized spin possesses the
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FIG. 5. (Color online) Local magnetic susceptibility χS as func-
tion of the inverse temperature calculated by DMFT in combination
with QMC. Top: Susceptibilities for ε0/t = 3 and different values
of U/t . Bottom: Susceptibilities for U/t = 4 and different values
of ε0/t .

susceptibility χloc = βt . The numerical results are consistent
with a Curie dependence on temperature χ ∝ 1/T , suggesting
the formation of a local moment. This moment is not fully
localized at the positions closest to the impurity, and the
measured χS is smaller than ≈χloc/2. As the interaction
increases, the magnetic moment becomes better defined and
more localized near the impurity. We find no sign of saturation
of the susceptibility down to the lowest temperatures. This
result is consistent with a ferromagnetic Kondo coupling.

Discussion. We have studied the effects of interactions
in the presence of a resonance in the graphene electronic
spectrum. We use a local approach, and fully include quantum
fluctuations. The interaction is described by a local Hubbard
term, and we do not consider the imperfect screening in
graphene near the neutrality point, which is expected in
suspended layers. Given this interaction, our calculation can
be regarded as the solution of a quantum cluster problem.
The effect of interactions in the medium surrounding to the
cluster is described by means of a local self-energy. The
results obtained when this self-energy is calculated by DMFT
and by perturbation theory are mutually consistent, in the
regime where perturbation theory is valid. The of-diagonal
corrections to the self-energy not included here are mostly due
to the long-range part of the interaction.25 They lead to an
increase in the Fermi velocity.26 The density of states at low
energies is reduced, favoring further the formation of local
moments.

We find that interactions reduce the width of the resonance
induced by the impurity, and lead to a magnetic susceptibility
which grows at low temperatures as χS ∝ 1/T . The local
moment is not quenched at the lowest temperatures studied.
This is consistent with the existence of a ferromagnetic
coupling between the moment and the valence electrons. The
antiferromagnetic exchange mechanism is absent for the case
of a resonance built up from the same orbitals, which give rise
to the conduction band. An electron occupying the resonant
state interacts only with a conduction electron through the
on-site Hubbard term. This coupling favors a ferromagnetic
alignment of the spin of the electron in the resonance and the
spin of the conduction electrons.

The magnetic moment will vanish at sufficiently high car-
rier concentrations, so that its effects will be more pronounced
in clean samples where charge puddles do not obscure the
features of the Dirac point.26,27 The scale at which the local
moment studied here leads to significant effects depends on
the value of U/t , which is not very precisely determined in
graphene. Calculations based on the local density functional
approximation suggest28 U/t ∼ 1, while quantum many-body
calculations for aromatic molecules give29–31 U/t ∼ 3. The
value of U/t is bounded by U/t ≈ 4.5, above which graphene
should become antiferromagnetic.32
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