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Metallic phase of disordered graphene superlattices with long-range correlations
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Using the transfer-matrix method, we study the conductance of chiral particles through a monolayer graphene
superlattice with long-range correlated disorder distributed on the potential of the barriers. Even though the
transmission of the particles through a graphene superlattice with white-noise potentials is suppressed, the
transmission is revived in a wide range of angles when the potential heights are long-range correlated with a
power spectrum S(k) ∼ 1/kβ . As a result, the conductance increases with increasing correlation-exponent values
giving rise to a metallic phase. We obtain a phase-transition diagram in which the critical correlation exponent
depends strongly on the disorder strength and slightly on the energy of the incident particles. The phase transition,
on the other hand, appears in all ranges of the energy from propagating to evanescent mode regimes.
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I. INTRODUCTION

The exploration of graphene, a monolayer of carbon atoms
tightly packed into a honeycomb lattice, has recently attracted
special attention in the investigation of fundamental physics
and also probable device applications such as nanoelectronic
devices based on planar graphene structures.1,2 In graphene,
due to its unique band structure with the valence and conduc-
tion bands touching at two inequivalent Dirac points, electrons
around the Fermi level obey the massless relativistic Dirac
equation, which results in a linear energy-dispersion relation.3

Massless relativistic quasiparticles arising from the cone
spectrum lead to a number of unusual electronic properties
such as anomalous integer4 and fractional5 quantum Hall
effects, focusing of electrons by a rectangular potential barrier
(so-called Veselago lensing),6 special Andreev reflection,7

and observation of the plasmaron composite8 and minimal
conductivity.9

Interestingly, relativistic quantum quasiparticles incident
normally to a high electrostatic potential barrier in graphene
can pass through it with perfect transmission regardless of
the height or width of the barrier.10 This phenomenon, which
is referred to as the Klein tunneling, is in contrast with the
quantum massive-carrier tunneling, where the transmission
probability decays exponentially with increasing barrier height
and width. Recently, evidence for the Klein tunneling of the
Dirac fermions across a p-n junction have been experimentally
observed when a gate-induced potential step has been steep
enough.11,12

In graphene sheets, the type of particles (electrons or holes)
and the density of the carriers can be controlled by tuning a
gate bias voltage.13–15 Moreover, graphene superlattices may
be fabricated by adsorbing adatoms on the graphene surface,
by positioning and aligning impurities with scanning tunneling
microscopy,16 or by applying a local top gate voltage to
graphene.17 The transmission of hitting massless particles in a
clean18 or disordered19 graphene-based superlattice structure
has been studied. It was shown that the conductivity of the
system depends on the superlattice structural parameters.

The first study on electronic properties of monolayer and
bilayer graphene superlattices was performed by Bai and

Zhang.18 They showed that the angular-averaged conductivity
can be controlled by changing the structure parameters.
Furthermore, it has been also shown that massless Dirac
fermions are generated in an one-dimensional external periodic
potential close to the original Dirac point.20,21 The Dirac
points depend on system parameters, for instance, the potential
of the barriers/wells and the period of the potential and
transverse wave number.22 An evidence for such Dirac points
is the conductance resonances that appear at special potential
values.21 Moreover, the conductance of a graphene superlattice
with uncorrelated disorder in the width of the barriers was
calculated in Ref. 19. It was shown that the transmission
of the quasiparticles with large angles of incidence to the
potential barriers is suppressed by disorder strength and the
sample size too. Therefore, the results of the finite-size-scaling
computations predicted a zero conductance for all the graphene
superlattices, except for some resonant barrier thickness for
which the conductance tends to a nonzero constant in the
thermodynamic limit.19

A number of numerical calculations of electron transport
confirmed the absence of localization in the presence of a long-
range random potential in disordered graphene.23 The main
quantity that is mostly studied numerically is the conductance,
G, of a finite-size graphene sample with a width, W , much
larger than the length, L. The setup allows us to define the
“conductivity” σ = GL/W even for ballistic samples with L

much shorter than the mean free path, l.
It is well known that the transmission of quantum massive

carriers unexpectedly increases when special correlation is
applied on disorder.24 This is in contrast with the Anderson lo-
calization in which all states are exponentially localized in one-
dimensional uncorrelated disorder. Experimental evidence for
a discrete number of extended states has been observed in
random-dimer semiconductor superlattices as a short-range
correlated disorder.25 Long-range correlated sequences of the
potential barriers in semiconductor superlattices, however,
could result in a continuum of extended states giving rise
to mobility edges.26–28 Application of a long-range correlated
random sequence on the length of some screws was used to
model scatterers in a single-mode wave guide.29 By applying
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appropriate correlations between scatterers, it was shown that
the microwave transmission spectra displays a transparent
frequency interval that is separated by a mobility edge from
the nontransparent frequency intervals.

In this paper, we study the conductance of massless
Dirac fermions through graphene superlattices with a long-
range correlated disorder on the potentials of the barriers.
Application of disorder on the potentials of the barriers
could be experimentally manifested by coating some top gate
voltages on the graphene sheet.29 The transmission of the
large-angles incident electrons to the graphene superlattice,
which is suppressed by uncorrelated disorder, is revived
by applying correlation between the random potentials of
the barriers. As a result, the conductance increases with
the correlation exponent. Consequently, an insulator-to-metal
transition emerges at a critical correlation exponent that
depends strongly on the disorder strength. One should notice
that such a phase transition emerges for the entire range of
energies. In addition, the dependence of the conductance on the
superlattice parameters is investigated for different correlation
strengths.

The paper is organized as follows. We present the transfer-
matrix and Fourier-filtering methods used to calculate the
transmission through the long-range correlated graphene
superlattices in Sec. II. Our results and related discussion will
be presented in Sec. III where we also present the metal-to-
insulator phase transition and investigate the emergence of the
phase transition along different energy ranges. The conclusions
are given in last section.

II. MODEL AND THE TRANSFER MATRIX

In the low-energy limit, charge carriers near the Dirac point
in the continuum model can be described by the following
noninteracting Hamiltonian:

H = −ih̄vF(σx∂x + σy∂y) + V (x), (1)

where vF = 106 m/s is the Fermi velocity and σx and σy are the
Pauli matrices. We consider a lattice of electrostatic potentials
as barriers that are induced by top gate voltages. Therefore,
the potentials of the barriers are sorted as follows:

V (x) =
{

Vi d2i−1 < x < d2i , i = 1,2, . . . ,

0 elsewhere.
(2)

A schematic representation of our graphene superlattice is
shown in Fig. 1. We consider the number of regions (wells
and barriers) to be equal to N and that there are (N − 1)/2
barriers. The widths of the barriers and wells are considered
to be fixed. The height of the barriers fluctuates around its
mean and is defined by Vi = 〈V 〉(1 + σεi), where σ is the
variance of the potentials of the barriers and {εi} is a long-
range correlated random sequence of data with the Gaussian
distribution.

Before calculating the conductance, we might sometimes
generate a random sequence with a long-range correlation. A
correlated sequence {εi} will be considered to describe the
trace of a fractional Brownian motion with a power spectrum
S(k) ∼ 1/kβ , where 1 < β < 3 and β = 2H + 1 = 2α − 1
(1 < α < 2). Here H is the Hurst exponent. In the case of

FIG. 1. (Color online) Graphene superlattice with long-range
correlated disorder on the potential barriers.

power-law decaying autocorrelations, the correlation function
decays with an exponent γ such that C(xi − xj ) ∝ |i − j |−γ ,
where γ = 1 − β. Random sequences with weaker positive
correlation are generated with 0.5 < α < 1, which is referred
to as the fractional Gaussian noise.30 In this case, β = 2H −
1 = 2α − 1 and α = 0.5 correspond to uncorrelated disorder
or white noise.

It is common to apply a Fourier-filtering method31 to
generate a sequence with a long-range correlation. This
method contains the following steps: (i) a sequence of white-
noise random numbers {θi} with a Gaussian distribution is
generated. (ii) The transformation of the Fourier components
of {θi} is attributed to a sequence that is called {θk}. (iii) An
inverse Fourier transformation of the sequence {εk = k−β/2θk}
results in the sequence of interest, {εi}. (iv) Finally, the random
sequences become normalized, accordingly the mean value, εi ,
is set to be zero and its variance is fixed. Three landscapes of
random data generated by the mentioned method are shown
in Fig. 2 for different correlation exponents. In Appendix B,
the distribution function and also the pair-correlation function
of a correlated random sequence generated by the above
algorithm is shown in Fig. 13. Clearly, the correlation between

(a)

(b)

(c)

FIG. 2. (Color online) Random distribution of the correlated
sequences generated by a Fourier-filtering method. (a) Uncorrelated
case corresponding to α = 0.500, (b) α = 1.766, and (c) α =
1.993.
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random potentials leads to a reduction in the fluctuations of the
random distribution. We should notice that we have checked
the invariance of our results in comparison to those results
obtained from random sequences produced by the midpoint
method.30

Having such a configuration of the potentials gives rise
to a superlattice that consists of two types of graphene:
electron-doped and hole-doped. The doping type of graphene
in wells is n-type for quasiparticles with an incident energy
E = hvF/λ > 0, where λ is the electron wavelength in the
wells. The doping type in the barriers depends on the potential
height, Vi . In other words, the ith barrier is hole-doped
graphene if E < Vi , while it is electron-doped if E > Vi .
Accordingly, the type of doping in the barriers is also altered
randomly. We assume that the angle of incidence for electrons
is φ = ϕ1 along the x axis. However, the transfer matrix takes
the angle of each region into account separately. The general
solution of Eq. (1) results in the following spinor for the ith
region:

ψ(x,y) = ai

{
1

sie
iϕi

}
ei(kixx+kyy)

+ bi

{
1

sie
i(π−ϕi )

}
ei(−kixx+kyy), (3)

where ai and bi are the transmission and reflection amplitudes,
respectively. Other parameters in the spinor are

si = sgn(E − Vi), ky = ki
F sin(ϕi) = ki

F sin φ,

kix =
√[

E − V (x)

h̄vF

]2

− k2
y, ϕi = arctan(ky/kix). (4)

If the energy of the incident electrons is close to Vi value
in the ith barrier, kix becomes imaginary for some angles,
resulting in an evanescent mode. In disordered graphene
superlattice, evanescent modes emerge when E � 〈V 〉. The
transfer matrix is extracted by the continuity of the wave
functions at the junction interfaces. It can make a relation
between the wave functions of two sides of a step potential
from the ith region to the (i + 1)th like(

ai+1

bi+1

)
= Mi+1,i

(
ai

bi

)
, (5)

where the transfer matrix Mi+1,i is

Mi+1,i =
(

m11 m12

m∗
12 m∗

11

)
(6)

and the matrix elements of M are

m11 = ei[kix−k(i+1)x ]xi

(
si+1e

−iϕi+1 + sie
iϕi

2si+1 cos ϕi+1

)
,

(7)

m12 = e−i[kix+k(i+1)x ]xi

(
si+1e

−iϕi+1 − sie
−iϕi

2si+1 cos ϕi+1

)
.

The current in the x direction and in the ith region can be
derived as

J i
x = vFψ

†σxψ = 2vFsi cos ϕi(|ai |2 − |bi |2). (8)

Current conservation between regions ith and j th implies

|aj |2 − |bj |2 = Det[Mj,i](|ai |2 − |bi |2), (9)

where

Mj,i = Mj,j−1Mj−1,j−2...Mi+1,i
(10)

Det[Mj,i] = (si cos ϕi)/(sj cos ϕj ).

The total transfer matrix which makes a relation between
incident and transmitted wave functions is a series product of
the transfer matrices arising from each interface. For N regions
incorporating the barriers and wells, according to Eq. (11), the
matrix is defined as P = MN,1.

If the first and last regions of the superlattice are electron-
doped graphene, the transmission probability for (N − 1)/2
barriers can be calculated by means of the product matrices
for bN = 0 as

T (E,φ) = JN
out

J 1
in

= 1

Det[P ]

∣∣∣∣aN

a1

∣∣∣∣
2

, (11)

where JN
out and J 1

in are out- and inflowing currents, respectively.
Because the configuration of the potential barriers is consid-
ered such that s1 = sN and ϕ1 = ϕN = φ, the conservation
of the current between the first and last regions implies
that Det[P ] = 1. Therefore, the transmission formula can be
simplified as T (E,φ) = 1/|P22|2 where aN/a1 = Det[P ]/P22.
Finally, using Landauer-Büttiker formula32 and an angular
averaging, the conductance is obtained by the following
integration:

G = G0

∫ π/2

−π/2
T (E,φ) cos(φ)dφ, (12)

where G0 = e2mvFW/h̄2. Here, W is the finite width of
graphene ribbon along the y direction.

III. RESULTS AND DISCUSSION

A. Phase transition

Let us first calculate the transmission probability and study
the electronic properties of disordered graphene superlattices.
The transmission of electrons hitting the disordered graphene
superlattice as a function of the incident angle is shown in
Fig. 3 for several values of correlation strengths characterized
by the correlation exponent α. In all calculations, the barrier
and well widths are considered to be D = 50 nm and L =
30 nm, respectively. Moreover, we assumed that the energy
of the charge carriers and the averaged potential of barriers
being E = 50 meV and 〈V 〉 = 200 meV, respectively. The
wavelength of the incident electrons is thus λ ∼= 83 nm.
Therefore, with such parameters we surely conclude that the
transmission of the charge carriers shown in Fig. 3 [with
ξ = (E − 〈V 〉)/E = −3] is a purely propagating mode. As
shown in this figure, the transmission of the electrons hitting
to superlattice with large angles increases with increasing cor-
relation between the random potentials of the barriers. In other
words, applying correlation between the random potentials
of the barriers causes to extend the angular window of the
conducting mode around the normal incidence. This effect
is in contrast with those results obtained with uncorrelated

235430-3



CHERAGHCHI, IRANI, FAZELI, AND ASGARI PHYSICAL REVIEW B 83, 235430 (2011)

FIG. 3. (Color online) Transmission in terms of the incident angle
hitting the graphene superlattice with various correlation exponents
α. The number of the barriers is N = 1000. The averaged potential of
the barriers and energy of the incident electrons are 〈V 〉 = 200 meV
and E = 50 meV, respectively. Here, since ξ = −3, the transmission
is calculated in the presence of purely propagating modes.

potentials of the barriers, in which the transmission of the
massless carriers is suppressed for the wide range of the
incident angles except φ = 0. The perfect transmission at
normal incidence can be described by the Klein tunneling.
Similarly, in the correlated case, by increasing the disorder
strength and also the number of the barriers, the transmission
of the quasiparticles is suppressed at all values of the incident
angle except at φ = 0. Figure 4 shows the suppression of the
transmission at large incident angles when the number of the
potential barriers increases.

In the linear regime, the conductance is proportional to
the angular-averaged transmission projected along the current
direction. To understand how the correlation between random

FIG. 4. (Color online) Transmission as a function of the incident
angle through a graphene superlattice with long-range correlated
random potentials for various barrier numbers N . Here α = 1.102
and σ = 0.1.

FIG. 5. (Color online) Conductance through a graphene superlat-
tice with long-range correlated random potentials as a function of the
barrier number N for σ = 0.1. This is finite-size scaling for different
correlation exponents α. Here, 〈V 〉 = 200 meV and E = 50 meV.

potentials affects the transport properties of graphene super-
lattice, we calculate the size dependence of the conductance
for various values of the correlation exponents; the results
are plotted in Fig. 5. It is clear from the figure that there
is a critical-correlation-exponent value of α such that for
α < αcr, the conductance decreases with increasing system
size, while it goes to a constant value for α > αcr. In other
words, a consequence of applying long-range correlation is
the emergence of a phase transition from the insulating to
metallic states. It is worthwhile noting that this phase transition
is not a finite-size effect. The conductance decreases with
the number of the barriers with a power-law behavior. The
following function is fitted to a log-log plot of the conductance:

G

G0
∝ N−η(α,σ ), (13)

where η as a function of α and σ decreases, therefore,
increasing the correlation exponent. Furthermore, the disorder
strength strongly suppresses the conductance such that the
critical correlation exponent, which means on the emergence
of a phase transition, increases with the disorder strength.

The conductance through disordered potentials of barriers
having correlation exponent α = 0.5 decays with the barrier
number as N−0.5. The same decaying of the conductance was
reported in Ref. 19 for a graphene superlattice with white-
noise potentials distributed on the barriers. However, applying
a long-range correlation between random potentials facilitates
the conductance through the graphene superlattice.

A power-law fitting for the conductance is shown in Fig. 5. It
has determined a dependency of η on the correlation exponent,
α, and disorder strength, σ , which is represented in Fig. 6. For
the sake of having the critical correlation exponent, we have
used a transition function (such as the Fermi-Dirac function)
as a fit function of the exponent function η(α,σ ).

η(α,σ ) = γ

eβ(α−αcr(σ )) + 1
→

{
0, α 	 αcr,

γ, α 
 αcr,
(14)

where β and αcr are fitted parameters and γ = 0.5 for ξ = −3.
The interval at which η(α) decreases from the value of γ to zero
is related with the inverse of β. The emergence of a transition
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FIG. 6. (Color online) Exponent of the conductance in a power-
law form G/G0 ∝ N−η as a function of correlation exponent α. In the
inset, the fitting of a Fermi-Dirac-like function [Eq. (14)] to numerical
data is shown.

from an insulating to a metallic phase corresponds to the
variation of η from γ to 0. Now, we provide a phase-transition
diagram in which the critical correlation exponent depends
on the disorder strength. Figure 7 shows that the critical
correlation exponent increases when the disorder strength
increases up to σ = 0.3. Roughly speaking, the system remains
in a metallic phase when the correlation is very long range at
low disorder strength whereas it turns out to be an insulator
at large disorder strength values and at midrange correlation.
This phenomenon is robust against the type of disorder. In
Appendix A, it is shown that instead of the barrier potentials,
if disorder is distributed on the width of barriers, such transition
from insulating to metallic phases still survives. Moreover, as
shown in Appendix B, this phase transition is independent of
the distribution function.

B. Energy range of the phase transition

To provide a fascinating experimental manifestation of the
phase transition, it is significant to demonstrate that the phase

FIG. 7. (Color online) Metal-to-insulator phase diagram. The
critical correlation exponent, αcr, increases with the disorder
strength, σ .

transition can exist in a continuum range of energies not just
at some discrete energies.

Let us now concentrate on the conductance behavior in
different ranges of the Fermi energy. For a single barrier
on graphene, in the range of −1 < ξ < 1, it is proved that
both the evanescent and propagating modes coexist.33 Out
of this range, all states are fully in the propagating mode.
By considering this fact, we investigate the conductance as a
function of ξ through a disordered graphene superlattice for
several correlation exponent values and the results are shown
in Fig. 8. It can be seen that the same behavior as for the
single-barrier case appeared for different ranges of ξ . The
contribution of the evanescent modes to the conductance is
dominant in ξ = 0 and therefore the conductance is suppressed
at this point. For |ξ | → 1, the contribution of the propagating
modes becomes dominant and thus the conductance increases

(a)

(b)

FIG. 8. (Color online) Functional of the conductance in terms of
ξ that represents the Fermi energy for two structural parameters; (a)
for D = 50 nm and L = 30 nm and (b) for D = 110 nm and L = 60
nm. The peaks in the conductance correspond to resonant states. Here
N = 800 and σ = 0.1. The inset in (a) shows a 3D contour plot of
the transmission in the plane of ξ and the incident angle. Resonant
states correspond to a more angular-wide domain for transport. The
inset in (b) demonstrates that the phase transition is robust against
variation of the geometrical parameters.
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continuously. For ξ < 0, the conductance oscillates at the
resonant states that originate from the perfect tunneling of the
charge carriers with nearly normal incidence. A 3D contour
plot of the transmission in terms of ξ and the incident angle
[see the inset of Fig. 8(a)] shows that at resonant states a
conducting domain of the angles is opened around the normal
incidence. The resonant condition for a single barrier in
graphene is given by kFD

√
ξ 2 − u2 = nπ , where u = sin ϕ.

The energy separation of the resonant states can be extracted
from expanding the resonant condition for normal incidence
u 
 ξ . In this case, two sequential resonant states have a
distance like �ξr

∼= π
kFD

(1 − u2

2ξ 2 ). As a result, the period of the
conductance is reduced with D and L while it is enhanced with
|ξ |. A comparison between Figs. 8(a) and 8(b) demonstrates
that by enlarging the structural parameters as nearly twice, the
number of resonant peaks in the conductance subsequently
doubles in a given ξ range. Furthermore, we can demonstrate
that the phase transition is robust against the geometrical
parameters. The inset in Fig. 8(b) shows the emergence
of the phase transition for the values of D = 110 nm and
L = 60 nm.

In the limit of ξ → 1, which means E 	 〈V 〉, conducting
channels are opened for the whole range of angles, T (φ) = 1,
and thus by using Eq. (12), we then get limξ→1 G/G0 = 2.

By applying a long-range correlation between the potentials
of the barriers, we show in Fig. 8(a) that the conductance
displays an enhancement in some ranges of the energy
compared to the resonant states and the range including
the evanescent modes, |ξ | < 1. To clarify this, firstly we
investigate the conductance suppression with the number of
the barriers in all ranges of the Fermi energy for a sequence
of white-noise disorder distributed on the potentials of the
barriers. The results are represented in Fig. 9(a), which shows
a power-law form of the conductance in terms of the barrier
numbers for different values of ξ . It is significant to understand

(a)

(b)

FIG. 9. (Color online) (a) Conductance in terms of the barrier
numbers for graphene superlattice with white-noise disorder on
potentials of the barriers and for different values of the Fermi
level ξ . (b) Exponent of the conductance (η) in a power-law form
G/G0 ∝ N−η as a function of ξ .

FIG. 10. (Color online) Exponent of the conductance in a power-
law form G/G0 ∝ N−η as a function of the correlation exponent α

for different values of ξ . In the inset the metal-to-insulator phase
transition in all ranges of the energy.

how the exponent of η varies with the Fermi energy. The slope
of the lines in the log-log plot of Fig. 9(a) for different ξ is
indicated in Fig. 9(b). It is clear that close to the resonant
states ξr = −1.85 and −0.45, the exponent of η reduces from
the value of 0.5 to its resonant values ηr = 0.12 and 0.25,
respectively. As a consequence, close to the resonant states
the suppression of the conductance, which is induced by the
random potentials of the barriers, is much weaker than for other
states. The resonant value of ηr decreases when ξ goes away
from the region that includes the evanescent modes |ξ | < 1.

Our numerical calculations demonstrate that the insulator-
to-metal phase transition occurs in all ranges of the energy.
It is clear from Fig. 10 that the phase transition appears
not only at the propagating and resonant states, but also in
the fully evanescent mode ξ = 0. In Fig. 10, η (α = 0.5)
decreases to 0.3 at ξ = −2, which is close to the second
resonant state shown in Fig. 8(a). Another exception around the
resonant states is the width of function η(α), which increases
at the resonant states. Therefore, at the resonant states, the
transition from an insulating to a metallic phase is smooth
along the correlation exponent. The inset in Fig. 10 shows
small fluctuations of the critical correlation exponent as a
function of ξ . Accordingly, the phase transition is a general
behavior for all ranges of the energy.

C. Resonance in the conductance

Now, we study the effect of the long-range correlated
disorder on the resonance phenomena seen in the conductance.
Resonance in the conductance of graphene superlattice with
a white-noise disorder distributed on the width of the barriers
has been studied before.19 Figure 11 shows the conductance
oscillations as a function of the barrier width (D) and also
distance between barriers (L) for several values of the corre-
lation exponent. Apparently, the application of the long-range
correlation between the potentials of the barriers increases the
conductance for all ranges of D and L. Moreover, as shown
in Fig. 11(a), the conductance tends to a constant value after
some oscillations in thin barriers independent of the barrier
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(a)

(b)

FIG. 11. (Color online) Conductance oscillations in terms of (a)
the width (D) of the barriers (b) the distance (L) between barriers for
different correlation exponents. Here N = 800 and σ = 0.1.

width. In fact, the transmission of the quasiparticles hitting the
graphene superlattice at large incident angles is suppressed for
the wide barriers, and thus only transmission arising from the
Klein tunneling around the normal incidence contributes to the
conductance integration given by Eq. (12). The same behavior
occurs in the case of N = 1. The configuration average (C.A.)
of the transmission through one barrier34 depends on the width
as 〈sin2(kxD)〉C.A. and 〈cos2(kxD)〉C.A., where kx is a random
parameter. It is trivial that the average of the transmission,
and consequently of the conductance, are independent of the
width if the D value increases. On the other hand, by applying
the randomness on kx , the resonant condition kxD = nπ in
wide barriers can not be satisfied, and thus there is no longer
a resonant peak in the conductance.

Figure 11(b) shows the conductance oscillations as a
function of L. In this case, the decaying of the oscillations
is much weaker than the conductance oscillations with the
barrier width. In fact, since there is no disorder in the wells,
for a fixed barrier width, the resonant condition affects much
less than the barrier resonant condition.

IV. CONCLUSIONS

By using the transfer matrix method, we investigated the
conductance through a graphene superlattice with a long-
range correlated disorder distributed on the potentials of
the barriers. Applying a correlation between the potentials
opens the angular-domain window of the conducting channels
in competition with the factor of the disorder strength that
suppress the transmission at large incident angles. As a result,
the conductance increases with the correlation between the
potentials of the barriers giving rise to a metallic phase.
We obtain a phase transition diagram in which the critical
correlation exponent for such a phase transition depends
strongly on the disorder strength and slightly on the energy
of the incident particles. At resonant states, the suppression
of the conductance with the number of the barriers is much
less than at other states. Last but not least, our finding for

FIG. 12. (Color online) Emerging of the phase transition in
a superlattice with width fluctuations. The exponent, η, of the
conductance in a power-law form is G/G0 ∝ N−η and α is the
correlation exponent.

the dc conductance of the graphene superlattices should be
important for the design of electronic nanodevices based on
graphene superlattices.

APPENDIX A: PHASE TRANSITION IN THE PRESENCE
OF WIDTH FLUCTUATIONS

It is worthwhile to examine the nature of the phase
transition, in particular, whether it remains invariant under
the application of fluctuations on the width of the barriers.28,35

Though, from the experimental point of view, manufacturing
a superlattice with disordered widths is less controllable than
a superlattice with disordered heights.

To demonstrate robustness of the phase transition against
width fluctuations, in the same way as we distributed disorder
on the potentials, we define the width of the barriers to fluctuate
around its mean as Di = 〈D〉(1 + σεi). For this calculation,
we assume that the energy of charge carriers and the averaged
width of barriers is E = 50 meV and 〈D〉 = 50 nm. The other

(a) (b)

FIG. 13. (Color online) (a) Distribution function and (b) the pair
correlation function of two random sequences with uniform and
Gaussian distributions. The correlation exponent of these random
sequences is α = 1.2.
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FIG. 14. (Color online) Conductance through a graphene super-
lattice with disordered potentials of barriers as a function of correla-
tion exponent for different lengths. The distribution of randomness is
uniform. Here, E = 50 meV, 〈V 〉 = 200 meV, and σ = 0.1.

parameters are V = 200 meV, ξ = −3, L = 30 nm, and σ =
0.05. As it is seen in Fig. 12, the phase transition from the
insulating to the metallic phase still survives when disorder is
distributed on the width of barriers.

APPENDIX B: DISORDER DISTRIBUTION AND
PHASE TRANSITION

We would like to show that the phase transition does
not depend on the type of distribution function of correlated
disorder. More precisely, the phase transition will be observed
when the tails of the distribution function of disorder decay
faster than a power-law form. As an example, we have
reproduced the phase diagram of Fig. 6 but for a long-range
correlated disorder with uniform distribution function. To do
this, we have reproduced a correlated random sequence with
uniform distribution by applying an algorithm on a correlated
random sequence with Gaussian distribution. Figure 13 shows
the distribution function and also the pair-correlation function
of a generated random sequence with a uniform distribution
that is compared with the correlated random sequence with a
Gaussian distribution. The pair-correlation function is defined
as

〈[Vi − Vj ]2〉c.a. = 2σ 2

∣∣∣∣ i − j

�c

∣∣∣∣
2H

(B1)

where the correlation length (�C) is considered to be equal to
the system size. Variables i and j are the positions of the

FIG. 15. (Color online) Conductance through a graphene super-
lattice with disordered potentials of barriers as a function of
correlation exponent for different N and σ = 0.1. The distribution
of potentials is Gaussian. Here, E = 50 meV and 〈V 〉 = 200 meV.

barrier potentials along the superlattice. The Hurst exponent
H is defined by α = 1 + H . Figure 13(b) shows a log-log
curve of the pair-correlation function as a function of i − j .
The slope of the line in this figure determines H and also α.

By having such a random sequence, we calculate the
conductance as a function of correlation exponent for different
lengths. It is shown in Fig. 14 that in the thermodynamic limit
and lower than a critical correlation exponent the conductance
goes to zero by increasing the system length, while higher
than the critical correlation exponent the conductance is robust
against the system size and remains at a high value. Therefore,
we can conclude that the phase transition also emerges for
correlated disordered potentials of barriers with a uniform
distribution.

Eventually, Fig. 15 shows the conductance as a function
of correlation exponent for different N. It is seen that
in the thermodynamics limit, higher than a critical cor-
relation exponent, the conductance increases continuously,
while lower than a critical value and for increased system
length, the conductance goes to zero. By increasing N,
the curves do not cut each other. Therefore, there is no
discontinuity in the value of the conductance. It means
that the phase transition is a continuous-phase transition.
This phase transition is a transition from anomalously
localized states27,36 to extended states. Therefore, in the
thermodynamic limit, there is a metal-to-insulator phase
transition.
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